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1 Introduction

The present paper deals with the invertibility of mappings that transform simply

connected two-dimensional domains into a convex domain. The mapping is de�ned

by a system of second order elliptic equations. These mappings are used to generate so

called structured grids in the physical domain to solve Computational Fluid Dynamics

(CFD) problems. These grids are generated by mapping a uniform rectangular mesh

from a rectangle onto the physical domain. To enable a consistent discretization of

the 
ow equations, it is necessary that the mesh in the physical domain be non-

overlapping. Hence it is necessary that the mapping be invertible.

A typical example of 2D grid generation is illustrated by the diagram in Figure

1. The boundary conforming mesh around a 2D airfoil is obtained as the image of a

uniform mesh in rectangle R under a mapping T .

(u; v) 2 R -

T

(x; y) 2 


Figure 1.
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An elementary way to construct the basic mapping T is to de�ne the parametric

coordinates u and v as solutions of the Laplace equation in 
:

�u = 0 �v = 0; (1.1)

with � = @2

@x2
+ @2

@y2
together with appropriate boundary conditions. The mapping T

is then de�ned by

T inv = (u; v) :

Mastin and Thompson considered such a problem in [14]. Winslow [21] replaced the

Laplace equation (1.1) by isotropic di�usion equations

r �
1

w
ru = 0 r �

1

w
rv = 0; (1.2)

with r =
�

@
@x
; @
@y

�
. The weight function w (x; y) enables more direct control over the

mesh spacing. .

The present paper deals with the mapping T that is de�ned by a system of two

elliptic partial di�erential equations with Dirichlet boundary conditions. The physical

domain, a simply connected two-dimensional domain, is the image under T of a convex

domain. Existence, regularity and invertibility of the mapping (u; v) is established in

Corollary 3.

An alternative way to enable mesh spacing control is to apply an additional map-

ping A, see [20] and [8]. The regularity of such an additional mapping is studied in

earlier work of the present authors ([2]). That paper is concerned with a mapping T

from the unit square onto itself that is de�ned by a similar elliptic system but with

mixed Dirichlet and Neumann boundary conditions. Both problems are relevant for

grid adaptation and generation problems.

The result in this paper depends strongly on a theorem of Carleman-Hartman-

Wintner. This theorem is only true in two dimensional domains. In fact a straight-

forward generalization to more than two dimensional domains cannot be true. A

counterexample to the proof of [15] for the three dimensional case can be found by

using a special harmonic function due to Kellogg [12]. This function is shown in [2].

A direct counterexample can be found in [13].

2 Main result on smooth domains

Let the operator L be given by

L = a11 (x)

 
@

@x1

!2
+a12 (x)

@

@x2

@

@x1
+a22 (x)

 
@

@x2

!2
+b1 (x)

@

@x1
+b2 (x)

@

@x2
; (2.1)
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where the coe�cients satisfy for some c > 0 and 
 2 (0; 1)

aij 2 C
0;1(�
) 1 � i � j � 2;P

1�i�j�2 aij�i�j � c j�j
2 on �
,

(2.2)

bi 2 C

(�
), 1 � i � 2: (2.3)

The problem is as follows. For appropriate boundary values �nd (u; v) 2 C(�
) \

C2(
), satisfying

(a)

2
4 Lu = 0 in 
;

u = ' on @
;
and (b)

2
4 Lv = 0 in 
;

v =  on @
;
(2.4)

such that (u; v) : �
! IR2 is injective.

The physical problem in general involves non smooth domains and in most cases

the mesh is de�ned by mapping a rectangle to the physical domain. The singularities

for (u; v) that occur because of corners come in two ways. For the physical domain

having corners the elliptic p.d.e. has to be solved on a non smooth domain. Corners of

the mesh domain, often a rectangle, that do not coincide with corners in the physical

domain give rise to singularities of det (ru;rv). We will start with the case that

both the physical and the mesh domain are smooth.

First we show the existence of an appropriate algebraic mapping between bounded,

simply connected domains in IR2 which have a H�older smooth boundary.

Proposition 1 Let 
 and � be Jordan domains in IR2 with @
; @� 2 C1;
. Suppose

h is a C1;
 di�eomorphism from @
 onto @� that preserves the orientation. Then

there is an extension � of h such that

� 2 C1;

�
�
; ��

�
; (2.5)

� : �
! �� is a bijection (2.6)

and

det

 
�1;x1 �1;x2

�2;x1 �2;x2

!
> 0 on �
: (2.7)

Remark 1.1 Let us recall some de�nitions. We denote

T =
n
x 2 IR2; kxk = 1

o
; (2.8)

D =
n
x 2 IR2; kxk < 1

o
: (2.9)
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i. For the de�nition of a Jordan domain see the appendix. For open bounded set


 � IR2 to be a Jordan domain, it is su�cient that there exists a injective

function ! 2 C (T) with @
 = ! (T).

ii. The boundary @
 satis�es @
 2 C1;
, if there is a parameterization ! 2 C1;
 (T)

of @
 with j!0j 6= 0.

iii. The function h is a C1;
 di�eomorphism from @
 onto @� with @
; @� 2 C1;
,

if ~h = �inv � h � ! 2 C1;
 (T;T) and
���~h0��� 6= 0. Here ! (resp. �) is a C1;


parameterization of @
 (resp. @�) as in ii.

Proof. By Carath�eodory's extension of the Riemann Mapping Theorem (see page

18 of [16]) there exists a mapping f
 2 C(�D; �
) that is conformal from D onto 
,

with f
 : T ! @
 injective. Conformal includes f
 : D ! 
 being injective. By

Theorems of Kellogg-Warschawski (see page 48 and 49 of [16]) we �nd f
 2 C
1;
(�D; �
)

and jf 0
j 6= 0 on �D. Also a function f� exists with similar properties. Hence we may

restrict ourselves to the case that 
 = � = D. Let ~h 2 C1;
 (T;T) be as in Remark

1.1.iii. If we have an appropriate �̂ : �D! �D, with �̂ = ~h on T, then � := f���̂�f
inv



will be an extension of h. The claims (2.5-2.6) will be immediate and, indeed, (2.7)

follows from

det (r�) = jf 0�j
2
det

�
r�̂

�
jf 0
j

�2
.

It remains to show that there exists such a function �̂.

For ~h 2 C1;
 (T;T) as above, there exists a C1;
 function �, with the orientation

preserving property implying �0 > 0, such that ~h (cos'; sin') = (cos�('); sin�(')).

Setting # (r) = exp (1� r�1), we de�ne an extension �̂ 2 C1;

�
�D; �D

�
by

�̂

 
r cos'

r sin'

!T

=

 
r cos ((1� # (r)) '+ # (r) �('))

r sin ((1� # (r)) '+ # (r) �('))

!T

:

The function �̂ : rT ! rT is a bijection for every r � 0 and a direct computation

shows that

det
�
r�̂

�
= (1� # (r)) + # (r) �0(') > 0 on �D:

Notice that even if �0 = 0 somewhere we �nd det
�
r�̂

�
> 0 on D. 2

The function � that we obtain above can be used for the assumptions in the next

theorem.

Theorem 2 Let 
 be a simply connected domain in IR2 with @
 2 C1;
 and let � be

a bounded, open and convex set in IR2. Let � 2 C1;
(�
; IR2) be such that

� : �
! �� is a bijection, (2.10)
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and

det

 
�1;x1 �1;x2

�2;x1 �2;x2

!
> 0 on �
: (2.11)

Set (';  ) = �j@

. Then problem (2.4) possesses exactly one solution u; v 2 C1;
(�
)\

C2 (
) with

(u; v) : �
! �� is a bijection (2.12)

and

det

 
ux1 ux2
vx1 vx2

!
> 0 on �
. (2.13)

Corollary 3 Let 
 and � be Jordan domains in IR2 with @
; @� 2 C1;
. Suppose

h is a C1;
 di�eomorphism from @
 onto @� that preserves the orientation. Set

(';  ) = h.

Then problem (2.4) possesses exactly one solution u; v 2 C1;
(�
) \C2 (
), and (u; v)

satis�es (2.12) and (2.13).

Remark 3.1 From (2.11) it follows that the C1;
 smoothness of @
 is transferred

to @�. That is, also � will have a C1;
 boundary. In fact (2.11) would also transfer

corners of 
 to corners of �.

Remark 3.2 If H�older smoothness is replaced by Dini smoothness the results in

this section remain true. One may also replace C1;
 with Ck;
 for k > 1.

Remark 3.3 A necessary condition on (';  ) to �nd a function � that satis�es (2.10)

and (2.11) is the following. The boundary @
 is the union of four counterclockwise

ordered closed curves �1;�2;�3;�4 such that

'� � 0;  � � 0 on �1
'� � 0;  � � 0 on �2
'� � 0;  � � 0 on �3
'� � 0;  � � 0 on �4

(2.14)

and

'2� +  2
� > 0 on @
. (2.15)

Here � denotes the counterclockwise tangential direction. These conditions however

do not imply that � is convex. See Remark 5.3. Assuming convexity and regularity

the conditions are su�cient for Proposition 1 and hence for Theorem 2.

Proof of Theorem 2: The proof will be done in several steps.
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i. Existence: By Theorem 6.13 of [6] there exist unique solutions u and v in

C0(�
)\C2;
 (
). A theorem in [5] (see also page 111 of [6]) yields u; v 2 C1;
(�
).

Let us denote

F (x) = (u (x) ; v (x)) for x 2 �
: (2.16)

ii. � contains F (
): By assumption we have F (@
) = �(@
) = @�. We will

use two Theorems from the appendix for convex domains that use closed half

spaces. Every closed half space in IR2 can be written as

S =
n
y 2 IR2;w � y � a

o
(2.17)

with some w 2 IR2n f0g and a 2 IR.

Let S, as in (2.17), be a closed half space containing ��. For x 2 @
 we have

F (x) = � (x) 2 �� and hence

w � F (x) � a: (2.18)

We also have

L (w � F (x)) = w � (Lu (x) ; Lv (x)) = 0 for x 2 
:

Since w � F (�) 6� a on @
 the strong maximum principle implies that

w � F (x) > a for all x 2 
: (2.19)

Hence F (
) � S. Since it holds for all appropriate S, Theorem B yields

F (
) � co
�
��
�
= ��. Now suppose there is x� 2 
 such that F (x�) 2 @�. We

use Theorem A with A = �� and y = F (x�) to get to a contradiction. By this

theorem there is a closed half space S such that F (x�) 2 @S and �� � S. By

(2.19) one �nds F (x�) 2 Sn@S, a contradiction. Hence F (
) � � holds.

iii. � equals F (
): Since � is convex it is a Jordan domain. Then Theorem D.i

(see the appendix) can be applied to show that F (
) = �.

iv. The Jacobian is positive on the boundary of 
: We show that

det (JF ) > 0 on @
; (2.20)

where we denote

JF (x) =

 
ux1 (x) ux2 (x)

vx1 (x) vx2 (x)

!
:

By assumption we have det (J�) > 0 on 
 and hence on @
. Although F = � on

@
 it does not straightforwardly imply that det (JF ) > 0 on @
. Nevertheless,

the result in (2.20) is true. Indeed, �x y 2 @
. From F = � on @
 one deduces

that
@

@�
u =

@

@�
�1 and

@

@�
v =

@

@�
�2;

where
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� � denotes the (counterclockwise) tangential direction of @
 at y.

We will also use:

� n for the interior normal direction of @
 at y,

� � for the (counterclockwise) tangential direction of @� at � (y),

� � for the interior normal direction of @� at � (y).

Notice that �1 = n2 and �2 = �n1. Since � is convex, we have

h�;�(x)� �(y)i > 0 for all x 2 
; (2.21)

and hence

h�;J� (y)ni =
@

@n
h�;�(y)i � 0: (2.22)

Let y (t) be a parameterization of @
 near y = y (0) with y0 (t) 6= 0. We may

assume that such a parameterization exists since @
 is C1;
 near y. Then there

is c1 6= 0 such that we have

� = c1 y
0 (0) :

Since � (y (t)) parameterizes @� near � (y) and d
dt
(� (y (t))) = J� (y (t)) y

0 (t)

with det (J�) 6= 0 we �nd for some c2 6= 0 that

� = c2J� (y) �:

Hence it follows that

h�;J� (y) � i = c�12 h�; �i = 0; (2.23)

and since det (J�) 6= 0 it follows then that

h�;J� (y)ni 6= 0;

and hence together with (2.22) that

h�;J� (y)ni > 0: (2.24)

Now we will derive similar results for F . Since � is convex we have that

h�; z � F (y)i > 0 for all z 2 �:

Since F (
) � � we �nd

h�; F (x)� F (y)i > 0 for all x 2 
: (2.25)
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From (2.25) and the fact that L h�; F (�)� F (y)i = 0 in 
, it follows by Hopf's

boundary point lemma that

h�;JF (y) ni =
@

@n
h�; F (y)i > 0: (2.26)

From the boundary conditions and the assumption that 
 is smooth near y it

follows that

h�;JF (y) � i =
@

@�
h�; F (y)i = 0: (2.27)

Rewrite (2.26-2.27) as

h�; (un (y) ; vn (y))i > 0 (2.28)

and

h�; (u� (y) ; v� (y))i = 0 (2.29)

Set �1 =
@
@n
�2 (y) and �2 = � @

@n
�1 (y). We obtain by (2.24) that �1�2��2�1 > 0

and with (2.29) that

det (JF ) = (�1�2 � �2�1)
�1 det

  
�1 �2
�1 �2

! 
u� un
v� vn

!!
=

= (�1�2 � �2�1)
�1 det

 
�1u� + �2v� �1un + �2vn
�1u� + �2v� �1un + �2vn

!
=

= (�1�2 � �2�1)
�1 det

 
�1u� + �2v� �1un + �2vn

0 �1un + �2vn

!
=

= (�1�2 � �2�1)
�1 (�1u� + �2v�) (�1un + �2vn)

Since

�1u� + �2v� = �1�1;� + �2�2;� = det (J�) > 0

we �nd, with (2.28), that

det (JF ) > 0 on @
. (2.30)

v. The global degrees related with the gradients are zero: Let
�
�

�

�
2 IR2n f0g and

de�ne

� (x) = �u (x) + �v (x) for x 2 @
:

We will show that

deg (r�;
) = 0:

Because of (2.30) one �nds r� 6= 0 on @
, and hence that the degree is well

de�ned. Since this holds for all
�
�

�

�
2 IR2n f0g we may de�ne a homotopy
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h1 (t; x) with h1 (0; x) = r� (x) and h1 (1; x) = ru (x) and such that h (t; x) 6= 0

on @
. Hence

deg (r�;
) = deg (ru;
) :

As before notice that @
@�
�1 =

@
@�
u and moreover, if @

@�
�1 = 0, then @

@n
�1 and

@
@n
u are both nonzero. They even have the same sign since both F (
) � � and

� (
) � � hold. It shows that

t

 
�1;�

�1;n

!
+ (1� t)

 
u�

un

!
6= 0 for all t 2 [0; 1] and x 2 @
:

Hence we may use the homotopy h2 (t; x) = tr�1+(1� t)ru and we �nd that

deg (ru;
) = deg (r�1;
) :

Since r�1 6= 0 on �
 we have deg (r�1;
) = 0.

vi. The Jacobian is positive inside 
: It remains to prove that

det (JF ) > 0 on �
: (2.31)

Indeed, if (2.31) holds then F on �
 is locally injective and Theorem D.ii yields

that F : �
! �� is a bijection.

We will show (2.31) by a contradiction argument. Suppose that det (JF (�x)) = 0

for some �x 2 
. Then there are (�; �) 6= (0; 0) such that �ru (�x)+�rv (�x) = 0.

Set

� (x) = �u (x) + �v (x) for x 2 
:

As a consequence of Theorem C, we �nd that the zeros of r� are isolated, and

that the local degree at a zero of r� is negative. That is, if r� (a) = 0 there

is " > 0 such that r� 6= 0 on @B" (a) � 
 and deg (r�;B" (a)) < 0. The

additivity property of the degree shows that deg (r�;
) < 0. Since we already

showed that this degree is zero we have a contradiction. 2

3 Domains with corners

We restrict ourselves to domains 
 and � with Lipschitz boundary consisting of

�nitely many su�ciently di�erentiable curves and �nitely many corners. Problems

involving corners of these domains can be roughly distinguished into four di�erent

types. For the sake of simplicity we will leave out the case that on the boundary of


 or � two curves meet in a C1 way (angle equals �). Notice that the convexity of �

implies that its corners are convex.
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I. The case that the corners (all being convex) of 
 are mapped to the corners of

�. Then it is still possible to have � 2 C1;
(�
; IR2) mapping 
 onto � with

det (r�) > 0 on �
.

II. The boundary near a convex corner x� of 
 is mapped to a smooth part of

@�. Then there will be two possibilities. Either one has � 2 C1(�
; IR2) and

det (r�(x)) ! 0 when x ! x�, or det (r�(x)) is bounded on 
 near x� but

� 62 C1(�
; IR2) .

III. The boundary near a concave corner x� of 
 is mapped to a smooth part of

@�. Then there will not be a � 2 C1(�
; IR2) that maps 
 to �. However it is

possible to have � 2 C0(�
; IR2)\C1(
; IR2) with det (r�) bounded on 
 near

x�.

IV. A smooth part of @
 is mapped on a neighborhood of a corner on @�. Similar

features appear as in III.

In the next proposition and theorem we consider the �rst case. The proposition

shows an algebraically de�ned regular mapping from 
 onto a rectangle.

Proposition 4 Let 
 be a Jordan domain such that @
 consists of four Ck;
-curves,

with k � 1, that are joined by strictly convex corners (the angles �i are in (0; �) ). Say

@
 = �1 [ �2 [ �3 [�4 counterclockwise oriented with �i = 
i ([0; 1]) and the corners

will be at 
i (1) = 
i+1 (0) (i mod 4). Moreover assume ';  : @
 ! IR2satisfy

'j�i ;  j�i 2 C
k;
,

'� > 0 and  � = 0 on �1;

'� = 0 and  � > 0 on �2;

'� < 0 and  � = 0 on �3;

'� = 0 and  � < 0 on �4;

and that (';  ) (@
) = @R for some open rectangle R.

Then there is an extension � of (�;  ) such that

� 2 Ck;

�
�
; �R

�
; (3.1)

� : �
! �R is a bijection (3.2)

and

det

 
�1;x1 �1;x2

�2;x1 �2;x2

!
> 0 on �
: (3.3)

Remark 4.1 If �i = 
i ([0; 1]) we mean by  � > 0 on �i that(
 �+ > 0 on 
i ([0; 1)) ;

 �� > 0 on 
i ((0; 1]) ;

where �+ (��) is the upper (lower) counterclockwise tangential direction.
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Proof. We start with a series of rather technical transformations and �x a corner

at (0; 0) with 
0i+1 (0) = (1; 0). By # = # (x2 + y2) we denote a positive C1-function

with # (r) = 1 for r < " and # (r) = 0 for r > 2" where " is small enough. It will

be used to construct transformations that act locally involving just one corner. We

restrict ourselves to the corner at (0; 0) = 
1 (1) = 
2 (0).

i. By transformations of the type (x; y) 7! (x+ c# y; y) one may enlarge or reduce

any strictly convex (0 < � < �) corner at 0 in a regular way to a corner with

angle 1
2
�. Hence we may suppose that at the corner 
01 (1) = (0;�1) and


02 (0) = (1; 0).

Higher order derivatives of the second component
�


(m)
2 (0)

�
2
, 2 � m � k, can

be set to 0 by (x; y) 7! (x+ c# y2P1 (y) ; y), where P1 is a polynomial. In a

similar way one takes care of
�


(m)
1 (1)

�
1
.

ii. By a transformation (x; y) 7! ((1 + c1 #)x; y) we may assume that  �+ = 1

at (0; 0), and (x; y) 7! ((1 + # xP2 (x))x; y) is used to obtain
�

@
@�+

�m
 = 0 at

(0; 0). Similarly one takes care of '.

iii. The transformation (x; y) 7! (1� #) (x; y) + # (x2 � y2; 2xy) stretches the cor-

ner such that in the new parameterization we �nd 
01 (1) = 
02 (0) = (1; 0). This

mapping is no longer regular but its singularity is explicit. As a result we �nd

that the transformed 
 (let's call it 
�) has a Ck;
 boundary and moreover, if

` denotes the parametrization by arclength of @
� with ` (0) = (0; 0), we �nd

' (` (t))� ' (0; 0) = �
�
�t+O

�
jtj

k+

��2

for t � 0;

 (` (t))�  (0; 0) =
�
t+O

�
tk+


��2
for t � 0:

(3.4)

Writing T
 for these combined transformations we �nd that the determinant sat-

is�es in the new coordinates

det (rT
) =
q
x2 + y2 (4 + O(1)) :

In a similar way we transform the rectangle R to a Ck;
-domain (even C1) R�.

For the rectangle the 'boundary' conditions one starts with are ('R;  R) = Id. After

stretching we obtain a formula as in (3.4) for 'R,  R near (0; 0).

We continue as in the proof of Proposition 1. The Kellogg-Warschawski extension

of the Riemann Mapping Theorem yields the existence of f
� 2 Ck;

�
�D; �
�

�
that is

conformal inside D. See (2.9) for D. Similar results hold for fR� . In order to show

that the function � determined by ~h : T ! T is Ck;
 and still satis�es 0 < �0 < 1

we use (3.4) both for (';  ) and ('R;  R). From � 2 Ck;
 it follows that �̂ 2 Ck;
.

Finally we have

� = TR � fR� � �̂ � f
inv

� � T inv


 :
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Since the singularities in the determinants of TR and T inv

 cancel, we �nd that

0 < det (r�) <1 on �
:

2

Theorem 5 Let 
 be a simply connected domain in IR2, with Lipschitz boundary

consisting of �nitely many C2-curves and �nitely many corners. Let � be convex and

let � 2 C3(�
; IR2) satisfy (2.10) and (2.11). Again set (';  ) = �j@

.

Then problem (2.4) possesses exactly one solution u; v 2 C1;
(�
)\C2;
 (
) and (2.12),

(2.13) hold.

Remark 5.1 The boundary is C1;
 except for �nitely points, and Lipschitz. The

assumption implies that 
 is similar to a convex domain in the sense of Kadlec [11].

Due to a result of Kadlec [11] solving (2.4) on a domain with C2-smooth 'convex'

corners one still has C1;
(�
)-solutions. To apply his result we have to assume that

� 2 C3(�
; IR2). Assuming � 2 C2(�
; IR2) gives u; v 2 C0;
(�
) \ C2;
 (
). Near a

'concave' corner the derivatives of a solution will become unbounded in general.

Remark 5.2 A similar remark as in Remark 3.3 can be made. If @
 is non smooth

(having �nitely many corners) the condition on for example �1 has to be replaced by8<
:
'�� � 0;  �� � 0 on 
1 (0; 1] ;

'�+ � 0;  �+ � 0 on 
1 [0; 1) ;
(3.5)

where �1 is parameterized by 
1 : [0; 1] ! IR2, and �� are the upper/lower counter-

clockwise tangential direction.

Remark 5.3 The conditions in (2.14-2.15) do not imply convexity of �. For example

(see Figure 2.) the boundary of the square [�1; 1]2 is mapped in a non regular way

by the following boundary conditions ' and  : 
'

 

!
=

 
�yx2 + 2x

yx2 + 2x

!
for (x; y) 2 @

�
[�1; 1]2

�
:

A straightforward computation shows that the conditions in (2.14-2.15) in the sense

of (3.5) however are satis�ed.

(x; y) 2 
-/
there exists no

mapping T

(u; v) 2 K

Figure 2.
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Remark 5.4 An approach that takes care of the corners in cases II, III and IV is the

following. De�ne an explicit intermediate mapping 	 on 
 that stretches the concave

corners (and possible some of the convex corners) and apply the mapping de�ned by

the di�erential equations on 	 (
). The singularities of the mapping F � 	 : 
! �

will only come from the explicitly known singularities of 	.

An intermediate mapping 	 from 
 onto a square is used by Hagmeijer in [8]. His

motivation is based upon the availability of such a mapping within grid adaptation

problems and considering adaptation as a modi�cation of an existing mapping instead

of constructing a new mapping. Getting rid of possible singularities in solving the

di�erential equations gives a second motivation. Although the approach in [8] uses

di�erent boundary conditions, no singularities appear in the solution of the di�erential

equation. See [2].

The proof of Theorem 5: We will only mention the parts that di�er from the

proof of Theorem 2.

i. Existence: By Theorem 6.24 of [6] there are solutions u; v 2 C0(�
) \ C1;
 (
).

Denoting the corner points of 
 by K it can be used to �nd u; v 2 C1;
(�
nK).

See also [5]. Since the corners are convex a result of Kadlec [11] implies that u�

�1,
@

@x1
(u� �1) and

@
@x2

(u� �1) are in W
2;2 (
). Since W 3;2 (
) is imbedded

in C1;
(�
) for C0;1-domains (see page 144 of [1]) we �nd u; v 2 C1;
(�
).

iv. The Jacobian is positive on the boundary of 
: For all boundary points on the

smooth part of @
 one shows the result as before. Let x� be a boundary point

where @
 has an angle and let ��; �+ denote the upper and lower tangential di-

rection of the boundary at x�. Since �� 6= �+ and since �1;�� = u�� respectively

�2;�� = v�� we have JF = J� at x�.

v. The global degrees related with the gradients are zero: Similarly as before one

makes the homotopy for the smooth part. At a corner point ru = r�1. 2

4 Appendix, some auxiliary results

Theorem A (see Theorem 8 of [4]) Let A � IRn be convex. Then for every y 2 @A

there is a closed half space S, with y 2 @S and A � S.

Theorem B (see Theorem 11 of [4]) Let B � IRn be bounded. Then co( �B), the

convex hull of the closure of B, is the intersection of all the closed half-spaces that

contain B.
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Theorem C (Corollary of Schulz's [18] version of a theorem by Carleman-Hartman-

Wintner, see [2]) Let � 2 W 2;p (
), with p > 2, satisfy

0
@a11

 
@

@x1

!2
+ a12

@2

@x1@x2
+ a22

 
@

@x2

!2
+ b1

@

@x1
+ b2

@

@x2

1
A� = 0 in 
;

with aij; bi 2 C0;1 (
) and such that for some c > 0 we have
P
aij�i�j � c j�j

2 on 


for all � 2 IR2. If x� 2 
 is such that r� (x�) = 0, then there exists r > 0 such that

Br (x�) � 
 and either

r� � 0 on Br (x�)

or 8<
:
r� 6= 0 on Br (x�)n fx

�g ;

deg (r�;Br (x
�)) < 0:

Br (x
�) =

n
x 2 IR2; kx� x�k < r

o
:

Remark: There is no equivalent of Theorem C in dimensions n � 3. As a conse-

quence one cannot generalize the proofs in this paper in order to obtain a version of

Theorem 1 in higher dimensions.

Before stating the last theorem we will recall a de�nition.

De�nition A set 
 in IRn is called a Jordan domain if there exists h : B1 (0) �

IRn ! IRn that is continuous, injective and such that 
 = h (B1 (0)).

Remark: A Jordan domain 
 is open, connected and @
 = h (@B1 (0)). For n = 2

it is known that the inside of a closed Jordan curve is a Jordan domain (see page 81

of [7]).

Theorem D Let 
;� � IRn both be Jordan domains and let F 2 C
�
�
; IRn

�
. Sup-

pose that F : @
! @� is bijective and that F (
) � �. Then

i. F : 
! � is surjective.

ii. If moreover F : 
! � is a locally injective, then F : 
! � is injective.

Proof of Theorem D i.: Let h
 (resp. h�) be an injective continuous map from

B1 (0) to �
 (resp. ��) such as in the de�nition of a Jordan domain. We consider the

continuous map
~F := hinv� � F � h
 : B1 (0) ! B1 (0):
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The map ~F : @B1 (0) ! @B1 (0) is a bijection and ~F (B1 (0)) � B1 (0). It remains

to show that ~F (B1 (0)) � B1 (0). To prove the last inclusion it is su�cient that for

every z 2 B1 (0) the Brouwer degree deg
�
~F (�)� z; B1 (0)

�
is well de�ned and not

equal zero.

Since



 ~F (x)




 = 1 for x 2 @B1 (0) we �nd that ~F � z 6= 0 on @B1 (0), hence

deg
�
~F (�)� z; B1 (0)

�
is well de�ned. By considering the homotopy

H (t; �) = ~F (�)� t z for t 2 [0; 1]

we obtain that

deg
�
~F (�)� z; B1 (0)

�
= deg

�
~F (�) ; B1 (0)

�
:

Since ~F : @B1 (0)! @B1 (0) is a bijection , it follows from the multiplicative property

of the degree that

deg
�
~F (�) ; B1 (0)

�
= �1: (4.1)

Indeed, for an open bounded set A 3 0 with a continuous injection J : �A ! J
�
�A
�

the multiplicative property (see Theorem 5.1 on page 24 of [3]) shows

1 = deg (Id;A) = deg
�
J inv � J;A

�
= deg

�
J inv; J (A)

�
deg (J;A) (4.2)

which implies deg (J;A) = �1. Since J de�ned by

J (x) =

8>><
>>:
kxk ~F

 
x

kxk

!
for x 6= 0;

0 for x = 0;

is a continuous bijection from B1 (0) onto itself, with J = ~F on @B1 (0), we �nd (by

property d6 on page 17 of [3]) that (4.1) holds.

D ii.: Now suppose that F : 
 ! �, and hence ~F : B1 (0) ! B1 (0), is locally

injective. Then the local degree of ~F (�)� ~F (x) near x, for x 2 B1 (0), is well de�ned

by

d (x) = lim
"#0

deg
�
~F (�)� ~F (x) ; B" (x)

�
:

By (4.2) one �nds that it equals �1. We will show that d (�) is locally constant on

B1 (0) and hence constant. Indeed, if x 2 B1 (0) there exists � > 0 such that ~F (�) is

locally injective on B3� (x
�). If jx� yj < � we �nd by homotopy that

d (x) = deg
�
~F (�)� ~F (x) ; B2� (x)

�
= deg

�
~F (�)� ~F (y) ; B2� (x)

�
:

Since for all " 2 (0; �] we have that B2� (x) contains B" (y) and ~F (�) � ~F (y) 6= 0 on

B2� (x) nB" (y), it follows that

deg
�
~F (�)� ~F (y) ; B2� (x)

�
= deg

�
~F (�)� ~F (y) ; B" (y)

�
= d (y) :
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Using (4.1) and the additivity property of the degree we �nd that ~F (�) = z has at

most one solution for all z 2 B1 (0). 2

Acknowledgement: We thank J. M. Aarts for discussions on Theorem D,

E. Coplakova for making the text of [11] accessible to us, and A. Zegeling for ref-

erence [13].

References

[1] R. A. Adams, Sobolev spaces, Academic Press, New York-San Francisco-London,

1975.

[2] Ph. Cl�ement, R. Hagmeijer and G. Sweers, On the invertibility of mappings

arising in 2D grid generation problems, Report 94-20, Faculty of TWI, T.U.Delft

1994.

[3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

[4] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathemati-

cal Physics 47, Cambridge University Press, Cambridge, 1958.

[5] D. Gilbarg and L. H�ormander, Intermediate Schauder Estimates, Arch. Rational

Mech. Anal. 74 (1980), 297-318.

[6] D. Gilbarg and N. S. Trudinger, Elliptic partial di�erential equations of second

order, 2nd edition, Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1983.

[7] M. Greenberg, Lectures on Algebraic Topology, W.A. Benjamin Inc, New York

Amsterdam, 1967.

[8] R. Hagmeijer, Grid adaption based on modi�ed anisotropic di�usion equations

formulated in the parametric domain, to appear in J.Comp.Phys.

[9] R. Hagmeijer and de Cock, Grid adaptation in computational aerodynamics,

MultiblockGrid Generation, Notes on Numerical Fluid Mechanics, Vieweg, 1993.

[10] R. Hagmeijer and de Cock, Grid adaptation for problems in computational 
uid

dynamics, Proceedings First European Fluid Dynamics Conference, Brussels,

1992.

[11] J. Kadlec, On the regularity of the solution of the Poisson problem for a domain

which locally resembles the boundary of a convex domain, Czech. Mat. J. 14

(1964), 363-393 (in Russian).

16



[12] O. D. Kellogg, Foundations of potential theory, Springer-Verlag, Berlin Heidel-

berg NewYork, 1929 (reprint 1967).

[13] H. Liu and G. Liao, A note on harmonic maps, preprint 1994.

[14] C.W. Mastin and J. F. Thompson, Elliptic systems and numerical transforma-

tions, J. Math. Anal. Appl. 62 (1978), 52-62.

[15] C. W. Mastin and J. F. Thompson, Transformation of three-dimensional regions

onto rectangular regions by elliptic systems, Numerische Mathematik 29 (1978),

397-407.

[16] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag,

Berlin-Heidelberg 1992.

[17] M. H. Protter, H. F. Weinberger, Maximum principles in di�erential equations,

Prentice Hall, Englewood Cli�s N.J., 1967.

[18] F. Schulz, Regularity theory for quasilinear elliptic systems and Monge-Amp�ere

Equations in two dimensions, Springer Lecture Notes 1445, 1990.

[19] J. F. Thompson and Z. U. A. Warsi, Three-dimensional grid generation from

elliptic systems, AIAA 83-1905

[20] Z. U. A Warsi, Basic di�erential models for coordinate generation, Numerical

grid generation, ed. J.F. Thompson, NorthHolland, 1982.

[21] A. Winslow, Adaptive mesh zoning by the equipotential method, UCID-19062,

Lawrence Livermore National Laboratories, University of California, 1981.

Addresses:

Ph. Cl�ement, Department of Pure Mathematics, Delft University of Technology,

P.O.box 5031, 2600 GA Delft, The Netherlands.

R. Hagmeijer, Department of Theoretical Aerodynamics, National Aerospace Lab-

oratory N.L.R., P.O.box 90502, 1006 BM Amsterdam, The Netherlands.

G. Sweers, Department of Pure Mathematics, Delft University of Technology,

P.O.box 5031, 2600 GA Delft, The Netherlands.

17


