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1 Introduction

Like Boggio [Bol] and Hadamard [Ha] (1901/08) one might conjecture that positive data
f>0,¢p>0,% >0 in the clamped plate equation

(=A)u=fin Q,

W) u|0Q = 1, <£> u|00) = o,

ov
yield positive solutions v > 0. Here 2 C R" is the “shape of the plate” (physically relevant
for n = 2), v is the exterior unit normal at 92, f is the (perpendicular) load, ¢ and v are
the boundary data and wu is the deflection of the “plate”.

Most authors concentrated on the Green function Gg o for the Dirichlet problem (1)
in case of homogeneous boundary data ¢ = 1» = 0. Boggio [Bo2] could show by explicit
calculation that the Green function G, , o for any power (—A)™ is positive if @ = B C R"
is the (unit) ball. Numerous counterexamples ([Du], [Ga], [CD], [ST] and many others) have
shown that this result actually does not hold in arbitrary domains 2. A perturbation theory
for Boggio’s positivity result has been developed by the authors in [GS1] with respect to
lower order terms of the differential operator and in [GS2] with respect to the domain and
the highest order terms of the differential operator in two dimensions.

In the present note we focus on the role of the boundary data ¢ and . Hence we may
assume that f = 0. As we pointed out in [GS3] if ¢ = 0 the positivity behaviour of the
Dirichlet problem (1) with respect to the highest order datum is more or less the same as
with respect to the right-hand side. But if also ¢ > 0, ¢ /=0 is considered the situation
becomes more involved. From [Nic, p. 34] we take

@) w@) = [ Kon(ey)pdoly) + / Lon(z, 9)p(y) dw(y), € B,
0B 0B
where
_ .1'2 2
(3) Konw)= = T o a2}

T 2w, [z —y[T2
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x € B, y € 0B, w, denotes the (n — 1)-dimensional surface area of the unit ball. Evidently
Ly ,, > 0 for any n, while K3, > 0 only and n < 4 and K3, changes sign for n > 5. Moreover
perturbation results like Theorem 7 below could have been shown only for n < 3, see [GS3].

In the next section we will show that the Dirichlet problem (1) may be reformulated
ina way such that we have a positivity result with respect to both boundary data in any
dimension. Moreover for n < 3 and in particular for n = 2 the above mentioned result may
be sharpened so that if ¢(zg) > 0 for some zg € B, close to xy also negative values for ¢
are admissible.

In the last section we switch to polyharmonic Dirichlet problems of arbitrary order 2m
and develop a perturbation theory of positivity with respect to the Dirichlet data of order
(m — 1) and (m — 2), provided the other boundary data are preccribed homogeneously and
the positivity assumption is posed in an adequate way.

2 The adequate positivity assumption for the clamped plate
equation

In order to find the adequate positivity assumption on the boundary data in the Dirichlet
problem

(=A)*u =0 in B,

5
S T (7)o =
ov

the key observation is that the negative part of the kernel K5, corresponding to v has the
form as the kernel Lo, corresponding to the datum ¢.

Lemma 1. Let s € R, s > 2(n—4). Then for
(6) Kons(x,y):= Kon(z,y) + sLon(z,y), x€B, ycdB,
we have
IA(27n7s(x, y) > 0.
Proof. We observe that for x € B, y € OB (i.e. |y| = 1) we have

1 (1—]z[?)?% (n n—4
Kon(z,y) = Yo [z =y 2 5(1—\43\2)— 5 |z —y/?
n (1—]z/*)? n-4
( ‘ ‘ ) - 9 L2,n($7y)'

4wy, ‘.CL‘ - y‘n+2



Proposition 2. Let ¢ € C°(0B), ¢ € CY(0B). We assume that for some number s >
$(n —4) there holds

P(x) >0 and @(x) > syp(x) forx € IB.

Then the uniquely determined solution v € C*(B) N CY(B) of the Dirichlet problem (5) is
positive:

u>0 in B.

Proof. From (2) and (6) there follows:

wx) = [ Kon(e,y)pdu(y) + / Lo () o(y) dey)
0B 0B

- [ st wdo + [

OB OB

Lon(w,y) (0(y) = s 9(y) ) do(y):

Remark. For n = 1,2, 3, also negative values for s are admissible.

We are interested in whether this positivity result remains under perturbations of the
prototype problem(5). As in higher order Dirichlet problems quite similar phenomena can
be observed, we develop the perturbation theory for the biharmonic Dirichlet problem (5) as
a special case of the perturbation theory for the polyharmonic Dirichlet problem (7) below.
The latter is subject of the following section.

3 Higher order equations. Perturbations

In what follows we always assume m > 2.
First we consider the polyharmonic prototype problem:

(_A)mu:[) in B,

(7) (—é%)ju:o on OB for j =0,...,m— 3,
7
(_é%)m_2 u=1 ondB,

\ (—%)m_luzw on OB.

Except in the radial case u = u(|z|) (see [Sor, Proposition 1, Remark 9]) no positivity result
can be expected with respect to the boundary data of order O,...,m — 3, so we prescribe
them homogeneously.

After some elementary calculations we find from [Ed] or directly from (2) that for ¢ €
CY(0B), ¢ € CY(OB) the solution u € C?™(B) N C™ ! (B) to the Dirichlet problem (7) is
given by

(8) u(x) = /8 Kol y)vdaty) + /a Lo 0)e(0) du(s). @€ B

where
1 (1 = Ja?)™

9) K =
9)  Knn(z,y) 2m (m — 2)lwy, |z — y|"+2

{n(1 = |zl*) = (n -2 = m)|z —y[*},



1 (1 —[z*)™
(m—Dlw, |z -y
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(10) Lonn(,9) = 5y

x € B, y € 0B. As in Section 2 we have

Lemma 3. Let s € R, s > $(n—2—m)(m —1). Then for

(11) Km,”,s(xvy) = Kmm(x,y) + Sme(J),y), HANS B7 Z/ € 6B7
we have

Kppns(z,y) > 0.

Proposition 4. Let ¢ € C°(0B), ¢ € CY(0B). We assume that for some number s >
2(n—2—m)(m — 1) there holds

P(x) >0 and @(x) > syp(x) forx € IB.

Then the uniquely determined solution u € C*™(B) N C™ Y(B) of the Dirichlet problem (5)
18 positive:

u>0 in B.

As a starting point for the peturbation theory of Proposition 4 we describe the essential
properties ot the integral kernels K, ,, s and Ly, .
For brevity we introduce a notation for the boundary distance

(12) d(z):=1-—|z|, x € B.

Lemma 5. a) Let s > 3(n —2—m)(m —1). On B x 9B (i.e. forx € B, y € dB) we have
5 <z =yl ()™,

13) K, n,s (L,

W Bty { = o | ()

(14) Lynn(,y) ~ |z —y[ "d(z)™.

b) If we assume additionally that s > &(n — 2 —m)(m — 1) then we have on B x 0B:

= o=yl ()",

= ‘J) - y‘—nd(x)m’

(15) Km,n,S(xa Y) {

Here for f,g: M C R¥ — Rt we used the notation:

frg & 30>0VreM: Sf() > g(r) < Of(r),
fRg & IC>0VreM: f(x)>Cg(x).

Proof of Lemma 5. The claim follows from 1 — |z|? ~ d(z), d(x) < |x — y| and

n (1= fz)™t 1
Km,n(xa y) = om (’I?’L — 2)' won ‘.CL‘ — y‘n+2 - 5(” —-2- ’I’I’L)(’I’I’L - 1) me(l‘, y)
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Remarks. 1) The estimation constants in (15) depend stronly on s.

2) If s = 1(n — 2 — m)(m — 1) then we have Koms(x,y) ~ o —y|™"2d(z)"!, ie. for
x — OB we have a zero of order m. We would have expected and actually need in order
to prove perturbation results a zero of order m. Consequently in what follows we have
to assume s > 1(n —2 — m)(m — 1). The estimate (15) is more appropriate. But as
Kons(x,y) Az —y|~"'d(z)™ our perturbation result Theorem 7 below is (necessarily ?)
less general than the corresponding results in [GS1] and [GS2]. In particular we are not yet

able to consider domain perturbations.

For our purposes the following “3-G-type” estimates are essential. We use the multiindex
o
notation D* = [, (5%) for a € NJ; || = Y1, ;. We recall that Gy, 5, denotes the
Dirichlet Green function for (—A)™ in the unit ball B C R™.

Lemma 6. Let s > 3(n—2—m)(m—1), « € N} Then on B x 0B x B (i.c. for x € B,
y € OB, z € B) we have the following.

‘D?Gm,n('xv Z)‘ Km,n,s('za y)

- (.0) =
K T,y
(16) e .
1, if o] < 2m —n,
=
‘.CL‘ _ Z‘2m—1—n—|a| + ‘y o z‘2m—1—n—|a|’ if ‘Oé‘ > 29m — n.
Linn(z,y) N
1, if la| < 2m —n and n odd,
(17) or if la] < 2m —n,
=
log ‘ , if |a| =2m —n and n even,
x—z
|z — z|Pmnlel oy — Pl Gpal > 2m— .

Proof. We repeatedly employ d(z) < |z — y| (y € 0B) without mention.
a) Proof of (16): We use estimate (15) of Lemma 5

The case: |a| < 2m —n and n odd, or |a| < 2m —n.

Here we use Corollary 10.

2y (™3l i {1’ d(m);/iiﬁ)n/z } |i(;|)ﬁ1

‘D?Gm,n('xv Z)‘ Km,n,s('zay) <

Km,n,S(xa y) B %

} ly — 27" (lo = 2" + |y — 2[")

d(x)zd(z2)?

< d(g;)_%d(z)%n—%_bz' min{l, ‘J)—Z‘n

< d(2?m ey — o () ()Pl (%) Tyl

— d(z)2m—|a|‘y _ Z‘—n—l _|_d(z)2m—n—|a|‘y _ Z‘_l =< ‘y o Z‘2m—1—n—|a|'



The case: |a| = 2m —n and n even.
We use Lemma 9.

‘D?Gmm(:c, Z)‘ Km,n,s(za Z/)

IA

IA

IA

~

=

Km,n,S(xay)
) \ - dz) \™ d(z) \max{m=lal 0} gpym
log (2 + |r_z|) mln{l, |r_z|} mln{l, |r_z|} oy [P T
OR
|z—y[n
<1 + ‘j(_xlo d(z)~™d(=)™ min {1, ‘j(_x)z‘ }
. d(z max{m—|«a|,0} o . .
min {1, 29 [yl = 2" g~ 27)

{d(w)_md(Z)m\y = 2| "M — 2" + d(@)"d(2) " |y — 2|

(@) ")y = 27 d() () = 2 e - 2
-min{l d() }mmin{l d(2) }ma‘x{m"a"o}

) )
|z — 2] |z — 2]

d(.CL‘) ) min{m,n}

d(@) " d(2)"y — 2| — 2| (

=
ey mateyy - (49)

d(.CL‘) ) min{m,n}—1

|z = 2]

' <d(x)>1+max{m—n,0}< d(z) >max{m—|a|,0}

|z = 2]

d(a) ()™ y — 2| — 2 (

d(z)

a2y = 2| o= 2 ()
A=)y — o fy = 2| )y - 2| Y- o

|z — 2|7 + |y — 2|7

The case: |a| > 2m —n and |a] < m.
We use Lemma 9.

‘D?Gm,n(xa Z)‘ Km,n,s(za Z/)

Km,n,S(xay)
m—n—|a| .- d@) \™ . dz) \™7lel _aeym
‘.’L‘ —Z‘ m—n—|a| mln{l, |r_z|} mln{l, m} W
d(z)™
[z—y["



< d(z)"d(2)" |z — 2Py — 2
. dlz) ™ . d(z) ™ n n
-mm{l,‘x(_L‘} mm{l’\x(—)z\} (le = 2" + |y — 2|")
- - et (@) \™(d(z) \"T
< d mA( |y — z|2m laly,, n—1
< d(e) () = 2Pl — 2t (L) (L
- —n— 1 ((d@)\"™
m m|,. _ 12m—n—|a||,, 1
la) ()" = ooy o ()
< d(z)?mbly — o 4 [ — 2Pl o)
=< ‘.CL‘ _ Z‘2m—1—n—|a| + ‘y _ Z‘Qm—l—n—|a|'
The case: |a| > 2m —n and || > m.
|DZ G n(, 2)| Km,n,S(Zay)
Kimn,s(T,9)
m—mn— . d(x M q(z)m
- ‘.’L‘ - 2‘2 |Oé| min {1, |IE(—2)1| } |Z—(y|)"+1
- d(z)™
lz—y|™
< d(z) (=) |z — 2Py — 2
nin {1, 2V gy — g
|z = 2|
- B o d(.CL‘) min{m,n} d(.CL‘) max{m—n,0}
< m my,. . |2m—|a|),, n—1 [ “\*)
< d(a) () = ey o (L) o
- —n— 1 ((d@)\"™
m m|,. _ 12m—n—|a||,, 1
R O B =)
=< d(z)mm{m,n}‘x _ Z‘m—|a|+max{m—n,0}‘y _ Z‘—n—l + ‘.CL‘ _ Z‘2m—n—|a|‘y _ Z‘_l
=< ‘.CL‘ _ Z‘m—|a|+max{m—n,0}‘y _ Z‘min{m—n,o}—l + ‘.CL‘ _ Z‘2m—n—|a|‘y _ Z‘_l
< a — zPrtenmlel gy — 2o termled by Hilder's inequality.

b) The proof of (17) is almost analogous to the above reasoning with the obvious simplifica-

tions: In the numerator m has to be replaced by . Only the case |a| =2m —n
and n even is different and will be carried out here.
The case: |a| = 2m —n and n even.

We use Lemma 9.

1
[y—z|™

‘D?Gm,n(xa Z)‘ Km,n,s(za Z/)

Km7n7s(x7 y)
log (2 + (22} ) min {1, %}mmin{L %}ma&({m—hw} s
a d(z)™
Jz—y[™

IA

3 ANy — 2|7 (|l — 2| — "
oz (2 ) dla) ™)y =l o =l + fy =17

7



ot

. min {17 d(z) }mmin { | dl) }max{m—|a|,o}

|z = 2] e

< tog (2 ) dle) )y = 2| e - 2P

()™ o e
+1log <ﬁ> d(z)""d(z)™ (%)

3 3 3
log [ —2— "y — 2|7 4 log [ —— ) < log [ —— ).
. Og(m—a)“” ly == +0g<\x—z\>-og<\x—z\>

The estimates (16) and (17) in the Lemma above are integrable with respect to z € B
uniformly in z € B, y € 0B, if || < 2m — 2. Our main result is a direct consequence of this
fact.

A

a

Theorem 7. Let s > 1(n—2—m)(m—1). Then there exists g = eo(m,n,s) > 0 such that
the following holds.
If ||ba||C‘a‘(§) < gg for |a| < 2m — 2, then for every p € C°(0B), v € C1(0B) with

¥ >0 }
on OB, ¥ £E0 or ¢ £0,

© > s

the Dirichlet problem

(—=A)™u + Z la] <2m — 2by(x)Du=0 in B,
(18) (_(%)j?;:o on 0B forj=0,...,m—3,
(—%)m u =1 on 0B,
L (—%)m_luzw on OB.

has a strictly positive solution u € I/Vli?’p(B) NC™ YB) (p>1 arbitrary):

u>0 nB.

Proof. For existence and regularity we refer to [ADN] and [Ag]. First we assume additionally
€ C27(AB), ¢ € C™HY(OB). We denote ¢, = ¢ — s1p. Let p > 1 be arbitrary. The
operator

Em,n@s(x) = /{))B Lm,n(xv y)(ﬁs{y) dw(y)

maps Ly, : C™(9B) — C*™7(B) — W*™P(B),

Romnsth (@) = /a Ko ) (0) 40



maps Kyns: C2(0B) — C?™7(B) — W?™P(B), while the Green operator

G f () = /B G2, 9) £ () dy

maps G @ LP(B) — W?™P(B), see [ADN]. We write A := > laj<am—2 bal( ) D The

solution of (18) is given by u = —Gyy n At + K st + Linn@s o8 (Z + GrnA) u = Ky st +
Lonnps. Here T + Gy, A is a bounded linear operator in W2™P(B), which for sufficiently
small ¢ is invertible. Hence

u = (I+gmn )_1 Amns¢+(z+gm,nv4)_1£m,n¢s

= m n s¢ + Z gm n m,n,s¢ + Em,n‘ﬁs + Z (_gm,n-A)Z Em,n‘ﬁs-

=1

We only show how to deal with the first series containing l@mn s, the second series containing
Ly n is treated in the same way with some obvious simplifications. For 7 > 1 we integrate by
parts. As A is of order < 2m — 2 and l@mn s% vanishes on 9B of order m — 2 no additional
boundary integrals arise. By means of Fubini-Tonelli we obtain for x € B:

(—) Rnsth(@) = (~1)° /  Gaalm ) Ay /¢ et te)

< "421'—1 G2,n(zz'—1a Zz)Azz K, (Zza W(y) dw(y)dzz ...dz
zE€B yEaB
= (—1)i/ (Azngm(.fL‘, 21)) / (.AEQGZ”(ZL 22)) ...
z1€B z0€B
5 / (A Gom(zin ) | Kolz )b (y)do(y)dz;. .. d=
2,€B yeOB

— / / / (A5, Gon(z, 21)) (AL, Gon(21,22)) -
G2 n(zz—lv ZZ)) Ky, (Zlv W(y)dw( )d(zlv SRR ZZ)

Here A*. = Z|a|§2m_2(—1)|a|D°‘(ba . ) is the (formally) adjoint operator of the perturbation
A. By virtue of Lemma 6 we find:

. |Az, Gon(z, 21)| Kn(21,y)
‘(_gmmA) /cm%szp(x)‘ < /aB/B.../BKn(x,y) Ko(z,y)
A5 Gane1,2)| Ken)
Kn(zlay)
| A% Gan(zim1, 2)| Kn(2i,y)
' Kn(zi-1,9) Pz dy)
< (o) [ Kol y)0t) doty) = (Coo)' (Kuvs) ().

Analogously we have:

(G ) Lnns(@)] < (Coco) (Lmad) (2)



The constants Cy = Cy(m, n, s), Co = Co(m,n) do not depend on i. If gy = go(m,n,s) > 0
is chosen sufficiently small, we come up with

1 . 1
19 >_ICmns _EmnAs-
(19) u = = Kannsth + ZLmnd
The general case p € C°(0B), v € C*(0B) follows from (19) with help of approximation,
the maximum estimates of [Ag] and local LP-estimates [ADN]. a.

A Appendix

For the reader’s convenience here we collect a technical lemma and the Green function esti-
mates from [GS1].

Lemma 8. On B? (for z,y € B) we have with p,q > 0 fived:

mm{ \x—y;\} ~ mm{l’%’\j(—y;\}’
SEEC \x—y\g)} ~ min{ G T L )
ATl 2 S 04

mm{l’%} ~ i {1,288 i {1, 20

On B? (for z,y € B) we have with p,q> 0 and p + q > 0 fized:

v 10g<“%) - 10g<2+\j(—y;\>mm{l’%}'

Lemma 9. Let o € N*. Then on B? we have the following.
1. For |a| > 2m —n and n odd, or, |a| > 2m —n and n even:

(a) if |a| < m then

m—|qf m

= y Pl
(b) if |a] > m then

d m
| D2 Gl (2, y)] < o — Pl mm{1,7‘ (y)‘m}.
r—y

2. For |a| =2m —n and n even:

10



(a) if |a| < m (that is m <n) then

m—|a| m
|Dg G (z,y)| < log <2+ d(y) ) min{u\d(””) d(y) } ;

|z -yl |z — y|mle

(b) if |a| > m (that is m > n) then

| D3 G (2,y)| < log <2+ d(y) ) min{l/\&)m}.
|z -yl |z — y

3. For|a| <2m —mn and n odd, or, |k| < 2m —n and n even:

(a) if o] <m — in then

in i,
DG (2,9 2 d (2)" 2" d ()" 5" min {1, %} ;

(b) ifm—%ng la| < m then

m—|a| n—m+|q|
| DSGonn (2, 9)] = d (y)*™ "1 min {1, ) P ffji } ;

(c) if m < |a| then

d n—m+|q|
DSGn (2] < d ()" i {1, T
‘.CL‘ o y‘n—m+|a|

In general the following estimate is weaker than Part iii. of Lemma 9 but still appropriate
and more convenient for our purposes.

Corollary 10. For |a| < 2m —n and n odd, or, |a] < 2m —n and n even we have:

1, 1,
DG ()] < )™ 51 )™ 5 i {1, %} -
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