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Sign change for Green function and
eigenfunction of clamped plate type equations

HANS-CHRISTOPH GRUNAU*, GUIDO SWEERS**

1. Introduction

By results of Boggio ([2], [3]) it is known that on balls in R™, with n > 1,
the biharmonic Dirichlet problem is order preserving, that is, the solution
u of

A2y =f in (2, (1)
u = %u =0 on 0{2,
for 2 = {z € R"; |2| < R} satisfies u > 0 whenever f > 0. One also finds
that the corresponding first eigenfunction is strictly positive. This bihar-
monic Dirichlet problem appears in the linearized clamped plate equation.

For the (second-order) Laplace problem such a positivity preserving
property holds for every domain in R™. Although an early conjecture of
Boggio and Hadamard ([14], [15]) claimed that such a result would hold for
the biharmonic operator on arbitrary nice convex domains, numerous coun-
terexamples have been constructed since then. On many domains both the
biharmonic Dirichlet problem is not order preserving nor is the first eigen-
function of fixed sign. See the counterexamples to the Boggio-Hadamard
Conjecture of 7], [8], [4], [6], [17] and [23]. Two-dimensional domains which
are in an appropriate sense close to a ball however do have the sign preserv-
ing property. Such a result was obtained in [11].

The sign-preserving property for (1) is equivalent to having a posi-
tive Green function. By an application of Jentzsch’s Theorem ([16]), or
the Krein-Rutman Theorem ([19]), it follows that a strictly positive Green
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function implies that the first eigenvalue of

A2p = Ap in (2, @)
= a%«p =0on 92,

is simple and that the corresponding eigenfunction is positive. Hence in two
dimensions the eigenfunction also remains positive if the domain is ‘not far’
from a ball. By a direct approach it has even been shown ([12]) that in
higher dimensions the sign of the eigenfunction remains fixed under small
perturbations of the domain.

A question in this area still left open was mentioned to us by James
Serrin [24]. Suppose that one considers a smooth deformation of the domain,
say t +— (2 with 20 = B and B a ball. For such a family of domains we
rephrase this question as:

Can it happen that ‘positivity preserving’ and ‘first eigenfunction positive’
fail simultaneously?

Or in other words, if ¢, is the largest number such that (2) on (2, has a
simple first eigenvalue with positive eigenfunction for all ¢ € [0, t.) and if ¢,
is the largest number such that (1) on §2; is strongly positivity preserving
for all t € [0,5), can it happen that ¢t = t;7 By the argument using
Jentzsch’s result one finds t. > t;,. We will show that for appropriately
defined deformations the inequality is strict and hence the answer to the
question above is negative: t, > t,.

In order to study this question we include a real parameter A in (1) and
consider for 2 C R", a bounded domain with 962 € C?™*!, the problem

(3)

(—A)"u=Xu+f in 0,

() u=0 on 992 with 0 < k <m — 1,
and we allow m € {2,3,...}. Positivity preserving properties of this sys-
tem have been studied in [12]. For 2 = B; = {z € R™;|z| <1} there
is Aemn € (—00,0) such that (3) is positivity preserving if and only if
A€ (Ac,m,na Al,m,B]) .

Note that, since the realization in L2(£2), with D = H2™2(2)NHy"*(12),
of the boundary value problem (3) is self-adjoint and has a compact inverse,
the spectrum is discrete and consists of real eigenvalues. Since the coeffi-
cients involved are constant and the boundary is C?™*1, the eigenfunctions
are identical for the realization in L? (£2) as well as in C (£2) . Indeed, the
eigenfunctions are in C?™ (£2) by standard regularity results (see [1]). Note
that for each domain {2 the first eigenvalue Ay ,, o is well defined by the
corresponding Rayleigh-quotient. Isoperimetric questions for the principal

eigenvalue of the biharmonic Dirichlet problem have been studied by Talenti
in [25].
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2. Varying the parameter in the resolvent

Let us denote by A1 m,n € R+ the first eigenvalue and by Gm 0 the
Green kernel corresponding to (3). In other words, the solution of (3) for
A < Ai,m,0 can be written by means of this kernel:

(@) = Grnof) (@) = /Q G2 (2.9) F () dy.

Since the boundary value problem is self-adjoint with respect to the stan-
dard inproduct G, x 0 (7,y) = Gman (v, ) for all x # y € 2. By [1] it
follows that G x,0 (z,-) € C*™7 (2\{z}) for all z € 2, v € (0,1).

Since all eigenvalues are real and satisfy A > Ay ,, » one finds that for
all p € R with A < pp < Ay ;02 the solution of

{(A)mu—uu+f in {2,

(a%)kuzo on 0N with 0 <k <m —1,

(4)

with f € C (Q) is well defined by the following Neumann series:

o0

=3 (Gure (=) Guraf. )

k=0
Since Gy, is a positive definite operator, the spectral radius of G, x o
satisfies v (Gim,a0) = A,m,0 — )\)71 .
Lemma 1. Suppose that £2 and A < A1, are such that
G0 (x,y) >0 for all x # y € 0.
Then, for € R with A < pt < A1, one has
G0 (x,y) >0 forall x £y € 1.

A related result in an abstract setting can be found in [5].

Proof. Since the operators G,, » o are nonnegative, it follows that G,, , o =
S (=N g,’jﬁn > (1= A) G2, 5.0 OF in other words:

Groposr (29) = (1~ ) / Grorgs (2,2) G (22y) dz. (6)
zEQN

Now fix @ # y € £2. Note that Gy, o (z,-) cannot be identically zero.
Indeed, let 1,1 be the eigenfunction of (3) for m = 1 and use (p1,1)"
as a testfunction. Since @31 > 0 in §2 and (pq,1)"" satisfies the boundary
conditions we find that G,, o (z,-) = 0 implies

0< (e11 @)™ = G (2" =N (1™ ) (1) = 0,
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a contradiction. Hence there are §,¢ > 0 and zg € {2 such that Bs(zg) C
2\ {z} and
G0 (x,2) >¢e>0for z € Bs(2) . (7)

Next we show that G, (-,y) cannot be identically zero on open
sets. Suppose that Gy a0 (-,¥) = 0 on some open set U C (2. Then the
unique continuation principle for elliptic equations (see [20]) applied to
(=)™ = X) Grma0 (y) = 0on 2\ {y}, implies that Gy r0 (,y) =0 on
2\ {y}, a contradiction. For U = Bs (zo) it follows that G, x.0 (-, y) Z 0.

Combining with (6) and (7), we have, with e* = (u — \)e,
G0 (2,y) > € / Gma0 (z,y) dz > 0. 0
z€Bs(z0)
Lemma 2. Suppose that £2 and X\ < A1, are such that
an,)\,.Q (xvy) > 0 fO'I“ all x 76 Yy e 1.

Then, for n € R with A < pt < A1 ,m,0, one has

<8787, ) G0 (2,y) >0 for allx € 902, y € (2, (8)

where ng denotes the inward normal.

Proof. Let y € (2. By the previous lemma G, ;.o (-,¥) > 0 holds in {2 and

k
since (%) G0 (-,y) = 0 on 992 for k < m, it follows that
a m
on an,p,,() (', y) >0 on of. (9)

Next we fix € 92. From the resolvent formula
Gy, = Gma0 (I + (=N Qm,#,n)
we find
Gon (2:9) = Gonp (2:9) + (1= V) [ Grn2 (02) Gonpo (1) .

Using G .0 (-, y) > 0 and (9), which also holds for o = A, it follows that

( 0 )mam,u,g (x,y)—( 0 )me,A,mx,y) 4

anm anm

(=) /Q ( 0 )me,A,n(x,z)Gm,u,g (2,y)dz.

ong
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By the Green function estimates of Krasovskil ([18]) the integral is well-
defined for quite general 2mt"-order elliptic boundary value problems on
bounded domains in R™ :

1 if 2m —n > |a| + 0],

8‘a|+‘ﬁ\ o < | (1 ‘ |71) £ 9 ‘ | | |
dx9yP (:r,y)' = Gas © g

|z — yPm =85 9 — < |af 48]

Since by the previous lemma G, 0 (z,y) > 0 for all z € 2\ {y}, we find
that if (ﬁaz) G0 (x,2) > 0 for some z € (2, then the estimate in (8)

holds for all y € {2. Note that z — (%)m G0 (z,2) € C(2\{z}).

Now suppose that (%) G0 (x,z) = 0 for all z € (2. Then for

every f e C (!_2) the solution u of
(—A)"u=pu+f in 2,
o \k : (10)
(a—n) u=0 on 02 with 0 <k <m —1,

satisfies (%)m u(x) = 0. Let d (z,042) denote the distance of z to 942, that
is

d(z,00) =inf{|z — 2'|;2' € 002} .

Note that d (-, 942) is Lipschitz continuous for every (2. However, since 912 €
C?m+1 there exists a neighborhood I's = {z € £2;d (z,02) < 6} such that
d(-,002) € C?*™+1(I%), see [9, Lemma 14.16]. Let w € C* (£2) be such
that w = 1 on I's;y and w = 0 on 2\I's. Then u,, defined by u, (2) =

d(2,002)™ w(2), satisfies (10) for f = ((=2)™ — p) u, and ()" u. (z) >
0, a contradiction. 0O

Corollary 1. Suppose that 2 and A\ < A1 .0 are such that
Gman (2,y) >0 for all x £y € .

Then, after suitable normalization, the first eigenfunction @1 m o s unique
and satisfies for some ¢y > 0

©1,m,0 () > e d(z,002)™ for all x € 12.

Remafk 1. Note that the boundary conditions and the fact that ¢q ., 0 €
c?m (Q) imply that there is co > 0 such that

e1,m0 (2) < cod(z,002)™ for all x € 0.
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Proof (of Corollary 1). Since Gy, p,0 (x,y) > 0 for x # y € 2 and p €
(A, A m,2), one may use Jentzsch’s Theorem (see [21, Theorem 6.6] or
[16]) to find that G,, . has a unique (normalized) eigenfunction ¢y with
¢1 > 0 a.e. in {2. The stronger estimate is a consequence of ¢y ,, 0 =
(A,m, 2 — 1) Gm,p,291,m,0 and the estimates for Gy, ., 2 (2, y) in the previ-
ous two lemmata. O

Remark 2. For the biharmonic operator in one dimension, Schroder [22,
Theorem 6.3] gives conditions where positivity breaks down. We take 2 =
(=1,1) and consider

u" () = Mu(z) + f (z) for —1<ax<1
{u(l) —u/(~1) =u (1) = (1) = 0. (11)

Using his terminology we set M = {(Lyx, B); X € I} with Lyu = u"" — \u
and Bu = (u (1) ,u' (=1),u (1), (1)) . Let I be an interval containing

0. For A = 0 the boundary value problem (11) is inverse positive. According
to [22], inverse-positivity breaks down when:

1. Lyu =0, Bu = 0 has a nontrivial solution, or
2. Lyu=0, (u (-1),u/ (-1),u" (-1),u (1)) = 0 has a nontrivial solution.

In our case, his third possibility equals the second by symmetry. The
first possibility is reached for A = Ay > 0, with A; the first eigenvalue. Since

1 (z) = cosh (f/)\_l) oS (f/)\_lx) — cos ({‘/)\_1) cosh ({‘/)\_130)

where Ap is such that ¢} (1) = ¢} (—1) = 0, we find that A; is the smallest

positive zero of
tan (4 /\1) — —tanh (gl/Al) .
The second possibility is reached for A = A, < 0 with

e (x) = sin (y) cosh (y) — cos (y) sinh (y)

where y = /=2 (z + 1). The number . is determined by . (1) = 0, that
is, . is the largest negative number such that

—Ae [ =X
tan<24 1 )—tanh<24 1 )

A numerical calculation yields A\ = 31.285243 ... and A\, = —59.430266. .. .
For X € (Ac, A1) one concludes that (11) is inverse positive.

In this fourth order example Lemma 2 is sharp in the sense that for
A < Ac and |A— ;| small there exist y € (—1,1) (close to 1) such that
(8%)2 Ga,x,(-1,1) (—1,9) < 0. This can be shown by an explicit calculation
of these Green functions.
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3. Perturbing the domain

It is not obvious that for small perturbations of the domain the Green
function or the eigenfunction remains positive. Such problems have been
studied in [11] and [12]. In [11] it is shown that in 2-dimensional domains
the Green function for A = 0, and hence also the first eigenfunction, remains
positive whenever the domain {2 is close to the disk in R? in C?™*!-sense.
Whether or not the Green function remains positive for small perturbations
of 2 C R™ with n > 2 is still an open question. The eigenfunction however is
shown to remain positive for small domain perturbations in any dimension
([12]).

For a precise statement we need to define a continuous family of C*-
domains. The families of domains that we will consider start with 2y = B,
a ball, and will deform C*-smoothly. We will be interested in the largest t,,
t, such that the first eigenfunction, respectively the Green function on (2,
is strictly positive for all ¢ € [0,t.), respectively t € [0,%,).

Definition 1. Let k be a positive integer. We say that the collection
{£24;t € [0,1]} is a continuous family of C*-domains in R™ if there exists a
family of functions {hy € C* (20;R™);t € [0,1]} such that:

1. 2y is bounded and 082y € C*; - -
2. for every t € [0,1] the mapping hy : 29 — 24 is a CF-diffeomorphism;
3. for every t € [0,1] we have lim, ¢ ||hs — hel| o (@) = 0.

3.1. Influence on a solution

Let {£2;;t € [0,1]} be a continuous family of C*™*!-domains in R” and
let {h4;t € [0,1]} be corresponding mappings mentioned in Definition 1. For
fixed f e C (!20) we consider

(—A)mu = f @) (h;l) in Qt, (12)
(a%)ku:o for 0<k<m—1on 9.

We will be interested in the case that {29 = B, the unit ball in R™.

Lemma 3. Let {£2;t € [0,1]} be a continuous family of C?mH_domains in
R™ and let f € C () . For each t let uy denote the solution of (12). Then

i [fus © by 0 (1) = e gm0, = 0
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Proof. For every t € [0,1] we will denote the unique solution of (12) by w;.
Let us define two auxiliary functions on (2, namely f; = f o (h; 1) and
Us = Ug © hg O (ht_l) . For simplicity we also write gs = hs o (ht_l) . We will
compare u; and .

First notice that for m even

/ (A%us)de:/ ugs fsdr;
.QS -Qs

this together with Cauchy-Schwarz and the Poincaré-inequality implies that

[usll gz, < ramn | fsllL2(a,) 5 (13)

where the constant cg ,,,, depends only on m,n and the radius R of the
smallest ball that contains (J,c[g 1 {2 For m odd, the same estimate (13)

holds using [, |V (A% u,) ’2 dr = [, us fsdz. Since |[fsl|2 (g, is uni-
formly bounded for s € [0,1], so is [|us || zrm 2 (g, ) and hence also [|ts|| .20, -

For w € C? (QS) we have w o g, € C? (Qt) and
(Aw) 00gs = As (w © gs)

with

> (At ) o 0) 5

k=1

where (g5!), is the k*" component of g5 '. The function @, satisfies

{ (—4)™u = f, in 2,

14
(a%)ku:() for 0 <k <m—1on 0. (14)

Since (—As)™ is uniformly elliptic on (2; uniformly in s, there are A and b
such that (—A,)™ = ¥4 <o @5 () (£)" satisfies

ATHEPT < Y e (@)t < AP and laglle < b for |a] < 2m.

|a|=2m

By [1, Theorem 15.2], respectively [1, Theorem 7.3], we find that for all
s € [0,1] there exist constants Cg, A bn,2m,p a0d Cp, Abn,2m,y, Which do
not depend on s, such that

Y

sl s2mn ) < Coreamzmp (IFelo(y + Nisll g,y ) and

1 fellon () + llcoan) ) -

Hﬂs H02171+7 (Qt) S C.Q[,A,b,n,Qm,'y
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Since we have a uniform bound for ||is|| g2 (,) We may use Sobolev em-
beddings (on the fixed domain (2) and a bootstrapping argument to find
a bound for quSHCQ,,LM(Q) which is uniform in s € [0,1]. By the property

that hy — hy in C?™*1 and hence g, — ¢, in C?"*1 as s — t, it follows
that a$, — af, in C! for s — t. Since quSHCQ,,LM(Q) is uniformly bounded

we find that
(o car)

From (—A)" s = f; + ((A)m — (As)m> s it follows that

— 0 for s —t.
c

hmHﬂS —utHsz(Qt) =0. O

s—t

3.2. Dependence on the first eigenfunction

The proof in [12] of the result that the eigenfunction remains positive
for {2 close to the ball uses the estimate

c1d(z,0B)" < 1m0 (x) < cpd(x,0B)™ for x € B. (15)

Since the proof only uses this estimate, and not the fact that B is a ball,
we may refine this proof in order to show the following result.

Theorem 1. Let {{2;t € [0,1]} be a continuous family of C*™*1-domains
in R™ with to € [0,1] and 2y, = 2. Suppose that A\1,m 0 is the first eigen-
value of (3), that A\ .0 is simple, and that

f<P17nQ()< Splm.Q(TBL _

0<c=in =c < o0. (16)

260 d(z,00)" = sep d(z,00)
Then for all € > 0 there is 6 > 0 such that fort € [0,1] with |t —to| < 6 :

1. the first eigenvalue A1, 0, i simple and |A1,m,0 — Mm,0,| < &
2. the corresponding eigenfunction p1m.0,, after suitable normalization,
satisfies

P1,m, 2, (1') _

c—e= mf(’plm—n‘(n)lg sup =c+e (17)

€S2 (l‘ 8(2,5) €L, d(:c,@()t)m

Proof. See [12, Lemma 5.1 and Theorem 5.2]. For h; as in Definition 1, one
finds that there exists § > 0 such that for [t —to| < ¢

1m0 )~ @1mo, (o ) an i < =

2\ 2 \"
(an ) P1,m,0 = <8T> (Qpl,m,()z Ohtoh%l) =0

Since




10 Grunau and Sweers

for all k € {0,...,m — 1}, it follows that
|‘Pl,m,(2 (I) — P1,m,2, (ht © ht_ol (1‘))’ < Ed(l‘v a‘Q)m s

implying (17). O

3.3. Conclusion for the sign change

Theorem 2. Let {2, C R™t €[0,1]} be a continuous family of C*™+1-
domains with {290 = B. Set

ty =sup{t €[0,1]; Gmo,0, (x,y) >0 forallx #y € 2 and s < t}.

Then there is € > 0 such that for allt <ty 4+ ¢ the first eigenvalue is simple
and the corresponding eigenfunction satisfies

1m0, >0 in (2. (18)

Proof. Suppose that ij()y_()tg (z,y) changes sign. Since Gmyojgtg is con-
tinuous on 2%\ {(z,z);x € 2} there is f € C (2,) with f > 0 and the
corresponding solution u being negative somewhere. Let u; be the solution
of (12) with this f on the right hand side. Then we find by Lemma 3 that
ug o hy o h;gl — ug, = u uniformly. Since u; > 0 for all t < ¢, and uy, 2 0 we
obtain a contradiction. Hence we have Gm,o,(gtq (z,y) >0forall z,y € qu.
Then we find by Corollary 1 that ¢i1m,0, > cd(x)™ for some ¢ > 0.
By Theorem 1 it follows that there is € > 0 such that (18) holds for all
t €[ty ty +¢) and hence for all t € [0,t, +¢). O

We have proven that Gm,o,gtg > 0 and Clm, 2,40 > 0 for small positive
. In order to answer the question whether or nor the Green function remains
positive under small perturbations of the domain, that is £, > 0, one would
have to show that Gy, 0,0, = 0 implies G 0,0, = 0 for small positive e.
As mentioned before this question is still open in dimensions n > 3. The
symbol > denotes a strict ordering in an appropriate lattice. In [10] one finds
> defined as follows for the Green function of (3) with 2m >n: G = 0 if
and only if there is ¢ > 0 such that for all z,y € 2

G(x,y) >c (d(:v,aﬁ)d(%ag))m_%" min (1’ d(x,@())d(%ag)) > |

2
|z —yl

Note that from our proofs one finds that G, x o, = 0 implies Gy, 1 2, >
0 for p € (A, A1,m,0,) - Assuming that the Green function remains positive
in >~-sense under domain perturbations for all A € (A, A1,¢), a schematic
graph of ¢t and A for which the Green function is positive should have the
appearance that is shown in Fig. 1. In the grey area Gy, » o, > 0 holds true.
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