L" is sharp for the anti-maximum principle

Guido Sweers

Dept. of Pure Mathematics
Delft University of Technology
PObox 5031
2600 GA Delft
The Netherlands

sweers@twi.tudelft.nl

November 6, 1998

Clément and Peletier showed in [3] a result that reads for the Dirichlet Laplacian
on bounded smooth domains 2 C R" as follows.

e For all f > 0 with f € L? (Q2) and p > n, there is Ay > Ay, where ) is the first
eigenvalue, such that one finds for A € (A;, Af) that the solution of

—Au = du+ in €,
{ ! )

u = 0 on 052,

satisfies u < 0.

For A < A\; the maximum principle yields that a solution u, no matter in which
space f > 0 lies, satisfies u > 0. The question remained open if the condition p > n
is necessary for the anti-maximum principle. One should notice that the so-called
anti-maximum principle is not a uniform result (A; depends on f) like the maximum
principle is. The fact that some regularity of f is necessary should hence not come
as a surprise. We will show that the result above is no longer true for all f € LP ()
with p < n.

Isabeau Birindelli recently extended the anti-maximum principle to general do-
mains ([2]). She uses both f € L? (), with p > n, and that the support of f lies
outside of the non-smooth boundary. The second condition is necessary on general
non-smooth domains. We will consider domains €2 C R™ with n < 2 that are bounded
and have a C*°-boundary 0f).
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By a moving plane argument one finds that for some boundary .
point the domain lies on one side of a (hyper)plane through :_
that boundary point. Using some elementary transformations I s
we may hence assume that ;

|

|

Q C By(0),
Q c {zeR"%z >0},
0 € o0

Balls in R™ are denoted by

B, (0) = {x € R": || < p}. -

|
1
1
1
|
1
|
4
|

Since the boundary is C*™ there exists r > 0 and ¢ € C*°(R™!) such that
QN B, (0) = {(z1,2") e RXx R Y21 = ¢ () }

with ¥ (0) = 0, V¢ (0) = 0 and At (0) > 0 and we may assume that ¢ (z') > 0 for
all z € Q.
We will make an extra assumption: there is ¢ > 0 such that for all |2/| < r

Vo ()] < cla’| A (aT),

2
V(@) < el Ay (). @

Both conditions in (2) are satisfied for some small » > 0 when 1) is analytic.

Since the inverse of the Dirichlet-Laplacian on L? (€2) for smooth bounded domains
(2 is compact and strongly positive, standard arguments show the existence of a unique
solution uy in Wy* (Q) N W?2? (Q) of (1) for f € L? (Q) whenever X is not one of the
countable many (positive) eigenvalues. Here p is any number in (1,00). We will also
use Holder type regularity results. Both type of results can be found in [4].

Proposition Let n > 2. There exists f € L"(Q2) with f > 0 such that, for all
A > A and X not an eigenvalue, the solution uy of (1) changes sign.

Proof. We will proceed in several steps.
i. First we will assume that ¢ (') = 0 on B, (0). In this case we will use for the

right hand side
T 1
Fle)= (o5
(@) ) (2 — log |z|) 2 —log|z|

1
1 < ——— < 1fi Q 3
2\/]m|_2_10g’$|_ orx € (3)

Since
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we find that
F@) >z |z >0in Q. (4)

Let us define the function v on € by
() = 1 log (2 — log Ja]) )
Then v € C7(Q) N C>®(Q\ {0}) for all v € (0,1) and v > 0 holds on . Moreover

—Av = —2Vz; - Vlog (2 —log |z|) — z1Alog (2 — log |z|) =

_9 -2 —2

- —(n—2

B S U 1 A O
2 — log |z| )

T 1 B )
" P 2 loge)) (n 3o = 0 (©)

Note that f € C>(Q\ {0}) and since

n 2 m/2 T COs (90) ('ﬂ + 1) " n—1
Jrores [ [ (Fatn ) e s

2 7,71 0
< 1)" —dr = 1)" " dt
<m(n+1) /T:0(2—logr)nr m(n+1) / < 00,

t=2—log 2

we find that f € L™ (Q).

We take A > A; and let uy denote the solution of (1). Set wy = uy — xv where y
is a nonnegative C*-function on R™ such that x (z) = 1 for |z| < r and x (z) = 0
for |x| > r. Then w, satisfies

{—Aw = A+ Ax+Ax)v+2Vx-Vo+(1—x)f inQ, o

w = 0 on 0f).

Note that (A\x + Ax)v +2Vx - Vv + (1 -x) f € C7(Q) which implies for A not an
eigenvalue that wy € C**7(Q) N Cy(Q) and hence that |wy (z)| < cxd(x,09Q) for
some constant ¢, depending on A. Here d (x, 012) is the distance function to 9€2. Since

(1
Q

T SCIEL)] = —0,
2110 v (z1,0) z110 log (2 — log 1)

we find that uy (z1,0) > %71 (21,0) > 0 for x; > 0 sufficiently small. Hence u, is
somewhere positive.
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ii. The case that v is not identical zero. First we use the following transformation
B = 11— 1/} ('1:/) )
yi = x; fore > 2,

and we consider the function o (z) := v (y (x)) where v is the function in (5). One
finds that

—Ab(z) = —Av(y(a))) =

_ —(Av)(y(m>>+( - VU 42V v) o

5y ().

We will need to estimate some derivatives of v for |y| — 0 :

2
Y 1
v (y) = 10g(2—log|y])—ﬁm:log@—logw])—i-o(l);
12 1)
() o = U Eel) o,
" lyl* (2 — logy)
—y; + 24 (1 p |)
0 0, £l ey for j # 1;
w7 ) Fetog) M) i

With the assumptions in (2) it follows that for |z| — 0 we have

~Ad (7) = [y (2)) + A («) (log (2 — log |y (x)]) + o (1))

which is hence positive for small |z|. Now we set f*(z) = max(—A?(z),0) and
consider (1) with f replaced by f*. Denoting v* the solution of

{—AU* = f* inQ,

v* = 0 on 0L,

one finds by the maximum principle that v* > ©. The remaining arguments are as in
the case ¢ = 0.

iii. Although it is not the main point of the counterexample we still have to show
that uy > 0 doesn’t hold everywhere in 2. We will proceed by contradiction using
the Barta inequality. Barta ([1]) states that for any w € C?(Q) with w > 0 the
following holds

A, > inf —aw(z) (8)

zeQ W (:17)

This inequality can be generalized to more general elliptic operators as well as to
w € C*(Q)NCy(Q) with w > 0in Q (see [5], [6]). Suppose that uy > 0. Then by the

strong maximum principle it follows from

—Auy=Muy+ f>0
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and not identical zero, that u, > 0. By using (8) with u, one finds that

@) _ Ot ) @)

A > inf > A
L= 28 uy () zeQ  uy () -
contradicting A > A;. Hence u, changes sign for A > \;. 0

Remark: The proposition shows that for p < n there is no anti-maximum principle.
If one only wants to see that n is critical one may use for p < n the functions
f=a|z|*?and v = —1 71 |z|* with o € (—1,0) satisfying o > 1 — n/p.

—a(a+n
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