COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 14(8&9), 1229-1247 (1989)

Copyright © 1989 by Marcel Dekker, Inc.

COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 14(8&9), 1229-1247 (1989)

SEMILINEAR ELLIPTIC PROBLEMS ON DOMAINS WITH CORNERS

Guido Sweers

Delft University of Technology
Faculty of Mathematics and Informatics
Julianalaan 132, Delft
The Netherlands

1. INTRODUCTION

In this note we will study the relation between the boundary of the domain and the existence of a positive solution for a semilinear elliptic problem. Consider

(1.1)
$$\begin{bmatrix} -\Delta u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{bmatrix}$$

where Ω is a bounded domain in \mathbb{R}^n , f is continuous and $\lambda>0$. For f with f(0)<0 we will establish a cone condition for the boundary which is necessary and sufficient for existence of a positive solution. This result is used to obtain a sign-changing stable solution.

Definition of solution.

Since we will not assume more regularity for f than continuity, we have to specify the notion of solution. A function u is called a solution if it satisfies

$$\begin{array}{lll} \text{(1.2)} & & \text{a)} & & \text{u} \in C(\overline{\Omega}), \\ & & \text{b)} & & \int_{\Omega} (\text{ u } \Delta \varphi \ + \ f(\text{u}) \ \varphi \) \ dx = 0 & \text{for all } \varphi \in C_0^{\infty}(\Omega), \\ & & \text{c)} & & \text{u} = 0 & \text{on } \partial \Omega. \end{array}$$

The function u is called positive if:

d)
$$u \ge 0$$
 in Ω .

A necessary condition for a)/c) is the regularity of every boundary point. See [9, Theorem 2.14]. (Regular in the sense of Perron; there exists a barrier function at every boundary point.) Therefore we will assume that $\partial\Omega$ is regular.

The first result.

We will restrict ourselves to functions f which satisfy $f(u) \le 0$ for $u > \rho > 0$. Then, by the maximum principle, there is no solution with max $u > \rho$. Hence we assume

$$(1.3) f = 0 on [\rho, \infty).$$

If $f(0) \ge 0$ this assumption directly guarantees the existence of a positive solution u_{λ} for all $\lambda > 0$; see [2,7]. For functions f with f(0) < 0, which we will consider, the situation is more complicated. In [5,6] it is shown for $f \in C^1(\mathbb{R})$ that there is a positive solution for λ large when f(0) < 0, if the following conditions are satisfied:

(1.4)
$$\int_{t}^{\rho} f(s) ds > 0 \quad \text{for all } t \in [0, \rho)$$

and

(1.5)
$$\Omega = \bigcup_{X} \{ B(x,\varepsilon); x \in \Omega, d(x,\partial\Omega) > \varepsilon \} \text{ for some } \varepsilon > 0,$$
 where $B(x,\varepsilon) = \{ y; d(x,y) < \varepsilon \}.$

W. Jäger raised the question of whether or not the uniform interior sphere condition (1.5) is necessary. We will show the following. There exists a critical aperture θ_f (depending on f) such that, if the domain satisfies a uniform interior cone condition with aperture larger than θ_f , then $\exists \lambda_0 > 0$ such that $\forall \lambda > \lambda_0$ there exists a positive solution of (1.1). On the other hand, as soon as the domain is cone-shaped with a smaller aperture at some boundary point, (1.1) has no positive solution. (In our proofs we do need some nice behaviour of $\partial\Omega$ in a neighborhood of a critical boundary point.)

For dimension n=2 the number θ_f satisfies $\pi/2 < \theta_f < \pi$. This shows that there is no positive solution on a square if f(0) < 0. Since $\theta_f > \pi/2$ for every such f, it is possible to show (after cutting off an arbitrary f above the maximum of a solution) that there is no positive solution of (1.1) on the square for any $f \in C(\mathbb{R})$ with f(0) < 0, but without satisfying (1.3).

The proof.

The main proof will be done by linking specific super- respectively subsolutions on a domain which has a smooth boundary except at one point. Near this point the domain will look like a cone. (For supersolutions in a different sense such linking is also used in [11, 4].)

For the negative result we will use a cone on which we can construct a supersolution which has its minimum inside. If Ω is contained in this cone and has a point which is not to far from the vertex of the same cone we continue as follows. First we show that every solution has to lie below a compound supersolution. Thereupon we will use a sweeping principle (see [18,17]) to show that in fact a solution lies below a supersolution with negative minimum. Hence it is negative somewhere in the intersection of Ω and the cone.

The proof in the other direction uses the existence of a positive subsolution on a top-shaped domain which satisfies a cone condition with a smaller aperture. Using the continuous dependance of the solution on the boundary we obtain a critical aperture for the top-shaped domain. By filling up a domain, which satisfies a cone condition for $\theta > \theta_f$, with small tops instead of balls as in (1.5), we can use the argument from [7] to get a positive subsolution and hence a positive solution.

The second result.

For bounded λ smooth domains close to these 'edgy' domains will not posses a positive solution either. Nevertheless there might exist a stable solution with a positive maximum. Hence such a stable solution will change sign. We will establish an example of such a sign-changing stable solution, on a convex domain. That result answers a question of Matano. Matano himself recently found sign-changing stable solutions on convex domains with even f(0) = 0, [14].

We will use the following notion of stability. A solution u of (1.1) is called stable, if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that for $U_0 \in L_{\infty}(\Omega)$ with $\parallel U_0 - u \parallel_{\infty} < \delta$, the solution U of the related parabolic problem:

with $\lim_{t\downarrow 0} \parallel U(t) - U_0 \parallel_{L_1(\Omega)} = 0$, satisfies $\parallel U(t) - u \parallel_{\infty} < \epsilon$ for all t>0. Section 3 contains some lemmata for weak subsolutions. Moreover, we will

recollect in that section results about stability from [3,13,16,17] and modify them for our purposes.

2. MAIN RESULTS

We will prove results for domains in \mathbb{R}^n using 'radially symmetric' cones. In dimensions larger than 2 we can find similar results by using other families of cones. At the end of this section we will give an example. In \mathbb{R}^2 the first lemma shows that there will not be a positive solution if for example the domain is convex and has a corner with angle less than $\frac{1}{2}\pi$ or close to $\frac{1}{2}\pi$, or if the domain is close to such a domain.

Lemma 2.1: Set $\lambda = 1$ and suppose f satisfies (1.3) (1.4) and f(0) < 0.

a. There is $t_1 \in (0,1)$ such that if

$$(2.1) \qquad (t_1,0,...,0) \in \Omega \subset \{ (x_1,...,x_n) \in \mathbb{R}^n ; (x_2^2+...+x_n^2)^{\frac{1}{2}} < (n-1)^{\frac{1}{2}} x_1 \}$$

there will be no positive solution of (1.1).

b. There is c > 1 such that if

(2.2)
$$\{ (t,0,...,0); 0 < t \le 1 \} \subset \Omega \text{ and }$$

$$\Omega \subset \{ (x_1,...,x_n) \in \mathbb{R}^n ; (x_2^2 + ... + x_n^2)^{\frac{1}{2}} < c (n-1)^{\frac{1}{2}} x_1 \}$$

there will be no positive solution of (1.1).

Remark: By rescaling one finds that Lemma 2.1 b. holds for all $\lambda > 1$. Lemma 2.1 a. holds for $\lambda > 0$ if one replaces t_1 by $t_{\lambda} = \lambda^{-\frac{1}{2}} t_1$.

In the proofs we will use a weak version of sub- and supersolutions. For a definition see section 3.

Proof: To simplify notations we set $x_r = (x_2,...,x_n) \in \mathbb{R}^{n-1}$.

i) Estimating solutions from above.

Set $f^m = \max \{ f(s) ; 0 \le s \le \rho \}$ and $K = (2\rho f^m)^{\frac{1}{2}}$. Define $U \in C^1(\mathbb{R})$ by

(2.3)
$$\begin{bmatrix} U(t) = K t - \frac{1}{2} f^m t^2 & \text{for } t \leq K f^{m-1}, \\ U(t) = \rho & \text{for } t > K f^{m-1}. \end{bmatrix}$$

Let u be a solution of (1.1) and suppose (2.1) or (2.2) is satisfied. The maximum principle shows:

- (2.4) $u(x_1,x_r) \le U(x_1) < K x_1 \text{ for } (x_1,x_r) \in \Omega.$
 - ii) Restriction to a subdomain of Ω .

Take $\varepsilon \in (0,K)$ such that

(2.5) $f(s) < \frac{1}{2}f(0) \qquad \text{for } |s| < \varepsilon$

and set

(2.6) $\Omega^{\mathbf{v}} = \Omega \cap \{ (\mathbf{x}_1, \mathbf{x}_r) \in \mathbb{R}^n ; \mathbf{x}_1 < \mathbf{K}^{-1}_{\varepsilon} \}.$

From (2.4) it follows that

 $-\Delta \mathbf{u} = \mathbf{f}(\mathbf{u}) < \frac{1}{2}\mathbf{f}(0) \qquad \text{for } \mathbf{x} \in \Omega^{\mathbf{v}}.$

iii) Defining a superfunction on the subdomain Ω^{\vee} .

Define

(2.8) $k = K \varepsilon^{-1} \exp(-8 f(0)^{-1} K^2 \varepsilon^{-1}),$

(2.9)
$$v(x_1,x_r) = -\frac{1}{8}f(0)\left(\left(x_1 + \frac{1}{2}k^{-1}\right)^2 - (n-1)^{-1}x_r^2\right)\ln(kx_1 + \frac{1}{2}).$$

Then we find for

(2.10) $|x_r| < (n-1)^{\frac{1}{2}} (x_1 + \frac{1}{2}k^{-1})$

that

 $-\Delta v(x_1,x_r) = \frac{1}{8} f(0) \left(3 + (n-1)^{-1} x_r^2 (x_1 + \frac{1}{2} k^{-1})^{-2} \right) > \frac{1}{2} f(0).$

The function v has a negative minimum for x satisfying (2.10) in

(2.12)
$$\overline{x} = (k^{-1}(e^{-\frac{1}{2}} - \frac{1}{2}), 0, ..., 0).$$

Define

 $(2.13) t_1 = k^{-1} (e^{-\frac{1}{2}} - \frac{1}{2})$

(2.14) $c = 1 + K(2\varepsilon k)^{-1}$.

Note that $t_1 \in (0,1)$ and hence $\overline{x} \in \Omega$ if Ω satisfies (2.2).

By this choice of c one finds that if Ω satisfies (2.2) then every $x \in \Omega^v$ satisfies (2.10).

iv) Contradicting positivity of u by a lowest supersolution.

Let α be the smallest number such that

(2.15) $u \le v + \alpha$ in $\overline{\Omega v}$. If $\alpha \le 0$ then

 $(2.16) u(\overline{x}) \le v(\overline{x}) < 0.$

If $\alpha > 0$, let $x^* \in \overline{\Omega^v}$ be such that

(2.17) $u(x^*) = v(x^*) + \alpha.$ By (2.15), (2.7) and (2.11) $v+\alpha-u$ is nonnegative and superharmonic in Ω^v :

(2.18)
$$-\Delta(\mathbf{v}+\alpha-\mathbf{u}) = -\Delta\mathbf{v} + \Delta\mathbf{u} > \frac{1}{2}\mathbf{f}(0) - \mathbf{f}(\mathbf{u}) \ge 0$$
 and hence the minimum principle shows $\mathbf{x}^* \in \partial\Omega^{\mathbf{v}}$.

First we will prove $x^* \in \partial\Omega$ by showing that u < v on $\partial\Omega^v \setminus \partial\Omega$.

Similar to (2.4) the maximum principle yields that on Ω^{v} :

(2.19)
$$u(x_1,x_r) \leq U\left((c^2(n-1)+1)^{-1}(c(n-1)^{\frac{1}{2}}x_1 - \theta.x_r)\right) < \\ < K\left(c^2(n-1)+1\right)^{-1}(c(n-1)^{\frac{1}{2}}x_1 - \theta.x_r) \quad \text{for all } \theta \in \mathbb{R}^{n-1} \text{ with } |\theta| = 1.$$
 Then, if $x \in \partial \Omega^v \setminus \partial \Omega$, which means that $|x_r| < c (n-1)^{\frac{1}{2}} K^{-1} \varepsilon$ and $x_1 = K^{-1} \varepsilon$, we use respectively (2.9), (2.8), (2.14) and (2.19):

$$\begin{aligned} v(K^{-1}\varepsilon,x_{r}) &= \\ &= -\frac{1}{8} \ f(0) \ \left(\ (K^{-1}\varepsilon + \frac{1}{2}k^{-1})^{2} - (n-1)^{-1}x_{r}^{2} \ \right) . \ \ln(k \ K^{-1}\varepsilon + \frac{1}{2}) > \\ &> -\frac{1}{8} \ f(0) \ \left(\ (K^{-1}\varepsilon + \frac{1}{2}k^{-1})^{2} - (n-1)^{-1}x_{r}^{2} \ \right) . -8 \ f(0)^{-1} \ K^{2} \ \varepsilon^{-1} &= \\ &= K^{2} \ \varepsilon^{-1} \ \left(c^{2}K^{-2}\varepsilon^{2} - (n-1)^{-1}x_{r}^{2} \right) \ &\geq \\ &\geq \ c \ K \ \left(c \ K^{-1}\varepsilon - (n-1)^{-\frac{1}{2}}|x_{r}| \right) > \\ &> K \ (c^{2}(n-1)+1)^{-1} \ \left(c \ (n-1)^{\frac{1}{2}} \ K^{-1}\varepsilon - |x_{r}| \right) > \\ &> u(K^{-1}\varepsilon,x_{r}) \ . \end{aligned}$$

Finally $x^* \in \partial \Omega$ yields $u(x^*) = 0 = v(x^*) + \alpha$ and hence for \overline{x} from (2.12):

(2.21)
$$u(\overline{x}) \le v(\overline{x}) + \alpha < v(x^*) + \alpha = 0.$$

The first part of Lemma 2.1 can be used to construct sign-changing stable solutions on smooth domains. As an example:

Corollary 2.2: Set $f(u) = (u^2-1)(10-u)$ and

(2.22)
$$D(\varepsilon) = \{ (x_1, x_2) \in \mathbb{R}^2; x_1 > 0, x_2^2 < x_1^2(1-x_1) - \varepsilon \}$$

- a. Then there is $\lambda_1 > 0$ such that for all $\lambda > \lambda_1$ and $\varepsilon \in (0, 1/10)$ there is a stable solution $u_{\lambda, \varepsilon}$ of (1.1) on $D(\varepsilon)$ with $\max u_{\lambda, \varepsilon} \in (1, 10)$. b. For all $\lambda > \lambda_1$ there is $\varepsilon(\lambda) > 0$ such that, for $\varepsilon \in (0, \varepsilon(\lambda)]$,
- b. For all $\lambda > \lambda_1$ there is $\varepsilon(\lambda) > 0$ such that, for $\varepsilon \in (0,\varepsilon(\lambda)]$, $u_{\lambda,\varepsilon}$ changes sign in $D(\varepsilon)$.

Note that $D(\varepsilon)$ has a C^{∞} -boundary for $\varepsilon \in (0, 1/10)$.

FIG. 1

Proof: For $\varepsilon \in (0,1/10)$ we find that

$$(2.23) (2/3,0) \in D(1/10) \subset D(\varepsilon) \subset D(0) \subset \{ (x_1,x_2); |x_2| < x_1 \}.$$

Hence there is $\delta > 0$ with $B((^2/_3,0),\delta) \in D(\varepsilon)$ for all $\varepsilon \in [0,^1/_{10}]$. By Lemma 3.1 there exist $\mu > 0$ and $v \in C^2(\overline{B(0,1)})$, with v radially symmetric, which satisfy

(2.24)
$$\begin{cases} -\Delta \mathbf{v} = \mu \, \mathbf{f}(\mathbf{v}) & \text{in B}(0,1), \\ 1 < \mathbf{v}(0) < 10, \\ \mathbf{v}'(\mathbf{r}) < 0 & \text{for } 0 < \mathbf{r} \le 1, \\ \mathbf{v}(1) = -1. \end{cases}$$

Extend v by -1 outside of B(0,1). Now we define $\lambda_1 = \mu \ \delta^{-2}$ and

(2.25)
$$V(x_1,x_2) = v((\lambda/\mu)^{\frac{1}{2}}(x_1-\frac{2}{3}),(\lambda/\mu)^{\frac{1}{2}}x_2)$$

which is, see Corollary 3.5, a subsolution of (1.1) for all $\lambda > \lambda_1$ and $\varepsilon < {}^1/_{10}$ on $D(\varepsilon)$, satisfying V = -1 on $\partial D(\varepsilon)$. The constant function W = 10 is a supersolution for all $\lambda > 0$. By Lemma 3.6 there exists a stable solution $u_{\lambda,\varepsilon}$ in [V,W] of (1.1) on $D(\varepsilon)$. This proves the first part. We fix $\lambda > \lambda_1$ and we let t_1 be as in Lemma 2.1. Take $\varepsilon(\lambda)$ so small that $\lambda^{-\frac{1}{2}}t_1 \in D(\varepsilon(\lambda))$. The second part of the corollary is a consequence of the remark following Lemma 2.1.

SEMILINEAR ELLIPTIC PROBLEMS

In the next lemma we will show that for a top-shaped domain, with an aperture corresponding with a very wide cone, there does exist a positive solution of (1.1).

Define for c > 0 and $x_r = (x_2, x_3, ..., x_n) \in \mathbb{R}^{n-1}$:

(2.26)
$$A(c) = \{(x_1, x_r); (n-1)^{-\frac{1}{2}} | x_r | < cx_1 + ((n-1)^{-1} + c^2)^{\frac{1}{2}}, \\ x_1 < -c((n-1)^{-1} + c^2)^{-\frac{1}{2}} \},$$

(2.27) $S(c) = A(c) \cup B(0,1),$

where B(0,1) is the unit ball.

Let \tilde{x} denote the vertex of S(c): $\left(-c^{-1}((n-1)^{-1}+c^2)^{\frac{1}{2}},0,...,0\right)$.

Then $\partial S(c) \setminus \{\tilde{x}\}$ is $C^{1,1}$.

FIG. 2 $S(\frac{4}{3})$ for n=2

Lemma 2.3: Let f satisfy (1.3), (1.4) and suppose f(0) < 0. Then there are c > 1, λ and u, with $u \ge 0$, which satisfy (1.1) on S(c).

Proof: There is a radially symmetric subsolution (λ, U) of (1.1) on B(0,1), which satisfies U'(r) < 0 for $r \in (0,1]$. Indeed, there is $f^* \in C^1$ with $f^* \leq f$, which still satisfies (1.3) and (1.4). Thereupon Lemma 3.1 yields the existence of a positive radially symmetric solution on B(0,1) with f replaced by f^* , which is a subsolution of the original problem. We will show that for some $c \in (1,\infty)$ there exists a positive solution on S(c) with the same λ .

Fix the negative number $\ f_m = \min \ \{ \ f(s) \ ; \ 0 \le s \le \rho \ \}$ and define for c > 1:

 $\begin{aligned} V_c(x_1, x_r) &= -\tfrac{1}{2} \lambda \ f_m \ (c^2 - 1)^{-1} \ \Big(\ (cx_1 + ((n - 1)^{-1} + c^2)^{\frac{1}{2}} \)^2 - (n - 1)^{-1} x_r^2 \ \Big) \ , \\ \text{which is positive on S(c). Moreover, a direct computation shows:} \end{aligned}$

(2.29)
$$-\Delta V_c = \lambda f_m \le \lambda f(V_c) \qquad \text{if } 0 \le V_c \le \rho.$$

Define

Let $\alpha > 0$ be such that $U(x) > \alpha(1-|x|^2)$ for $x \in B(0,1)$. Then for c defined by

(2.31) $c = \left(1 - \frac{1}{2}\lambda f_{m} (n-1)^{-1} \alpha^{-1}\right)^{\frac{1}{2}} > 1$ we find that

(2.32)
$$V_{c}(x_{1},x_{r}) = -\frac{1}{2}\lambda f_{m} (c^{2}-1)^{-1} (n-1)^{-1} ((1+c^{2}(n-1))^{-1}-x_{r}^{2}) = \alpha ((1+c^{2}(n-1))^{-1}-x_{r}^{2}) = \alpha (1-x_{1}^{2}-x_{r}^{2}) < U(x_{1},x_{r}) \quad \text{for } (x_{1},x_{r}) \in \partial A(c) \cap B(0,1).$$

For $x \in A(c) \cap \partial B(0,1)$ it follows that

(2.33)
$$V_c(x) > 0 = U(x)$$
.
Hence $W_c \in C(\overline{S(c)})$ and Corollary 3.5 shows that W_c is a subsolution. By the construction W_c is positive in $S(c)$. Applying the results in [6] shows the existence of a solution $u \in [W_c, \rho] \subset C(\overline{S(c)})$.
Hence u is positive.

Before we are able to state the main result we need the following. See also Definition 1.2.2.1 of [9].

Definition 2.4: A domain Ω has the uniform interior cone property with constant c if $\Omega = \bigcup \left\{ \; \epsilon S_i \; ; \; i \in I \; \right\}$ for some $\; \epsilon > 0 \; , \; \text{where every } S_i \; \text{is the image of } S(c) \; \text{under an orthonormal transformation.}$

(S(c) is defined in (2.27); T is an orthonormal transformation if |T(x)-T(y)|=|x-y| for all $x, y \in \mathbb{R}^n$, where $|\cdot|$ is the Euclidean norm).

Proposition 2.5: Let f satisfy (1.3), (1.4) and f(0) < 0. Fix the dimension n > 1. Then there is $c_0 \in (1,\infty)$ for which the following holds. Let Ω a be bounded domain in \mathbb{R}^n .

- 1) If Ω has the uniform interior cone property with constant $c > c_0$, then λ_0 exists such that for all $\lambda > \lambda_0$ there is a positive solution u_{λ} of (1.1).
- 2) If $\partial\Omega$ contains a point y such that for some orthonormal transformation T, some $\varepsilon > 0$ and for some $c < c_0$, the following holds:

(2.34)
$$\begin{bmatrix} T(\varepsilon\Omega) \in S(c), \\ T(\varepsilon y) = \widetilde{x} \ (\text{ the vertex of } S(c)), \\ \text{Then there is no positive solution } (\lambda, u) \text{ of } (1.1). \end{bmatrix}$$

Remark: For convex domains Ω in \mathbb{R}^2 this proposition can be formulated as follows. Let c denote the largest constant such that Ω satisfies the uniform interior cone property with constant c. If $c > c_0$ then there is a positive solution (λ_0, u) of (1.1) on Ω (and hence for all $\lambda \geq \lambda_0$). If $c < c_0$ then there is no positive solution (λ, u) of (1.1) on Ω .

Proof: i) Let Ω_1 and Ω_2 be two bounded domains in \mathbb{R}^n . Suppose there exists a positive solution (λ_1, u_1) of (1.1) on Ω_1 , and suppose there is $\varepsilon > 0$ and a family $\{ T_i ; i \in I \}$ of orthonormal transformations in \mathbb{R}^n such that $\Omega_2 = \bigcup \{ T_i(\varepsilon \Omega_1) ; i \in I \}$. Since Ω_1 and Ω_2 are open one can assume without loss of generality that I is countable. By Corollary 3.5:

 $(2.35) \hspace{1cm} v_k(x) = \sup \left\{ \ u(\varepsilon^{-1}T_i^{-1}(x)) \ ; \ i \in \{i_1,...,i_k\} \in I \ \right\}$ is a subsolution on $\ \cup \ \left\{ \ T_i(\varepsilon\Omega_1) \ ; \ i \in \{i_1,...,i_k\} \ \right\} \ \text{ for } \lambda = \lambda_1\varepsilon^{-2} \ .$ Using the dominated convergence theorem one finds that

(2.36) $\mathbf{v}(\mathbf{x}) = \lim_{\mathbf{k} \to \mathbf{m}} \mathbf{v}_{\mathbf{k}}(\mathbf{x})$

satisfies condition ii) in Definition 3.2. Since $\{v_k\}$ is an equicontinuous family, v also satisfies the conditions i) and iii) in Definition 3.2/3.3. Hence v is a subsolution on Ω_2 for $\lambda = \lambda_1 \varepsilon^{-2}$. By v>0 in Ω_2 , max $v=\max u$ and again the supersolution $w=\rho$, one gets the existence of a positive solution (λ_2,u_2) of (1.1) on Ω_2 with $\lambda_2=\lambda_1 \varepsilon^{-2}$ and $v\leq u\leq w$.

- ii) Suppose (λ_0, u_0) is a positive solution of (1.1) on Ω and Ω is convex. Then $\Omega = \bigcup \{ x + \theta(\Omega x) ; x \in \Omega \}$ for all $\theta \in (0,1)$. Part i) shows that there will be a positive solution of (1.1) on Ω for all $\lambda \geq \lambda_0$.
- iii) Define
- $(2.37) \qquad \qquad J = \{ \ c \in (0, \infty) \ ; \ \exists \ a \ positive \ solution \ (\lambda, u) \ of \ (1.1) \ on \ S(c) \ \}.$ By Lemma 2.1 there is $c_1 > 1$ such that $c_1 \not\in J$. Lemma 2.3 shows that there is $c_2 < \infty$ such that $c_2 \in J$. Part i) of this proof shows that if $c \in J$, then $[c, \infty) \in J$. Hence $c_0 = \inf \{ \ c \in J \ \} \in (1, \infty)$ is well defined. With part ii) this shows that $\forall \ c > c_0 \ \exists \ \lambda_c > 0 \ \text{ with } \forall \ \lambda \geq \lambda_c \ \text{ there is}$

a positive solution (λ,u) of (1.1) on S(c). If Ω satisfies the uniform cone property with a constant $c>c_0$ then from part i) there is a positive solution (λ,u) of (1.1) on Ω for all $\lambda \geq \lambda_c \varepsilon^{-2}$. This shows Proposition 2.5.1).

iv) We still have to prove the second statement. Since $\partial S(c) \setminus \{\tilde{x}\}$ is C^1 there is $\theta > 0$ and a family of orthonormal transformations $\{T_i : i \in I\}$ such that

(2.38) $S(c) = \bigcup \{ T_i(\theta \epsilon \Omega) ; i \in I \}.$

If there is a positive solution of (1.1) on Ω , then part i) gives the existence of a positive solution of (1.1) on S(c), which is contradicted by part iii).

The result of the last proposition may be used for f with f(0) < 0 which does not have a falling positive zero ρ , if the domain has a corner with an angle less than or equal to $\frac{1}{2}\pi$. For example for the square one can show the following.

Corollary 2.6: Set $\Omega = (0,1)^2$, let $\lambda > 0$ and $f \in C(\mathbb{R})$ be such that f(0) < 0. Then there is no positive solution of (1.1) on Ω .

Proof: Suppose u is a solution of (1.1). After modifying f on $(\max u, \infty)$ such that f(u) = 0 for $u \ge \max u + 1$ one may apply Proposition 2.5.2) to find that u is negative somewhere in Ω .

Similarly to Corollary 2.6 one can show that for all f with f(0) < 0 there are no positive solutions of (1.1) on the hypercube, $\Omega = (0,1)^n$.

For domains in dimensions higher than two there is no longer a unique critical cone. For example in \mathbb{R}^3 one may use the following superfunctions to prove nonpositivity:

(2.39)
$$v(x_1,x_2,x_3) = -\frac{1}{8} f(0) \left((x_1 + \frac{1}{2}k^{-1})^2 - \theta x_2^2 - (1-\theta)x_3^2 \right) \ln(kx_1 + \frac{1}{2}).$$

With every $\theta \in (0,1)$ one can find a critical cone. Replace S(c) in Definition 2.4 by

(2.40) $S(\theta,c) = \{ (x_1,x_2,x_3) ; (x_1,(2\theta)^{\frac{1}{2}}x_2,(2-2\theta)^{\frac{1}{2}}x_3) \in S(c) \}$ and one can prove the equivalent of Proposition 2.5 for every $\theta \in (0,1)$. Moreover, we may use the result in two dimensions for domains in higher dimensions. For example:

Corollary 2.7: Let Ω denote a half ball, $\Omega = \{ x \in \mathbb{R}^n; |x| < 1, x_1 > 0 \}$, for any dimension n > 1, let $\lambda > 0$ and $f \in C(\mathbb{R})$ be such that f(0) < 0.

Then there is no positive solution of (1.1) on Ω .

Proof: Suppose u is a positive solution of (1.1). We start by modifying f on $(\max u, \infty)$ such that f(u) = 0 for $u \ge \max u + 1$. Next we define a positive subsolution on the half ball in \mathbb{R}^2 :

$$(2.41) v(x_1,x_2) = \max \{ u(x_1,x_2,x_3,...,x_n) ; x_3^2 + ... + x_n^2 \le 1 - x_1^2 - x_2^2 \}$$

Since $w = \rho = \max u + 1$ is a supersolution above v, there exists a positive solution in [v,w] on the half ball in \mathbb{R}^2 , which is contradicted by Proposition 2.5.

3. SOME PRELIMINARIES

Lemma 3.1: Let $f \in C^1(\mathbb{R})$ satisfy

(3.1)
$$f(\rho) = 0 \text{ for some } \rho > 0$$
 and

(3.2)
$$\int_{11}^{\rho} f(s) ds > 0 \quad \text{for all } u \in [0, \rho).$$

Then for all $\varepsilon > 0$ there is $\mu > 0$ and $v \in C^2[0,1]$ such that:

(3.3)
$$\begin{cases} -\left(v'' + \frac{n-1}{r}v'\right) = \mu f(v), \\ v(0) \in (\rho - \varepsilon, \rho), \\ v'(0) = v(1) = 0, \\ v'(r) < 0 & \text{for } r \in (0, 1]. \end{cases}$$

Proof: For a proof see also [5].

Change f for negative numbers such that

(3.4)
$$f(s) > |f(-s-2)|$$
 for $s \le -1$

and

(3.5)
$$\int_{u}^{\rho} f(s) ds > 0 \quad \text{for all } u < \rho.$$

Moreover assume

(3.6)
$$f(s) < 0$$
 for $s > \rho$.

Take a minimizing sequence $\{u_k\}$, for fixed μ , of

(3.7)
$$I(u,\mu) = \frac{1}{2} \int_{B} |\nabla u|^{2} dx - \mu \int_{B} \int_{-1}^{u} f(s) ds dx,$$

for u+1 \in W₀^{1,2}(B) , where B denotes the unit ball in \mathbb{R}^n . Since $I(|u_k+1|-1,\mu) < I(u_k,\mu)$ and since $I(.,\mu)$ is sequentially weakly lower semicontinuous and coercive, $I(.,\mu)$ possesses a minimizer $u_{\mu} \ge -1$ in W^{1,2}(B) with $u_{\mu} = -1$ on ∂B . Regularity theory, see [8], shows that $u_{\mu} \in C^2(B)$. By [7] one finds that u_{μ} is radially symmetric and $u_{\mu}^{\prime}(r) < 0$ for all $r \in (0,1)$. Hence u_{μ} satisfies the first and fourth condition (except for r=1) in (3.3). By the strong maximum principle one finds $u_{\mu}(0) < \rho$.

Suppose $u_{\mu}(0) \le \rho - \varepsilon$ for all $\mu > 0$. Then define

(3.8)
$$\begin{bmatrix} w_{\delta}(r) = \rho & \text{for } r < 1 - \delta, \\ w_{\delta}(r) = \delta^{-1} (1 - r)(1 + \rho) - 1 & \text{for } 1 - \delta < r < 1. \end{bmatrix}$$

Since $I(u_{\mu},\mu)>I(w_{\delta},\mu)$ for μ large and δ small if $u_{\mu}\leq \rho-\varepsilon$, this yields a contradiction. Hence for some μ_1 one finds that $\rho-\varepsilon< u_{\mu_1}(0)<\rho$. Since u_{μ_1} is strictly decreasing for r>0, there is a unique $r_1\in(0,1)$ with $u_{\mu_1}(r_1)=0$. Then v and μ defined by

(3.9)
$$v(r) = u_{\mu_1}(r_1 r), \quad \mu = \mu_1 r_1^2$$
 satisfy (3.3).

Definition 3.2: Let Ω be an open bounded domain in $\mathbb{R}^n,$ and let $f\in C(\mathbb{R}).$

We call a function u a superfunction (subfunction) of

$$\begin{array}{ll} (3.10) & -\Delta u = f(u) & \text{in } \Omega, \\ \\ \text{if} & \text{i) } u \in C(\overline{\Omega}), \\ \\ \text{ii) } \int_{\Omega} \big(\, u(-\Delta \varphi) - f(u) \varphi \, \big) \, dx \geq (\leq) \, 0 \, \text{ for all } \varphi \in \mathscr{D}^{+}(\Omega), \end{array}$$

where $\mathscr{D}^{+}(\Omega)$ consists of all nonnegative functions in $C_0^{\infty}(\Omega)$.

Definition 3.3: Let Ω be an open bounded domain in \mathbb{R}^n , let $f \in C(\mathbb{R})$ and $g \in C(\partial\Omega)$. We call a function u a supersolution (subsolution) of

(3.11)
$$\begin{bmatrix} -\Delta \mathbf{u} &= \mathbf{f}(\mathbf{u}) & in \ \Omega, \\ \mathbf{u} &= \mathbf{g} & on \ \partial \Omega, \\ if \mathbf{u} \ satisfies \ \mathbf{i}), \ \mathbf{ii}) \ and \\ \mathbf{iii}) \ \mathbf{u} \geq (\leq) \mathbf{g} \ on \ \partial \Omega.$$

Lemma 3.4: Let u_1 and u_2 be subfunctions of (3.10) on an open bounded domain Ω , with f only continuous. Then u^* defined by

(3.12) $u^*(x) = \max \left(u_1(x), u_2(x) \right) \text{ for } x \in \overline{\Omega},$ is a subfunction of (3.10) on Ω .

Remark: A related result can be found in [4]. However, there the definition of weak subfunction is different.

Corollary 3.5: Let v_i be a subfunction of (3.10) on $\,\Omega=\Omega_i$, where i is 1 or 2. Define v by

$$(3.13) \qquad \begin{cases} v(x) = v_1(x) & \text{for } x \in \overline{\Omega}_1 \setminus \Omega_2, \\ v(x) = \max \left(v_1(x), v_2(x) \right) & \text{for } x \in \Omega_1 \cap \Omega_2, \\ v(x) = v_2(x) & \text{for } x \in \Omega_2 \setminus \overline{\Omega}_1. \end{cases}$$

$$(3.14) \qquad \begin{cases} v_1 < v_2 & \text{on } \partial \Omega_1 \cap \Omega_2, \\ v_2 < v_1 & \text{on } \partial \Omega_2 \cap \Omega_1, \\ \text{then } v \text{ is a subfunction of } (3.10) \text{ on } \Omega = \Omega_1 \cup \Omega_2 \text{ .} \end{cases}$$

Remark 1. Let v_i be a subsolution of (3.11) on Ω_i with $g=g_i$, where i=1 or 2. If v_1,v_2 and v are like in Corollary 3.5, then v is a subsolution on $\Omega_1 \cup \Omega_2$ for every g with $g \geq g_1$ on $\partial \Omega_1 \setminus \Omega_2$ and $g \geq g_2$ on $\partial \Omega_2 \setminus \Omega_1$.

Remark 2. Let $\{u_i ; i=1,...,k\}$ be a family of subfunctions on Ω . Then one finds that the maximum of these subfunctions is again a subfunction.

Remark 3. Similar results hold for superfunctions and supersolutions if one replaces maximum by minimum and reverses the inequality signs.

Proof of the Corollary: By construction i) in Definition 3.2 is immediate; ii) remains to be proved. Let $\varphi \in \mathscr{D}^*(\Omega_1 \cup \Omega_2)$. Because of (3.14) and the continuity of v_1 and v_2 , it is possible to find φ_1 , φ_2 and φ_3 in $\mathscr{D}^*(\Omega_1 \cup \Omega_2)$ such that $\varphi = \varphi_1 + \varphi_2 + \varphi_3$, $v = v_i$ on support (φ_i) for i=1, 2, and support $(\varphi_3) \in \Omega_1 \cap \Omega_2$. Hence it is sufficient to prove ii) of Definition 3.2 for all $\varphi \in \mathscr{D}^*(\Omega_1 \cap \Omega_2)$. This follows from Lemma 3.4. \square

Proof of Lemma 3.4.:

Condition i) from Definition 3.10 is immediately satisfied. We will show condition ii) by the Kato-inequality (see [12, Lemma A]):

(3.15) $-\int_{\Omega} |\mathbf{w}| \Delta \varphi \, d\mathbf{x} \leq -\int_{\Omega} \operatorname{sign}(\mathbf{w}) \, \Delta \mathbf{w} \, \varphi \, d\mathbf{x} \quad \text{for } \mathbf{w} \in C^{2}(\Omega), \, \varphi \in \mathscr{D}^{+}(\Omega).$ For $\mathbf{u}_{1}, \, \mathbf{u}_{2} \in C^{2}(\Omega)$ the result directly follows:

For $u_1, u_2 \in C(\overline{\Omega})$ we will use the mollifier J_{ε} defined in [9, p 147], that is, with:

(3.17)
$$J(x) = \begin{cases} \exp((|x|-1)^{-1}) & \text{for } |x| < 1, \\ 0 & \text{for } |x| \ge 1, \end{cases}$$

(3.18)
$$J_{\varepsilon}(x) = \left(\int_{\mathbb{R}^n} J\left(\frac{y}{\varepsilon}\right) dy \right)^{-1} J\left(\frac{x}{\varepsilon}\right).$$

For $v \in C(\overline{\Omega})$ define $J_{\varepsilon} * v \in C_0^{\infty}(\mathbb{R}^n)$ by

(3.19)
$$(J_{\varepsilon} * v)(x) = \int_{\Omega} J_{\varepsilon}(x-y) \ v(y) \ dy,$$
 and set $u_1^{\varepsilon} = J_{\varepsilon} * u_1$, $u_2^{\varepsilon} = J_{\varepsilon} * u_2$. Let v be a subsolution and let $\delta > 0$. Moreover, for sake of convenience, define

(3.20) $\Omega(\delta) = \{ \mathbf{x} \in \Omega; \, \mathbf{d}(\mathbf{x}, \partial \Omega) > \delta \}.$

$$u(0) = \{x \in \mathcal{U}, u(x, 0, 0, 0) > 0\}$$

Then for all $\varepsilon < \delta$ we have

$$(3.21) -\Delta (J_{\varepsilon} * v) - J_{\varepsilon} * f(v) \leq 0 in \Omega(\delta).$$

Indeed, we find for $\varphi \in \mathcal{Q}^+(\Omega(\delta))$ that:

$$(3.22) 0 \geq \int_{\Omega} \left(v.-\Delta(J_{\varepsilon^*} \varphi) - f(v) (J_{\varepsilon^*} \varphi) \right) dx =$$

$$= \int_{\Omega(\delta)} \left(-\Delta(J_{\varepsilon^*} v) - J_{\varepsilon^*} f(v) \right) \varphi dx.$$

Hence, if $\varepsilon < \delta$, (3.21) shows that:

(3.23)
$$\begin{bmatrix} -\Delta \mathbf{u}_{1}^{\varepsilon} \leq \mathbf{J}_{\varepsilon} * \mathbf{f}(\mathbf{u}_{1}) & \text{in } \Omega(\delta) \\ -\Delta \mathbf{u}_{2}^{\varepsilon} \leq \mathbf{J}_{\varepsilon} * \mathbf{f}(\mathbf{u}_{2}) & \text{in } \Omega(\delta) \end{bmatrix}$$

Similarly to (3.16) we find

$$(3.24) \qquad -\int_{\Omega} \max(\mathbf{u}_{1}^{\varepsilon}, \mathbf{u}_{2}^{\varepsilon}) \Delta \varphi \, d\mathbf{x} \leq$$

$$\leq \int_{\Omega} \left(\chi_{\left[\mathbf{u}_{1}^{\varepsilon} > \mathbf{u}_{2}^{\varepsilon}\right]} J_{\varepsilon} * f(\mathbf{u}_{1}) + \chi_{\left[\mathbf{u}_{1}^{\varepsilon} < \mathbf{u}_{2}^{\varepsilon}\right]} J_{\varepsilon} * f(\mathbf{u}_{2}) + \right.$$

$$\left. + \frac{1}{2} \chi_{\left[\mathbf{u}_{1}^{\varepsilon} = \mathbf{u}_{2}^{\varepsilon}\right]} (J_{\varepsilon} * f(\mathbf{u}_{1}) + J_{\varepsilon} * f(\mathbf{u}_{2})) \right) \varphi \, d\mathbf{x}.$$

Since u_1 and u_2 are continuous $\max(u_1^{\varepsilon}, u_2^{\varepsilon}) \to \max(u_1, u_2) = u^*$ and $J_{\varepsilon} * f(u_i) \to f(u_i)$ (i=0,1) uniformly on $\operatorname{supp}(\varphi)$ for $\varepsilon \downarrow 0$. Moreover, the first term in the right hand side of (3.24) can be estimated as follows.

$$(3.25) \qquad \int_{\Omega} |\chi_{[u_1^{\varepsilon} > u_2^{\varepsilon}]} (J_{\varepsilon} * f(u_1) - f(u^*)) \varphi | dx \leq$$

$$\leq \int_{\Omega} \chi_{[u_1^{\varepsilon} > u_2^{\varepsilon}]} |J_{\varepsilon} * f(u_1) - f(u_1)| \varphi dx + \int_{\Omega} \chi_{[u_1^{\varepsilon} > u_2^{\varepsilon}]} |f(u_1) - f(u^*)| \varphi dx \leq$$

By using the continuity of $f(u_1)$ on Ω for the first term and the Lebesgue Dominated Convergence Theorem for the second term we see that the right hand side in (3.25) goes to zero for $\varepsilon \downarrow 0$. The two remaining terms in (3.24) can be estimated similarly.

Hence

(3.26)
$$-\int_{\Omega} \mathbf{u}^* \, \Delta \varphi \, \mathrm{d}\mathbf{x} \leq \int_{\Omega} \mathbf{f}(\mathbf{u}^*) \, \varphi \, \mathrm{d}\mathbf{x} \qquad \text{for all } \varphi \in \mathscr{D}^+(\Omega(\delta)).$$
 Since (3.26) is true for every $\delta > 0$, the inequality holds for all $\varphi \in \mathscr{D}^+(\Omega)$.

Lemma 3.6: Let $f \in C^1(\mathbb{R})$, Ω be bounded and $\partial \Omega \in C^3$ and set g=0. If u_1 , respectively u_2 , with $u_1 < u_2$ in Ω , are respectively a sub- and a supersolution of (3.11) with $u_1 < 0 < u_2$ on $\partial \Omega$, then there exists a stable solution $u \in [u_1, u_2] \subset C(\overline{\Omega})$ of (3.11).

Proof: In order to get sub and supersolutions in $C^2(\overline{\Omega})$, we will use the first two steps in a monotone iteration scheme.

Set $\varepsilon = \min \{ -u_1(x), u_2(x) ; x \in \partial\Omega \}$ and define

$$\omega = \max \{ \ f'(u) \ ; \ \min \ u_1(x) \le u \le \max \ u_2(x) \ \} \ ,$$
 and the operator $T_\sigma \colon C(\overline{\Omega}) \to C(\overline{\Omega})$ by

(3.28) $T_{\sigma}(\mathbf{u}) = (-\Delta + \omega)_{\sigma \varepsilon}^{-1} (\omega \mathbf{u} + \lambda \mathbf{f}(\mathbf{u})),$

where $(-\Delta + \omega)_{\sigma \varepsilon}^{-1}$ is the inverse of $-\Delta + \omega$ with Dirichlet boundary condition $u = \sigma \varepsilon$, $\sigma \in \{-,+\}$. The operators T_{σ} are order preserving. Moreover, if v is a subsolution of (3.11) with $g = -\varepsilon$, then $T_{-}(v) \geq v$ and $T_{-}(v)$ is also a subsolution (see e.g. [16] or [7]). By regularity theory (see [8]) $T_{-}^{2}(u_{1})$, $T_{+}^{2}(u_{2}) \in C^{2}(\overline{\Omega})$. Since $T_{-}^{2}(u_{1}) < T_{+}^{2}(u_{2})$ in $\overline{\Omega}$, are respectively a sub and a supersolution, one can use [16, Th.3.6]. Sattinger showed that the unique solution U_{1} of

with $\Phi=T_-^2(u_1)$, satisfies $U_1(x,t)\uparrow v_1(x)$ for $t\to\infty$, and v_1 is a solution of (3.11) with g=0. Similarly the unique solution U_2 of (3.29) with $\Phi=T_+^2(u_2)$ satisfies $U_2(x,t)\downarrow v_2(x)$ for $t\to\infty$, and $v_2\geq v_1$ is also a solution of (3.11) with g=0. By the maximum principle for elliptic problems, [15, Th.2.6], one finds:

$$(3.30) u_1 \leq T_{-}^{2}(u_1) < v_1 \leq v_2 < T_{+}^{2}(u_2) \leq u_2 \text{ in } \overline{\Omega},$$

By the maximum principle for parabolic problems, [15, Th.3.12], every solution U of (3.30) with $T_{-}^{2}(u_{1}) \leq \Phi \leq v_{1}$ converges to v_{1} for $t \to \infty$. Hence v_{1} is stable from below. Similarly v_{2} is stable from above. By [13, Th.4.3] one finds that there is at least one stable solution $u \in [v_{1}, v_{2}] \subset [u_{1}, u_{2}] \subset C(\overline{\Omega})$.

ACKNOWLEDGEMENT

I would like to thank Ph. Clément for many fruitful discussions.

REFERENCES

- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- [2] K. Ako, On the Dirichlet problem for quasilinear elliptic differential equations of the second order, J. Math. Soc. Japan 13 (1961), 45–62.

- [3] H. Amann, Supersolutions, monotone iterations, and stability, J. Differential Equations, 21 (1976), 363-377.
- [4] H. Berestycki, P.-L. Lions, Some applications of the method of super and subsolutions, in Bifurcation and Nonlinear Eigenvalue Problems, Springer Lecture Notes 782, Berlin Heidelberg New York 1980, 16-41.
- [5] Ph. Clément, G. Sweers, Existence et multiplicité des solutions d'un problème aux valeurs propres elliptique semilinéaire, C.R. Acad. Sci., Paris 302, I Ser., 19 (1986), 681-683.
- [6] Ph. Clément, G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Annali della Scuola Normale Superiore di Pisa (4), 14 (1987), 97–121.
- [7] Ph. Clément, G. Sweers, Getting a solution between sub— and supersolutions without monotone iteration, Rend.Ist.Matem.Univ. Trieste 19 (1987), 189–194.
- [8] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. <u>68</u> (1979), 209-243.
- [9] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1977, 2nd ed.
- [10] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1985.
- [11] A.M. Il'in, A.S. Kalashnikov, O.A. Oleinik, Linear equations of the second order of parabolic type, Russian Math. Surveys 17 (1962), 1-143.
- [12] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. <u>13</u> (1972), 135–148.
- [13] H. Matano, Asymptotic behaviour and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ. <u>15</u> (1979), 401–454.
- [14] H. Matano, lecture in the Workshop on Nonlinear Diff. Eq., Leiden, October 1987.
- [15] M. Protter, H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs N.J., 1967.
- [16] D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.

- [17] D.H. Sattinger, Topics in stability and bifurcation theory, Springer Lect. Notes Math. 309, Berlin/ Heidelberg/ New York, 1973.
- [18] J. Serrin, Nonlinear equations of second order, A.M.S. Symposium in Partial Diff. Eq., Berkeley, August 1971.
- [19] J. Smoller, A. Wassermann, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. for Rat. Mech. Anal. <u>98</u> (1987), 229–249.

Received December 1988