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Summary. In adapting a grid for a Computational Fluid Dynamics problem
one uses a mapping from the unit square onto itself that is the solution of an el-
liptic partial differential equation with rapidly varying coefficients. For a regular
discretization this mapping has to be invertible. We will show that such result
holds for general elliptic operators (in two dimensions). The Carleman-Hartman-
Wintner Theorem will be fundamental in our proof. We will also explain why
such a general result cannot be expected to hold for the (three-dimensional) cube.
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1. Introduction

The present paper deals with the invertibility of mappings that transform sim-
ply connected two-dimensional domains into the unit square. These mappings
are used to generate so called structured grids in the physical domain to solve
Computational Fluid Dynamics (CFD) problems. These grids are generated by
mapping a uniform rectangular mesh from the unit square onto the physical do-
main. To enable a consistent discretization of the flow equations, it is necessary
that the mesh in the physical domain is non-overlapping. Hence the mapping has
to be invertible.

A typical example of 2D grid generation is illustrated by the diagram in Fig. 1.
The boundary conforming mesh around a 2D airfoil (see Fig. 1.c) is obtained as
the image of a uniform rectangular mesh in the unit square (Fig. 1.a) under a
mappingT. The mappingl is constructed as a compound mapping M o A,
whereM provides a basic non-overlapping mesh in the physical domain, and
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The physical donain

(& m) € 2 - (Pa)eE -
[ ———
(x,y) € 22

a) b)

Fig. 1.

whereA serves to adapt the mesh to improve the resolution of the geometry or
the flow solution.

SinceM provides a basic parameterization of the physical donfajrthe
unit square in Fig. 1.b is called the parametric domdii)( Similarly, since
the compound mapping provides the computational mesh §&a on which the
flow equations are solved, the unit square in Fig. 1.a is called the computational
domain (2:). The coordinates i, 2, and {2 are denoted by = (£, 1),
p=(p,q) andx = (X,y).

A way to construct the basic mappilg is to define the parametric coordi-
natesp andq as solutions of the Laplace equationfih

(1.1 Ap=0 Aqg =0,

with A = 5122 + 5’;2. Mastin and Thompson [7] proved that jif and q are
appropriately specified on the boundaly? of £2, the resulting mappindg/ —*
from (2 to (2, has a non vanishing Jacobidf = pxgy — pydx, which is a
necessary condition for the mapping to be regular. The mesh spacifagcan
be controlled to some extend by the specificatiorpaind g on 0f2. Winslow

[13] replaced the Laplace equation (1.1) by isotropic diffusion equations

1 1
(1.2) V.- Vp=0 V. Vq=0,
w w

ox? oy
over the mesh spacing.

An alternative way to enable mesh spacing control is to apply an additional
mappingA, see Fig.1. When the basic mappiNg is defined by the Laplace
system (1.1), Warsi [12] has shown that the compound mappisgM o A is
given by

with V = (3 9 ) The weight functionw (x,y) enables more direct control

Ag (va) =P (§X7§yu 77)(777)/; p§7q§7 pna qnvfppagpq7§qq)

An(x,y)=Q (77X777ya§X7§y; Pe, e, pnaqn777ppa77pq>7]qq) )

where the functiond® and Q are nonlinear iné, &, nx, ny. In most applica-
tions however, the function8 andQ are specified directly rather than through
specification of the adaptive mappirg[11].

(1.3)



On the invertibility of mappings arising in 2D grid generation problems 39

Explicit use of an adaptive mapping is incorporated in the algorithm of
Hagmeijer [3], where it is assumed that a regular mapphgs given which
provides sufficient resolution of the geometry fih The additional mappind
is used to adapt the mesh {a with respect to a first approximation of the flow
solution such that recalculation of the flow on the adapted mesh results in higher
accuracy. The mapping is defined by

(1.4) AV - WV, €=0  AV,-W iV, =0,

where A and W are diagonal matrices with strictly positive elements that are

functions ofp andq, andV, = (aap, an) The boundary conditions faf, n on
012, are
(15) g(ovq) :O f(l7q) = 1 fq (p,O) :O fq (pal) :0

np(OaQ):O 77p(17Q):O 77(p»0)=0 n(pal):l

A variety of applications of the adaptive mapping defined by (1.4) and (1.5),
see [3], [4] and [5], shows that, although heavily adapted meshes are produced,
overlap never occurred. Hence it was suspected that the mapping defined by
(1.4-1.5) is always invertible. This is the motivation for the present paper.

The paper is organized as follows. In Sect. 2 we state the main result, which
is proven in Sect. 3. In Sect.4 some remarks will be made for 3D problems.

2. Main result

Let us denote the open unit squgel) x (0,1) in 2 by S and the sides by
to Iy in the following way

Fl:{o}x(oal)7
12 =(0,1) x {1},
F3:{1}X(011)1
Iy=(0,1) x {0}.

Consider the problem

Lu=0 inS, Lv=0 inS,
(2.1) (@| u=0 onrl1, and (b)| v=1 only,

u=1 onI3, v=0 on Iy,

Ju=0 onlLUTy, 2v=0 onIyiUI3,

where we are looking for a solutidm, v) € W2P (S) x W2P (S) with p € (2, 00).
For a domain ink? with a Lipschitz boundary one ha&'?P (S) c C*(S) for
p > 2. (See Theorem 7.26 of [2].)

The operatoL in (2.1) is given by

2 2
(22) L:al(x)(ail) +a2(x)<a?<2> +bu(x) aibe(X) aiz’
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o

u:O, v=1

on
u=0 u=1
Bv:O s (91):0
on on

N6 w=0

on

Fig. 2

where the coefficients satisfy for some> 0 and~ € (0, 1)
(2.3) a €C%(S), a>c>0inS,i=12
(2.4) bi € C7(S),i =12

Remark 1.0Observe that problem (1.4-1.5) is a special case of (2.1).
We have

Theorem 1. Problem(2.1) possesses exactly one solut{onv) € C2(§).
Moreover(u, v) is a bijection fromS (resp. S) into itself and

(2.5) det( o Lhe ) >0 onS.

le UXZ
Remark 2.The theorem implies that the mappidg: 2. — (2, (see Fig.1) is
regular.

3. Proof of the main result

We will start by studying the local behaviour of a solution to a two-dimensional
elliptic problem near a stationary point. A powerful theorem of Carleman-
Hartman-Wintner will yield the result that we need. We will use a general-
ized version of this theorem from Schulz ([10]). A tool in our proofs will be
the Brouwer degree. For a mappidge C (£2;R?), with 22 C R? open and
bounded, the degree frofin (2 is well defined if$ # 0 ondf2. This degree is
denoted by de@p, £2). For an introduction to the notion of degree one may see
the first chapter of Deimling’s book ([1]).

Let the operatof. on the domain? be as follows:

. 9 \? o 0 oN2 -~ 9o . 0
31) [=4a +a +4 +b 7 +b 0,
( ) 11 (0)/1) 12 (9)/1 ayz 22 (ayz) 1 8)/1 Zayz
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with for somec > 0
& €COl() forl<i<j<2
3.2

Y & (&g >cl¢ff forallx € 2,6 € R
1<i<j<2

(3.3) bi € L®(£2).
Proposition 2. Let 2 c B2 be open. Let be as in(3.1) with the coefficients
satisfying(3.2-3.3) Suppose that € W2P (£2), with p > 2, satisfiesL¢ = 0
in 2. Lety € {2 be such thatV¢ (§) = 0. Then there exists r~ 0 such that
B: (¥) € {2 and either

Vo=0 onB(Y)
or

{ V¢ #0 forally € B (9)\{y},
deg(Ve,B; (9)) <O.

Proof. From the uniform ellipticity ofL it follows that there exist\;, A, > 0
and an orthogonal matri®, with detQ = 1, such that

o aa(y)  381(9) _( M O
< (;alz(v) %0a(9) )Q‘( 0 Az)'

With the transformatio : 22 — 2, defined by

(o2 2 )(2)+(2)

we find thaty (z) 1= ¢ (Uz) — ¢ () satisfies a uniformly elliptic equationy = 0
on U™ where the operatot is as in (3.1) and satisfies;1(0) = &,(0) =
1, &4;,(0) = 0. Moreover

{ ¢(0) =0,

Ve (0)=0.

Hence we are in a position to apply the version of the Carleman-Hartman-Wintner
Theorem that is stated in Theorem 7.4.1 of [10]. We also use the resultin Theorem
7.2.4 of [10]. Letf2* C {2 denote the component @ that containsy”” Since

¢(z) = O (|z]) as|z| — 0 it follows that eithery (z) = 0 on U™ 2%, or there
existsm € N* with

m Y22 - c e\ (o).

(3-4) \z“|~0 (z +iz)"

If »(z) =0 onU™R* theng(y) = ¢(¥) on 2*. Now suppose thap (z) # 0.
Then there ig* > 0 with B, (0) C U™ 2 andV (z) # 0 for z € B;- (0)\ {0},
that is, O is an isolated zero f& . Moreover, a homotopy argument shows that

deg(Vy, Br- (0)) = deg((Re(a(z +i2)") , — Im (a(ze +i22)™)) , By~ (0)) -
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Hence dedVp, B, (0)) = —m < 0. Now take a balB,(¥), with r > 0, such
that B, (y) C UB,- (0). SinceVy # 0 onB;+ (0)\ (U™B(y)) we have

deg(Vp, B (0) = deg(Vi, U™ (B, (9))) -

Since

(3.5) det(U’) :det<Q< (Alc))_z 0 )) >0

(o) 2

the matrixU’ is nonsingular and orientation preserving. For a nonsingular linear
mappingA the product formula for the degree, see Theorem 5.1 of [1], shows
that

deg(Ag (-),D) = deg(g (), D) deg(A -,K) ,

whereK is the component of (D) containing 0, and

deg(g(A-),D)=> deg(A- —k,D) deg(g(-),Ki)

Ki
whereK; are the components &D andk; € K;. Theorem 1.1 of [1] shows that

if 0 € D and defA # 0, then dedA -, D) = sgn(detA). From (3.5) it follows that
we have

deg(V, U™ (B (9))) = deg(V ((U-) — #(9)), U™ (B (9)))
= deg((V¢) (U") U’ U™ (B, (9)))

= deg((V¢) (U ), U™ (B (9))) = deg(Ve (), Br (9)).

Hence de@gVe,B; (¥)) =—m< 0. O

Next we will establish some results for problem (2.1.a):

Lu=0 inS,
(3.6) u=0 only,
u=1 only,

Ju=0 onlyUIy,

wherelL in (2.2) satisfies (2.3) and
3.7) bi € L=(S).

Since problem (2.1.b) can be treated as (2.1.a) by exchanging the rolearnd
X2, Similar results hold for (2.1.b).
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Theorem 3. Assume that L satisfi¢2.3)and(3.7). Then problen{3.6) possesses
exactly one solution i W2P (S), for all p € (2, 0). Moreover, the following
holds:

(3.8) O<u(x)<1 forxes,
0

(3.9) 8x1u x)>0 forx € dS,

and

(3.10) Vu (x) # (0, 0) forx € S.

Finally, if (2.4) holds, then uc C27 (S).

Since we have mixed boundary conditions and a non smooth boundary, stan-
dard existence and regularity theory does not apply in a straightforward fashion.
However, this difficulty can be removed by transforming (3.6) into a Dirichlet
problem on an annulus. We start with this transformation.

Consider the mapping@ : S — A*, where

AT ={y e B3 1< |y| <2,£y, >0},
that is defined by, =r cosp , Y, =r sing with r =x; +1 andy = mxg:
(3.11) T (X1, %2) = ((x1 + 1) cosrxz), (X1 + 1) cOs(rXz)) -

One verifies that

(3.12) T is a bijection fromS onto A*,

T € C>(S),
{ det(T'(x)) € [r,2r] forx €S.

)
NI

Fig. 3. A* andA~
Problem (3.6) becomes:

Lw(y) =0 fory € A*,
w(y)=0 fory e 9A* with |y| =1,
w ()=1 fory e dA" with |y| =2,

Sw(y)=0 fory € 0A" withy, = 0.

(3.13)
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The operatoL is as in (3.1) where

a11(y1,Y2) = (|yy1‘ )2 ai+ys a,
di2(y1,¥2) =  2ny2 (Iyllz a1 — az) )
G14) ) &ty = (|yy2‘ )2 a+yf &,
bi(ynys) = -yiap+ v b1 —y2 b2,
D2(yr,y)) = —Yaap+ Vi b1 —y1 b2, fory € A",

with & =g (T™(y)) b =b (T™(y)) fori =1,2.
Next we extend the coefficientg ‘andb; to the lower half of the annulus,

(3.15) A={yeR%1<y| <2},
in the following way. Fory € A with Y2 < 0 we set

{ Gi (V1,¥2) =& (y, —y2) 1=12 { by (y1,¥2) = by (v, —¥2),
a12(Y1, Y2) = —&12(y1, —Y2) b2 (Y1, ¥2) = —b2 (y1, —Y2) .
(3.16)

By using (2.3), (3.7) and

(3.17) d82=0 fory € A" withy, =0

we find thatl satisfies (3.2-3.3) fof2 = A.

Note that (3.16) gives the restrictions on the regularity of the coefficants ~
andb;. Indeedb, € C7(A*) does not implyb, € C7(A) andd; € CY(A*) does
not imply & € C*(A).

The problem on the annulus becomes

Lw(y)=0 foryeA,
(3.18) w(y)=0 forly|=1,

w(y)=1 forly|=2
Lemma 4. LetL as in(3.1) satisfy(3.2-3.3)for £2 = A. Then the following holds.

1. There exists a unique solutianc W2P(A) N C(K) forallp > 1.
2. The solutionu satisfies

{ O<w(y)<l foryeA

(3.19) Qw(y)>0 forly|=2

mw(y) <0 for ly|=1,

where n denotes the outward normal.
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Proof. By Theorem 9.15 and Corollary 9.18 of [2] one finds that (3.18) has a
unique solutionw € W2P(A) N C(A) for all p > 1. Using the strong maximum
principle for the solutionv on the annulus, we find (see Lemma 3.4 of [2]) the
estimates in (3.19). O

In the next lemma we show the relation between problems (3.6) and (3.18).

Lemma 5. Suppose that the coefficients of L sati&fy8) and (3.7). LetL be as
above.

1. If u e W2P(S), for p > 2, satisfie3.6), thenw, defined by
. 1
(3.20) w (r cosep, r sinp) =u (r -1 <p|> 1<r<2 —m<ep<m,
s

is a W2P(A)-solution of(3.18)
2. Ifw € W2P(A), for p > 2, satisfie3.18) then u, defined by

(3.21)  u(x1,X2) =w((X1 + 1) cosfrxz), (X1 + 1) sinfrxz)) X € §,
is a W2P(S)-solution of(3.6).

Proof. 1). The only difficulty appears whege = 0. Sinceu € W2P(S) it follows
that w,, € W?P(A") andw, € W?P(A"). Sincew),, € CY{A*), w),_ €
C™(A™), and by symmetryy w (y1,2) = 4, w (Y1, —¥2) and ;) w (y1, +0) = 0 =
6‘32w(y17 —0) we find w € C*(A). Finally, sinceai,(y) — 0 for y, — 0 and

since (85; >2w (y1,Yo) = (6‘3 )Zw (y1, —Y») for i = 1,2, we find thatw satisfies
(3.18) inLP-sense. _

2.) Fromw € W2P(A) it follows thatw € C(A). Since (3.18) has a unique
solution inW?2P(A) andw, defined bywy1, y»2) = w (Y1, —Y») is also a solution,
we find w = @ and a‘?/zw(yl,o) = 0 for 1 < |y1| < 2. Hence one finds that
a‘?(zu (X1, %) =0 forx, € {0,1}. O

We will show some results for the mapw : A — R2 by using a degree
argument. Sincey € C1(A) we haveVw € C(A; R?). From (3.19) it follows that
Vw # 0 on 9A. Therefore the (Brouwer) degree frowmw in A is well defined.

Lemma 6. LetL as in(3.1) satisfy(3.2-3.3)for 12 = A. Then the function €
W2P(A), with p > 2, that solveg3.18)satisfiesdeg(Vw, A) = 0.

Proof. By using Tietze’s Theorem there exists an extensioaf, denoted by
F, satisfyingF € C(D; R?), where
D ={yeR%ly|<r}.

Since A and D; are disjoint open sets dp, such that 0¢ F (52\(D1UA))
(notice thatD,\ (D1 U A) = 0A), we have, by the additivity of the degree (see
property d2, p. 17 of [1]), that
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deg(F, A) = deg(F, D2) — deg(F, D).
It follows from (3.19) that fort € [0, 1] we have
0¢ ((1—t)F +t1) (Do\ (D1UA)).

By the homotopy invariance of the degree (see property d3, p.17 of [1]) we
obtain

deg(Fa D2) = deg(F7 Dl) =1
and hence de@Vw,A) =deg(F,A)=0. O

Lemma 7. LetL as in(3.1) satisfy(3.2-3.3)for £2 = A. Then the functiom
W?2P(A), with p > 2, that solveg3.18)satisfiesVw # 0in A.

Proof. Suppose thaVw (§) = 0 for somey” e A. By Proposition 2 there exists

B (y) C A such thatw = w(y) on B; (§) or ¥y is the only zero ofVw in

B: (V). SinceA is connected the first possibility implies that= w (§), which
contradicts the boundary conditions for Thereforey”is an isolated zero o¥w

and its local degree (index) is negative. It follows that there are at most finitely
many zeros oVw and the total degree &fw on A is negative by the additivity
property, contradicting Lemma 6.0

Proof of Theorem 3. Existence and uniquenégsnma 4 and Lemma 5 imply
that there exists exactly one solutiane W?P(S) for p > 2 of (3.6).
The inequalitiesWith (3.12) the estimates in (3.19) take care of (3.8) and

(3.22) i uix)>0 forx € {0,1} x [0,1].
1

0

By Lemma 7 we find thaVw # 0 in A. Together with the continuity o¥7w and
(3.12) it implies that
o U(X) >0  forxe(0,1) x{0,1}
Vu#0 inS.
Holder type regularity.If we assume that satisfies (2.4) instead of (3.7)
the solution satisfies € C27(S). This is shown as follows. Indeed, since the

solutionw of (3.18) is inW2P(A), for all p € (1, ), we find by Theorem 7.26
of [2] thatw € C17(A). The functionw satisfies

2 \? o 0 ) )
3.23)| & +a +a +b S ,
( )< H (3)/1) oy ay, 7 (8y2> 13)/1) v 23yzw

where the right hand side is i@"(A). Note thatb, ;) w € C7(A) holds since
8‘;’,211} = 0 for y, = 0. Since the boundargA is smooth,w is constant orvA,
831, 812, 82, b, € C7(A) and the right hand side of (3.23) is @ (A) it follows
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from Schauder type estimates (Theorem 9.19 of [2]) that CZW(K). The
properties of the transformation in (3.11) imply that C27(S).
This finishes the proof of Theorem 30

Proof of Theorem 1.Theorem 3 shows that there exists a unique soluipn
in W2P(S) and even thati, v € C%(S).
We start by showing that (2.5) holds. Let us denote

D (x) =det< Uy () e (X) >

Ux (X) vx (X)

Fromu,v € C(S) it follows thatD € C(S). SinceD (0) = uy, (0) vx,(0) > O it
will be sufficient to show thab # 0. By the estimate fou in (3.9) and a similar
one forv we haveD > 0 on 0S. We will argue by contradiction to show that
D > 0in S. Suppose thab (X) = 0 for somex”e S. Then there ida,3) # 0
with aVu (X) + BVv (X) = 0. We obtain from the boundary conditions wfand
v that

aVu (X) + Vv (X) = (auy,(X), Buy,(x))  for x € 9S.

From (3.9) it follows thatuy, (x) > O for x € 9S and similarly vy, (x) > 0 for
X € 9S. It shows that

(1 —1t) (auy,(X), Bug(x)) +t(a,B) #0 forx € 8S.
Hence by homotopy invariance we find that
deg(V (au + Bv), S) = deg((a, 5), S) = 0.

We also have thak (au + Sv) = 0. Then Proposition 2 implies that the zeros
of V (au + gv) are isolated and that the local degree at such a zero is negative.
Additivity of the degree shows thaf (au + gv) # 0 on'S, a contradiction. This
completes the proof of (2.5). B _

We will again use a degree argument to show ta) : S — S (resp.
S — S) is a bijection. Here we will use the functiof : S — 2, defined
by F (x) = (u(x),v(x)). By the estimates in Theorem 3 we have tlfrate
C(S;S). In fact the boundary conditions and the inequality in (3.9) show that
Fl,s + 0S — 0S is a bijection. It also shows thd (S) C S. Now we fix
(o, B) € S and consider de — (a, 3), S).

The properties olu, v show thatF (x) — («, 5) = (U(X) — a,v(X) — 3) is
always directed outward @& atx € 9S. By a homotopy argument we have

deg(F() — (., 3),S) = deg(l - —(,),S) =1

Hence there existgs & S with F (X) = (¢, 8), that is,F is onto. We finish by
showing thatF is one to one. Sinc€ is in C%(S) it follows that

F(x):F(ﬁ)+(x—2)< U (%) 0 (8) )+0(|x—2>~

Uy, (%) ve (X)
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Then there is a baB, (X) such that (x) # F (X) for x € B, (X) \X, and the local
degree is well defined. We have

deg(F () — (. 5), Br (X)) = deg(F () — F (%), Br (%))
= deg(( _ )’() ( Uy, (ﬁ) Uxy ()2) ) ,B: (2))

Uy, (%) vy (X)

=deg(() (&) %) .80)

Uy, (X) vy, (%)
=sgn(D (X)) = 1.

In the last equality we used Theorem 1.1 of [1], which shows(Qed?) =
sgn(detQ) for linear mapsQ with detQ # 0 and {2 > 0. By the additivity
property of the degree there exists exactly ane S with F (X) = (o, 5). O

Remark.The basic theorem that is used in the proofs above is the result of
Carleman-Hartman-Wintner. One may give a somewhat different proof of (2.5)

that does not use a degree argument. We still need the C.-H.-W. result. The
alternative proof uses that C.-H.-W. implies that a stationary point of a non

trivial C solution w of Lw = 0 is a saddle point. That means, «f has a

stationary point ay € A, thenA; ) andA,,,, defined by

(3.24) Alg =y EAE () —w (@) >0}

consists locally of at least two components (for all smathe setsA;(y) NB: (¥)
andA, ;) NBr (¥) have both at least two components). The Jordan curve Theorem
implies that eithe’y; o) or A_ ) has at least two components. Let us #dy;,

has two components. Singgy| = 2} lies in one component of; ., the other
component?” of A;(y) has empty intersection with(2. Hencew = w (§) on

0¢ . The maximum principle [9] implies that = w (¥) in £, a contradiction.
Together with the strong maximum principle [9] it shows that # O (and
similarly Vv # 0). In a similar fashiomVu + Vv # 0 on S for (a, 5) # 0.

One concludes by showing th@t (xa) , v (X)) = (U (%) , v (X)) for somex, # Xy
implies aVu + Vv = 0 somewhere i18.

4. In three dimensions

A similar way of adapting the grid in three dimensions leads to a problem on
a cube. Let this cube be denoted Iy:= {(x1, X2, X3) ;0 < X < 1}. The elliptic
problem will be the following. Findi = (uy, Uz, ug) € C2 (K;K) such that

Ly =0 inK,
uy=0 ondK N {x =0},
(4.1) u=1 ondK N{x =1},

Ju =0 ondKN{o<x <1},
with i € {1,2,3}.
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Fig. 4. Kellogg's example, the front

WhenL = A the identity is the solution, that ia (x) = X, which is clearly
an invertible mapping. Using a perturbation argument one may expect that for
elliptic operators near the Laplacian the solution will still be invertible. However
the situation is less clear for general second order elliptic operatdrée will
explain the differences between the two dimensional and higher dimensional case
in the following.

Let the functionw be a non constant solution of a uniformly elliptic equation

n n
0 0 0 .
za”axiax,- +;b‘axi w=0 in {2,

ij=1

where {2 is a regular domain iR". Our proof (forn = 2) uses basically three
ingredients. The Carleman-Hartman-Wintner Theorem shows that a singularity
(Vw(y) = 0) implies that the level setQ;jj(y) and (2., (see (3.24)) both con-

sist locally neaty of at least two disconnected sets. The Jordan Curve Theorem
shows that(2;,, U (R?\(2) has at least two components. Thirdly, the maxi-
mum principle shows that every component intersects the boundary. Put together,
{x € 2;w(x) =w(y)} consists of at least two (intersecting) curves that run up

to the boundary, that is, iWw(y) = 0 then{x € 9£2; w(X) =w (y)} contains

at least four components. The degree argument that we used is the appropriate
mathematical tool here.

One might try to repeat such a proof for higher dimensions. The maximum
principle still holds. But both other ingredients are no longer true. A singular
point (Vw(y) = 0) does not necessarily give (locally) two separate sheets in
the set{x € 2;w (x) =w (y)} (There is no straightforward higher dimensional
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Fig. 5. Kellogg's example, the front

equivalent of C.-H.-W.). Even if there are two sheets, with their intersecting
curve containingy, it is not clear that one can use Jordan’s Theorem on one of
these sheets. The obstructions are related with the fact that the local degree at a
singularity in higher dimensions no longer has a fixed sign.

A stationary point that doesn’t show at the boundary can be found by the
example on p. 276 of Kellogg's book ([6]). The functian(x,y, z) = z? — x> —
y (y2 — 3x2) is harmonic and has zero gradient at 0. However, the intersection
of the zero level sef(x,y,z);w(X,y,z) = 0} and the boundary of the cube
[—.3,.3]% consists of a single curve. Even at the singular point the level set is
one sheet. In Figs. 4 and 5 this level set inside the cube is shown. Compare with
Mastin and Thompson in [8]. Their arguments do not seem to be sufficient for
the Theorem in 3 dimensions that is stated.
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