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THE EXISTENCE OF THE PRINCIPAL EIGENVALUE
FOR COOPERATIVE ELLIPTIC SYSTEMS
IN A GENERAL DOMAIN

I. Birindelli, E. Mitidieri, and G. Sweers UDC 517.956.227

1. Introduction

In the present paper we investigate the existence of the principal eigenfunction of the vector-valued elliptic
eigenvalue problem
(Z-H)%=)B® in 9, =0 on 89, (1)

and its relationship with the maximum principle. We assume that the operator 2 is a diagonal matrix
consisting of uniformly elliptic second-order partial differential operators and H and B are cooperative matrices
with entries {from C fl) The domain 2 C R" is bounded. We do not assume that the boundary satisfies
any regularity condition.

Systems of elliptic and parabolic differential equations appear in the investigations of models of population
dynamics, combustion theory, and nerve conduction (e.g., see [1, 2]).

Elliptic spectral problems play an important role in the existence, uniqueness, and stability of solutions
of such systems [3 - 6]. They are also closely related to the maximum principle and comparison theorems.

In most papers dealing with elliptic and parabolic systems (e.g., see {7 — 14]), the boundary of the
domain € is assumed to be smooth. The absence of this condition results in difficulties even in the case
of a single equation. There are at least two approaches for considering the case of a single equation in
a domain with no condition of the domain regularity. In Perron regular domains [15], solutions continu-
ous up to the boundary can be defined by means of the passage to the limit. In general domains, self-
adjoint problems can be investigated in the weak sense with the help of minimizing the corresponding energy
functional.

An eigenvalue problem with no assumption on the boundary regularity and with no use of the self-
adjointness was analyzed in [16] (see also [17 - 19]). In that case it was necessary to determine in what sense
the solution discontinuous at boundary points satisfies the boundary conditions. It turned out that such a
solution can be obtained by an approximation procedure (the definition is given below).

In the general case, vector-valued elliptic systems are not self-adjoint even if the second-order operators
involved are self-adjoint; therefore, the approach suggested in [16] for a scalar equation proves to be more
natural for vector-valued problems.

Elliptic systems form a wide class of problems. Of these, we extract systems whose properties are similar
to those of a single equation, namely, the so-called weakly-coupled and quasimonotone systems (these terms
are explained below).

Let us outline the difficulties encountered if the boundary is not assumed to be regular. Just as in [16],
we use the Krein-Rutman theorem. For using this theorem, it suffices to have a strictly positive compact
resolving operator [3]. In the case of no boundary regularity, the proof of the compactness of the resolving
operator becomes very cumbersome even for a single equation. However, quite a simple proof of this assertion
was suggested in [20]. The method used there can be generalized to the case of systems, as shown in the
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present paper. For results on the regularity of the solution in domains with smooth boundaries and with
finitely many corners, see [21, 22).

In the general case, the resolving operator of a system of equations is not strictly positive. Nevertheless,
it follows from [23] that the assumptions of the Krein-Rutman theorem stipulating the strict positiveness
and compactness of the resolving operator can be replaced by positiveness, irreducibility, and compactness.
In what follows, we consider systems with resolving operators satisfying the latter conditions.

The paper [16] clarified the notion of validity of the boundary conditions for domains with nonsmooth
boundaries. To this end, one must construct a special function ug by the following limit process involving a
domain  C R" and an elliptic operator L.

Let {Q; };";1 be a sequence of smooth domains approximating € from inside:

QJ’CQJ‘CQJ'+1C"'CQ and UQj:Q' (2)

JEN

Next, let & be a number such that L1+ > 0. Finally, let u; stand for the solution of the problem (L + &) u; =1
in QJ, u; = 0 on 0. We define uq as uo(x) = limj_eo u;(z) for z € Q; it follows from (16] that u; — uo
in W2P(Q) for any p ‘and u; — ug in CL ().

Definition [16]. Let uy be the above-defined function. A solution u of the elliptic equation Lu = f (under

appropriate assumptions on L = Qi — 0 9 + b 4 + c and f) satisfies the zero Dirichlet boundary
7 bz, Oz;
J

conditions on 9Q in the BNV sense, namely, w20 on 09 if lim; .o u (z;) = O for each sequence z; — O
such that ug (z;) — 0.

In the present paper we assume that the boundary condition occurring in (1) is satisfied in an appropriate
BNV sense (see Definition 4 below).

It follows from the remark in (16, p. 73] that ug = 0 on 8Q for any v € wa! M(Q) such that v > 0 and
Lv > 0 in Q. Therefore, the choice of 4, is not a restrictive condition.

In Section 2 we introduce the relevant definitions and state the basic results. In Section 3 we give the
assertions used in the proof of the maximum principle. In Section 4 we prove the main theorem for systems (1)
with B being the unit matrix. Finally, using the results of the previous two sections, in Section 5 we justify
the main theorem. In the last section, to make the exposition self-contained, we present a theorem of the
Krein-Rutman~-de Pagter type, which is needed in our investigation.

2. Definitions and the Main Result
The following assumptions are used throughout the investigation: the set 2 is a bounded open connected
subset of R¥; the operator 2 is a diagonal k x k matrix of elliptic operators L, (1 < p < k):

2

_ a N
= ;_: (%) 50 " +§b ()5 3z, + c*(z), 3)
satisfying the conditions

N
colél* € S aki(x)&ik; < Coll’, ai; € C(Q), b, € L™,

ij=1

. 1/2
( ):(bz*(x»?) <h @) <b

=1

(4)

for some positive constants cg, _Co, and b and for all z € Q and £ € R¥; the entries of the k x k matrices H
and B belong to the space C (Q) As was mentioned above, we do not assume any regularity of Q2.
Let p € (1,00), and let L?(Q) be the usual Lebesgue space. Note that (L"(Q))k can be identified with
LP(w), where
w=(09,...,Q). (5)
k
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Definition 1 (inequalities). Let D C R™ be a bounded open set, and let w € LP(D). Then
1) w> 0ifw >0 almost everywhere in D and w does not vanish identically;
2) w» 0 if w|p- > 0 on each open set D* C D.

Definition 2 (matrices). A k X k matriz A with entries A;; € C (%) is said to be

1) positive if Aj(z) 2 0 for alli,j € {1,...,k} and z € Q;

2) cooperative if Aij(z) 20 for alli,j€{1,...,k} withi# j and for all z € Q.

A cooperative matriz A is said lo be
_8) completely mized 1f A+ I 15 an irveducible matriz, where the entries of A are given by the relation
A = 14l

In the literature, the cooperative property is known as essential positiveness or quasimonotonicity (11, 4].

Definition 3 (supersolutions). A function w € (W,ﬁg’(Q)an(Q))k with w > 0 and (Z - H)w €

(LN(Q))k is referred to as
1) a supersolution for the operator & — H if (£ — H)w > 0;
2) a strict supersolution for & — H +f (£ — H)w > 0;
8) a strong supersolution for £ — H if (Z — H)w > 0.

Next, let us define the validity of boundary conditions in the BNV sense. Let a sequence {Q;} consist of
smooth domains approximating € from inside just as in (2), and let M, = L, — c*. Let uy be the limit of
functions u% that are solutions of the problem M,u* = 1in €, u* =0 on 0€);.

Definition 4 (Dirichlet boundary conditions). Let uy be the above-constructed function. A function
u € (C(Q))* satisfies the Dirichlet boundary conditions in the BNV sense, i.e., u 2 0, if for each p €
{1,2,...,k} and for each sequence {x'} . C Q, 27 — 9Q, the relation lim;.oouf (27) = 0 implies
lim, o0 u* (27) = 0.

Let us state the eigenvalue problem to be investigated in the present paper. We say that ¢ € (Wli'cN(Q) N
L (Q))k is an eigenfunction of problem (1) corresponding to an eigenvalue A if

(Z-H)®=B® in Q @20 on 89 (6)

Just as in [16], we set
Ao = sup {)\; Jw e (W,i;N(Q))k (Z-Hw>ABw and w>» 0} . (7)

For smooth domains under appropriate conditions imposed on the operators in question and for B = I, it is
known [12] that )y is the first eigenvalue in the ordinary sense.

Next, we note that if B satisfies the condition 2;‘:1 Bij(z) > 0 for all 1 < 4 <k, then definition (7) is
closely related with Barta type inequalities [25]. More precisely, we have

X > _inf (£ — Hw)i(z)/(Bw)z) (8)

1<i<k,z€0

for all w € (C*(Q))* with w > 0. The main results of the present paper are stated in the following two
theorems.

Theorem 1. Let 2, &, H, and B satisfy the above-mentioned assumptions, and let Ao be the number
gwen by (7). Suppose that

a) there exists a positive strong supersolution for & — H;

b) H is a cooperative mairiz;

¢) H is a completely mized matriz;

d) B is a cooperative matriz;

e) Bii(z) >0 for somei € {1,...,k} and z € §d.
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Then the following assertions are valid:
i) Ao is a positive eigenvalue and corresponds to a strongly positive eigenfunction;
ii) Ao is the unique eigenvalue corresponding to a positive eigenfunction, and its algebraic multiplicity is
equal to 1;
i11) there is no eigenvalue on [0, Ag).

Next, we consider the boundary value problem
(Z~Hu=ABu+f in Q, u=20 on 5. (9)

Theorem 2. Let the assumptions of Theorem I be satisfied. Let f € (27(Q))* with f > 0, and let )o be
the number given by (7). Then the following assertions hold:
i) if 0 < A < Ay, then there exists a solution u € (W,icN(Q) n L°°(Q))k of problem (9), and u > 0.
If B is positive, then
i1) problem (9) with A = \g has no solution for any f > 0;
it1) problem (9) with X > A has no positive solution for any f > 0.

Remark 1. If, in addition to the assumptions of Theorem 1, we suppose that B is a positive diagonal
matrix (B;; = 0 for i # j and B;; > 0), then there is no eigenvalue in (—00, A¢), and assertion i) of Theorem 2
is valid for all A < Ag.

Remark 2. Since we impose no assumptions on the sign of c*, it follows that we can replace ¢* by ¢ —
and H,, by H,, +7. Consequently, without loss of generality, we can assume that H,, > 0 (H is positive)
or even H,, > 0.

Corollary 1. Let the assumptions of Theorem 1 be satisfied, and let 2?_,_1 Bij(z) >0 for all1 <1 L k.
Then
Ao = sup inf ((Z - H)w)i(z)/(Bw)i(z). (10)

we(CHR))*wpo 1SiSk 2€Q

This result was obtained in [25] for the Laplace operator. For results concerning more general second-order
elliptic equations, see [10, 26]. The case of systems was investigated in [12].

Proof We denote the expression occurring on the right-hand side in (10) by Ap. It follows from (8)
that Ap > A%. Using the first eigenfunction, whose existence is provided by Theorem 1, we obtain A < A5
The proof of the corollary is complete.

3. The Maximum Principle, Subdomains, and Nonzero Boundary Conditions

In the case of elliptic equations, it is well known that if the resolving operator of the Dirichlet problem
is positive on ©, then the same is true for the Dirichlet problem in any subdomain 2, € Q. A similar result
is valid for cooperative systems.

Proposition 1. Let Q, 2, and H satisfy the above-stipulated assumptions. Suppose that conditions b)
and c) of Theorem 1 are satisfied. If there exists a u, € (Wf’N(Q) n L°°(Q))‘c such that

(Z-Hu.>0 in Q, w20 on 069, (11)

and u, 2> 0 in Q, then thke relation u > 0 is valid in Q, for each open set Q, C Q with smooth boundary 052,
and for u € (WQ'N (Q,)) such that

(Z-Hu>0 in Q, u>0 on 0, (12)

Remark 3. The assumption that H is a completely mixed matrix on Q does not imply that Hlq, is also
completely mixed on €,. This explains why we do not require the validity of the condition » > 0 in (12).
However, if H is a completely mixed matrix on ,, then we can strengthen the last assertion as follows: either
u=0,0oru>0inQ,.
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Proof of Proposition 1. Note that the Kato inequality [27], which can be applied to u, € W2 (), and
the cooperative property of A imply that

((Z — H)min(v,0)), = 2, (X[u»<01uu) = Z Hy; (X[u;<0]"1) 2 Xlun<0}ZL ptty = ZHMXluJ<0]uj
] J
= Xuu<o)((Z — H)u)u+ > Hyj (X(u,.<0] - X[u,(O}) u;
J
2 ): Hy, (X(“u<0] - Xlu;<01) Uj
7

= 3 HouiX(uu <01 Xiu, 200% = 3, HujX{u,20]Xju <0t 2 0
Jtu J#u
in the sense of distributions. Consequently, (£ — H) min(,0) > 0 in §, and min(x,0) = 0 on 9%,. Since

u, is a strong positive supersolution for & — H on (,, it follows from [12] that min(w,0) > 0 in §, for each
completely mixed subset of {1,... k}. Therefore, v > 0 iu ,, which completes the proof.

Remark 4. Proposition 1 will be used in the proof of Theorems 1 and 2. Had these theorems already been
proved, we could use them and prove Proposition 1 for u € (W2 (9,) N L% (2,))* without requiring the

loc

smoothness of 39,. To this end, one should replace the boundary condition u > 0 on 89, by the condition
min(z, 0) %" 0 on 8Q,.
4. The Case B=1

Let us consider the special case of problem (1) with B = I (the unit matrix). We assume that conditions a),
b), and c) of Theorem 1 are satisfied and the inequality

nx

K 2 sup ( ‘f: Hyy(z) - C“(w)> (13)
J=1

is valid. We introduce the operator & — H + 1.

Lemma 1. Lete = (1,...,1)T € R¥, k > 1, and let k > 0 satisfy inequality (18). If uo is the function
constructed in Definition 4, then there ezists a u, = (ui, ceis uf) € (W,?,;N(Q))k such that (Z - H+«xl)u. = e
inQ, u. 20 on 09, and u. > 0 in Q. Moreover, ug = 0 on 9.

Remark 5. As a corollary of Lemma 1, we can claim that the assertions « 2 0 on 9 and u 2 0 on 99
are equivalent.

Proof of Lemma 1. Let {£;},.y be a sequence of smooth domains approximating 2 from inside [just as
in (2)], and let u,; = (”“l,e» e ,uﬁ‘,-) be the solution of the problem

(Z—-H+kDu.;=e in £ Uei =0 on I (14)

Since H is a completely mixed matrix in Q, it follows that so is A in §; for all sufficiently large 7. This means
that we can use Theorem 1.1 from [12]. Hence u.; 3> 0 for all sufficiently large i. Since 2 is bounded, we can

assume that © lies in the half-space {x eR”; z; > 0}. We set d, = sup, (C“ - H+ K) and consider
2
o € R such that o > sup,,, (2a%,)7" + ((bf)2 (1) +4aty (1 + du))" ) and v(z) := (e” — ¢’ e, where d

is the diameter of .
We have

(Z-H+kl),= (aza‘l‘1 - b’l‘a) e’ + (c“ - iH,,,- +n) (e"d - e"")

i=1
k
> ( a%, —b‘l‘o—du—-l)e”‘ + (c"—ZH,‘j+n) 41
j=1
consequently, (2 —H+xI)v > 1and (&~ H +&I) (t; — v) < 0. The maximum principle (see [12, Th. 1.1])
yields 0 < u.; < wv.
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As a corollary, we can readily find that u.; — u.. Indeed, since {u.i(z)},cny T € 2, is a bounded
increasing sequence, we find that it is convergent.

Choosing ¢ € R such that M,u# = (—k — c*) u¥ + 5., Huul + 1 < ¢'1, we obtain 0 < v} < c*ug and
e 2 0 on 8. By virtue of the results of [16, p. 73], this means that ug 2 0 on 692. The proof of the lemma
is complete.

Lemma 2. Let f € (L®(Q))*. Then there ezists a unique function u € (L°°(Q) n W]ﬁ'c’\'(ﬂ))lc such that
(Z-H+klu=f in Q  u=20 on 90 (15)
In addition, there exists a C € R (independent of u and f) such that

lullz < ClifllLe: (16)

Proof. Let us consider the sequence of open domains §2; such that €Q; C Qi C Qiyp and Q = UZ, Q.
Let u;, i = 1.2,..., be a solution of the problem (Z — H + kl)u; = f in €, u; = 0 on 9. Performing
considerations with the help of the comparison theorems, we have

it S U; S 2, (17)

where z := u.||f|lL~. To complete the proof, we note that the boundary condition u 2 0 on 00 and
relation (16) are satisfied by virtue of (17). The uniqueness follows from (16).

Proposition 2. Let f € (L*(Q))*. Then there ezists a unique solution u € (W,f;cN(Q) N L2()* of
problem (15). Moreover, there ezists a C (independent of u and f) such that

ullze < ClifllLns (18)

and the inequality f > 0 implies u > 0.

We use the ideas of the proof of Theorem 1.1 from [12].

Proof. Note that (2 +«I) is a diagonal matrix consisting of uniformly elliptic operators. By virtue of the
choice of , the assumptions of Theorem 1.2 in [16] are satisfied. Consequently, under boundary conditions
in the BNV sense (see Definition 4) the operator (2 + xI)~! is defined in L™(Q2).

Let A := (£ + kI)"1H be the resolving operator of the problem (£ +xl)u=Hf in Q, u 2 0on 99, ie.,
A(f) = u. Let us show that it is a compact irreducible operator in (LN (Q))k.

Indeed, it follows from [20, Proposition 1.1] that (& + «I)~! is a compact operator. Therefore, since H
is bounded, it follows that so is A.

Let us show that A is irreducible. Recall that A is said to be irreducible on (LN (Q))’c if the set

{f € (LN(Q))k; filz) =0forallz € K;; 1 £¢ < k} is not invariant under A for any measurable set
K C w with g(K) > 0 and u(w\K) > 0. Since the maximum principle is valid [16] in the case under considera-
tion, it follows that each component of (£ + «I)™! is irreducible. Using the fact that H is a completely mixed
matrix (we assume that Hy > 0), we find that 4 is irreducible and positive (see the proof of Lemma 1.3 in [12]).

Now, using the assertion of Theorem 5, we obtain r(4) > 0.

Let us now show that the operator (] — A)~! is well defined and satisfies (I — A)~! = 52, A”. Indeed,
by Theorem 4, r(A) (> 0) is an eigenvalue of A and of the adjoint operator A*. By ¢ and ¢ we denote the
corresponding positive eigenfunctions.

Let us consider the function u, defined in Lemma 1. Recall that u, > 0. We have (£ + xl)u, =
Hu, +e > Hu,, whence u, > (Z + &I)"'Hu,. Consequently, (1, 1) > (¢, Aue) = (A*Y, ue) = r(A) (¥, ue)
and (4, u.) > 0. This means that r(A) < 1, whence we obtain the desired assertion.

To complete the proof of the proposition, we note that, by virtue of the above-stipulated requirements,

k
for any f € (L” (Q)) there exists a u such that u = (I ~ A)~}(2 +xI)~* f. This is equivalent to the relation
w—(Z+kl)""Hu= (£ +«I)7!f,ie., uis a solution of problem (15).
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It remains to prove relation (18). It follows from Lemma 2 and the inequality r(A4) < 1 that |lulle <
(M/(1 = r(A)) (L +KI)7'f]l.- On the other hand, the generalized modification of the Aleksandrov—
Bakelman-Pucci theorem (15, Th. 9.1; 16] yields ||(Z + 1)~ f]l, < C||fll.n.

Finally, since H is a completely mixed matrix, we have (I — 4)~}(Z + KD > AN Z 4+ kD)7 >0
for f > 0. This completes the proof.

Corollary 2. The problem
(L-H)p=M¢ in Q, 020 on 8Q,

, K
has a positive eigenvalue Ay such that the corresponding eigenfunction satisfies ¢ € (Wli‘c“ Q) ﬂL°°(Q))
and ¢ > 0.

Proof. Let Sy := (2 - H+xlI)™!, defined in (LN (Q))k, be the inverse operator corresponding to boundary
conditions defined in the BNV sense (see Definition 4); it is positive and irreducible; by virtue of the Sobolev
embedding theorems and inequalities (18), it is also compact. Theorem 3 (see below) implies the existence of
the principal eigenvalue 1 of the operator S, corresponding to an eigenfunction ¢ > 0.

Consequently, Ay = 1/u ~ & is the principal cigenvalue of the operator (£ — H) corresponding to an
eigenfunction ¢ such that ¢ > 0. Let us show that A\; > 0.

By assumption, there exists a strongly positive supersolution w of the problem (& ~ H), that is,
(£ - H+kl)w > kw > 0. By Proposition 2, the function @ = S«(&Z — H + kl)w satisfies the con-
ditions w € (W&;N () ﬁL”(Q))k and w > 0. Let us consider the sequence {€} of smooth domains
contained in 2 and satisfying condition (2). Let S,; := (£ — H + kI)~! be the resolvent of the op-
erator of problem (15) considered in §;. It follows from Proposition 1 that w > S5i(Z - H+ kDw
on {. Since S, (L - H + kl)w = S (L — H+ k) — W as i — oo, we find that w < w on  and
W= S~ H+xl)w > kScw > kSeb on . Let u stand for the principal eigenvalue of S.. Since g
Is also the principal eigenvalue of the adjoint operator S corresponding to the eigenfunction 1, we have
0 < K (¥,Scl) < (¥, ) = (1/p) (Spy, @) = (1/p) (¢, SeD), where (-,-) stands for the pairing between the
space (LN (Q))k and the dual space. Consequently, A\; = 1/u — & > 0. The proof of the corollary is complete.

Corollary 3. Let A < A; and f € (LN(Q))k. Then there erists a unique function u € (W,ﬁ'cN(Q) N
L))" such that (£ ~ H)u = Xu+f in Q and w2 0 on 8Q. In addition, if f > 0, then u > 0.

Proof. If A = —k, then the assertion of the corollary follows from Proposition 2. Only inequality (13)
restricts «; therefore, the assertion is valid for all A < k. If A € (=« )\;), then we can follow the lines of the
proof of Proposition 2. Indeed, note that v (£ — H + k)™ (k + A)) = (A + &) " (k+)) < 1 and (Z—-H+x)™}
is strictly positive; consequently, the function u = 20 (£ — H + k)" s + ) (£ - H + k)71f is defined
and provides the desired solution of our problem. The proof of the corollary is complete.

5. The Hess Lemma. The Cooperative Property of B
Let us investigate the existence of a positive eigenvalue Ap with a positive eigenfunction @ for the problem

(Z-H)d=X3B® in Q, @20 on 60 (19)

Proposition 3. Let assumptions a) - €) of Theorem 1 be valid. Then there exist \g > 0 and
de (WQ‘N(Q) n L°°(Q))k with @ > 0 such that relation (19) holds.

loc

Proof*. Without loss of generality, we can assume that B; > —1 for all i € {1,...,k}. Consider the
operator K, : (LN(Q))k — (LN(Q))"c defined by the formula K, = (Z - H +al)"(B+1), where a > 0 and
(£ — H+al)™!, and assume that the Dirichlet conditions are posed in the way described in Definition 4.

It follows from Corollary 3 that K, is a compact positive irreducible operator for any o > 0.
To continue the proof, we need the following lemma, which states a useful property of K,,.

* In the proof we use the ideas of [5, 28}.
332



Lemma 3. There erist @ > 0 and w € (W2 N(Q) n L“(Q))k with w > 0 such that oK w > w.

loc

Proof. Leti € {1,...,k} and ¢ > 0, and let § > 0 and zo €  be chosen so that Bs,, C © and Bi(z) > ¢
for £ € Bs,,. We set Bsz, = {:c €RV; |z~ 20| < 6}.
Let us consider the eigenvalue problem

(Li— Hiy)v=»>2v in Bz, v=0 on 9B;sz,. (20)

Straightforward calculations show that ((Z — H)™'e), is a positive strict supersolution of problem (20). Then
under the Dirichlet boundary conditions on Bs s, the operator T; = ((L,v - Hy)| B, ,0)—1 is a positive compact
irreducible operator (by virtue of the strong maximum principle). Consequently, the operator T; has the first
positive elgenvalue A, which corresponds to some eigenfunction ¢. We continue by zero outside By z,. Let us
consider & = (0,...,%,...,0 07, ‘where ¢ stands in the ith position, and the set w = aK, $ with a = A/o.
Let us show that ® < aK,®. Indeed, since > 0, we have w 3> 0. Consequently, (B + I ) > (o +1)&
and
(Z-H+oal) (w—<i>)=a(3+1)<i>—(X+a)<i>>o on By, (21)

Note that, although the strong maximum principle can fail for the system on Bj ., (this system is not
necessarily completely mixed on a subdomain of (2), the componentwise strong maximum principle is still
valid_(see Proposition 1). Consequently, (21), together with the inequality w — $ > 0on 0Bs 2, implies
w—& > 0 on B;,. In addition, from the relation w 3> 0 = é on Q\Bo z, We obtain aK, é > & on Q. Since
oK, is a strongly positive operator, we find that aK,w = (aK, ) ® > oK, =w> & > 0. This completes
the proof of the lemma.

Let us continue the proof of Proposition 3. Since K, is a compact irreducible operator, it follows from The-
orem 3 that the operator K, has the first eigenvalue 1/a; > 0, which corresponds to some eigenfunction @;
thus ®, = a1 K.®1. By Lemma 3, there exists a w > 0 such that aK,w > w. Hence 1/ay = 7 (Kq) 2 1/a,
where r (K,) is the spectral radius of K.

By varying «, we construct a sequence (an,®n),», With ap = o such that 0 < an < Qn-1, ®, =
anKa,_,®n >0, and [|®,]] = 1 for n > 1. From the sequence (o, ®n),,»;, We can extract a subsequence such
that o, — )\ > 0 with & = MK, ®; we denote this subsequence by (o, ®,). Consequently, ® 20 on 09, and
(Z-—H+M)®=XI+B)® = (Z-H)®=AB9,ie, A= Ap, which completes the proof.

Remark 6. Using the existence of a positive supersolution at the first stage, we have found a value A such
that & = \K,® with A < «, where the equality does not necessarily take place.

Proof of Theorems 1 and 2. We readily obtain Ag = Ag. Using the function ® defined in Proposition 3, we
find that the assumptions of Theorem 1 with (& — H) replaced by (& — H — AB) are valid for all A € (0, Ap).
Using the results of Section 3 with B = I, we complete the proof.

6. Krein~-Rutman—de Pagter Results

A real vector space with a partial order (E, >) is called a vector lattice if for any f, g € E one has
fV f €E, where f V g is the least upper bound of {f,g}. A lattice equipped with a norm (E, >, ||-|)) is
called a Banach lattice if (E, ||-||) and (E, >) are a Banach lattice and a vector lattice, respectively, such
that the inequality |f| < |g| yields || f|| < |lg|l- Here |f| = fV(=f). Aset AC E is called an ideal lattice if
the conditions |f| < |g| and g € A imply that f € A. A positive operator S € L(E) is said to be irreducible
if {0} and E are the only closed lattice ideals invariant under S.

Theorem 3. Let E be a Banach lattice with dim(E) > 1, and let T € L(E) be a positive irreducible
compact operator. Then the spectral radius r of the operator T satisfies the condition T > 0, and there ezists
e, 0 < ¢ € E, such that Ty = 1¢. Moreover, r is the unique eigenvalue corresponding to a positive
eigenfunction, and this eigenvalue ts algebraically simple.

This theorem is a combination of the well-known Krein-Rutman theorem from [29] and the important
de Pagter result [23] allowing one to replace the positiveness of the spectral radius of the operator T' by
the irreducibility. The latter condition is easier to verify. In E = LP(w) (with the Lebesgue measure and
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with 1 < p < 00), where w is an open set in R™, any closed ideal has the form {f € LP(w); f = 0 almost

everywhere in K} (30, p. 158]. This means that the irreducibility of a positive operator S on F is equivalent
to the fact that Myu\k © S o M,k # 0 for each measurable set K C w with u(K), u(w\K) > 0. Here the
operator M, stands for the multiplication by the characteristic function xx of K For (compact) nuclear
operators Theorem 3 is known as the Entsch theorem. In the present paper, we consider the case in which
E = (L*(2))* for p € (1,00). Note that E can be identified with LP(w), where w is defined in (5).

Theorem 4 (the Krein-Rutman theorem). Let T € L(E) be a compact positive operator with a strictly
positive spectral radius r. Then there exists a ¢ € E, ¢ > 0, such that Ty = TY.

Theorem 5 (the de Pagter theorem). Let E be a Banach lattice with dim(E) > 1, and let T € L(E) be
a compact positive irreducible operator. Then this operator has a positive spectral radius 7.

It remains to prove the uniqueness in Theorem 3. Since T is a positive compact operator, it follows
that its adjoint 7" € L(E”) is also positive and compact and has the same spectral radius r > 0. By the
Krein-Rutman theorem, it has a positive cigenfunction ¢ € E' with T'¢ = r¢. It follows from Theorem V.5.2
in (30] that ¢ is the unique eigenfunction of 7'; moreover, 7 is an algebraically simple eigenvalue of T'.
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