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1. INTRODUCTION

In this note we will study the relation between the boundary of the domain
and the existence of a positive solution for a semilinear elliptic problem.

Consider

1) —Au=)f(u) inQ,

u=20 on 99,

where  is a bounded domain in R®, f i3 continuous and X > 0. For f with
f(0) <0 we will establish a cone condition for the boundary which is
necessary and sufficient for existence of a positive solution. This result is used

to obtain a sign—-changing stable solution.

Definition of solution.

Since we will not assume more regularity for f than continuity, we have to

specify the notion of solution. A function u is called a solution if it satisfies
(1.2) a) ueC(@),
b) Jn( ulp + f(u) p)dx=0 forall pe CI(Q),
c) u=0 on J90.
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The function u is called positive if:
d) u>0 in Q.

A necessary condition for a)/ c) is the regularity of every boundary point. See
[9, Theorem 2.14]. ( Regular in the sense of Perron: there exists a barrier
function at every boundary point.) Therefore we will assume that 90 is

- regular.

The first result.
We will restrict ourselves to functions f which satisfy f(u) <0 for u> p > 0.

Then, by the maximum principle, there is no solution with max u > p. Hence
we assume

(1.3) f=0 on [p,x).
If f(0) > 0 this assumption directly guarantees the existence of a positive
solution u A for all A > 0 ; see [2,7). For functions f with f(0) < 0, which we

will consider, the situation is more complicated. In [5,6] it is shown for
fe C1(|R) that there is a positive solution for A large when f(0) < 0, if the

following conditions are satisfied:

p
(1.4) J f(s)ds>0  forallte0,)
t
and
(1.5) Q=Y {B(xe)xe, d(x,00) > ¢} forsomee >0,

where B(x,) = { y; d(x,y) < ¢ }.

W. Jager raised the question of whether or not the uniform interior sphere
condition (1.5) is necessary. We will show the following. There exists a
critical aperture f; (depending on f) such that, if the domain satisfies a
uniform interior cone condition with aperture larger than 6, then 3Xo > 0
such that VA > \g there exists a positive solution of (1.1). On the other hand,
as soon as the domain is cone—shaped with a smaller aperture at some
boundary point, (1.1) has no positive solution. (In our proofs we do need some
nice behaviour of 8 in a neighborhood of a critical boundary point.)

For dimension n = 2 the number 6 satisfies 7/2 < 6 < 7. This shows that
there is no positive solution on a square if f(0) < 0. Since 6 > 7/2 for every
such f, it is possible to show (after cutting off an arbitrary f above the
maximum of a solution) that there is no positive solution of (1.1) on the
square for any fe€ C(R) with f(0) < 0, but without satisfying (1.3).
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The proof.
The main proof will be done by linking specific super— respectively
subsolutions on a domain which has a smooth boundary except at one point.
Near this poinf the domain will look like a cone. (For supersolutions in a
different sense such linking is also used in [11, 4].)
For the negative result we will use a cone on which we can construct a
supersolution which has its minimum inside. If 02 is contained in this cone and
has a point which is not to far from the vertex of the same cone we continue
as follows. First we show that every solution has to lie below a compound
supersolution. Thereupon we will use a sweeping principle (see [18,17)) to
show that in fact a solution lies below a supersolution with negative
minimum. Hence it is negative somewhere in the intersection of  and the
cone.
The proof in the other direction uses the existence of a positive subsolution on
a top-shaped domain which satisfies a cone condition with a smaller aperture.
Using the continuous dependance of the solution on the boundary we obtain a
critical aperture for the top-shaped domain. By filling up a domain, which
satisfies a cone condition for @ > 6, with small tops instead of balls as in
(1.5), we can use the argument from-[7] to get a positive subsolution and
hence a positive solution.

The second result.

For bounded A smooth domains close to these 'edgy' domains will not posses
a positive solution either. Nevertheless there might exist a stable solution
with a positive maximum. Hence such a stable solution will change sign. We
will establish an example of such a sign—changing stable solution,on a convex
domain. That result answers a question of Matano. Matano himself recently
found sign—changing stable solutions on convex domains with even f(0) = 0,
[14].

We will use the following notion of stability. A solution u of (1.1) is called
stable, if Ve > 0 36> 0 such that for Up€L_(Q) with || Ug—u I, <4
the solution U of the related parabolic problem: )

Uy~ AU = M(U) in xRt
U=0 on 0O xR+,

(1.6)

. li .
with i%’ Il U(t) - Uy "Ll(n) =0, satisfies || U(t)-u||_<e forallt > 0.

Section 3 contains some lemmata for weak subsolutions. Moreover, we will
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recollect in that section results about stability from [3,13,16,17) and modify-
them for our purposes.

2. MAIN RESULTS

We will prove results for domains in R" using 'radially symmetric' cones. In
dimensions larger than 2 we can find similar results by using other families of
cones. At the end of this section we will give an example. In R? the first
lemma shows that there will not be a positive solution if for example the
domain is convex and has a corner with angle less than {7 or close to 4, or if
the domain is close to such a domain.

Lemma 2.1: Set A = 1 and suppose f satisfies (1.3) (1.4) and £(0) < 0.
a. There is t1 € (0,1) such that if

(2.1) (t1,010) € © € { (X1y.rXn) €K ; (Btxd)t < (n-1)¥ x, )

there will be no positive solution of (1.1).
b. There isc > 1 such that if

(2.2) {(4,0,...,0;0<t<1} ¢ @ and
Q € { (XtyiXa) €R® ; (B4 )t < ¢ (n-1)} x1 }

there will be no positive solution of (1.1).

Remark: By rescaling one finds that Lemma 2.1 b. holds for all A > 1. Lemma
2.1 a. holds for A > 0 if one replaces t; by ty = A~ ’t;

In the proofs we will use a weak version of sub— and supersolutions. For a

definition see section 3.

Proof:  To simplify notations we set Xr = (Xa,...,Xn) € R,
i) Estimating solutions from above.
Set fn = max { f(s) ; 0 s < p } and K = (2pfm)?. Define U € C'(R)
by
U(t)=Kt—4mt? fort < K7,

2.3
@3) Ut)y=p fort > K fo 1
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Let u be a solution of (1.1) and suppose (2.1) or (2.2) is satisfied. The
maximum principle shows:
(24) u(xs,%r) < U(x1) < K x; for (x1,%;) € Q.
ii) Restriction to a subdomain of (2.
Take ¢ € (0,K) such that

(2.5) f(s) < 1£(0) for |s| <¢
and set
(2.6) V=00 { (xx) €R x; <K e ).
From (2.4) it follows that
(2.7) ~Au = f(u) < #(0) for x € Qv.
iii) Defining a superfunction on the subdomain Qv.
Define
(2.8) k=Kelexp(-8£0) K%Y,
(2.9) vixixe) = ~§£0) ( (e B H2 (0-1)%2 ) In(lex ).
Then we find for
(2.10) x| < (0-1)* (31 + k)
that
- (2.11) — Av(xs,xe) = §1(0) (3 + (0-1) ¥t ) 2) > 4 (0)
The function v has a negatxve minimum for x satisfying (2.10) in
(2.12) Xx=(ke*p,0,.,0)
Define
(2.13) 1=k et-})
(2.19) c=14+ K(2ek)_1

Note that t; € (0,1) and hence X € Q if Q satisfies (2.2).
By this choice of ¢ one finds that if © satisfies (2.2) then every x € v
satisfies (2.10).
iv) Contradicting positivity of u by a lowest supersolutzon
Let & be the smallest number such that

(2.15) uiv+a in 02V.
If @ <0 then

(2.16) u(x) < v(x) < 0.
If & > 0, let x* € T be such that

(2.17) u(x*) = v(x*) + a.

By (2.15), (2.7) and (2.11) v+a-u is nonnegatlve and superharmonic
in Qv:
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(2.18) —A(v+o-u) = -Av + Au > $f{0) - f(u) 2 0
and hence the minimum principle shows x* € §Qv.
First we will prove x* € 8 by showing that u < v on 99Qv\aQ.
Similar to (2.4) the maximum principle yields that on Qv:

(2.19) u(xexe) € U((Xm-1)+1) N e(o-1)tx - 0x1)) <
< K (H(n-1)+1) Y(c(n-1)¥x, - 0.x;) forall §¢ R" L with | 6] = 1.

Then, if x € 0v\aQ, which means that |x| < ¢ (n-1){ Kl and
x1 = K%, we use respectively (2.9), (2.8), (2.14) and (2.19):

(2.20) V(K e xe) =
- % 1(0) ( (K + %k_l) (n-1)"1x? ) In(k K% + %) >

> -4 10) ( (K% + ) - (0-1)02 )-8 £(0) ™ K* ¢~
= K21 (c2K‘2e2— (n-1)" x,-) >

> cK(cK - (n-1)Fx|) >

> K (A@-1)+1)7 (¢ (0-1)* K e - |x¢]) >

> WK lex) .

Finally x* € 80 yields u(x*) = 0 = v(x*) + & and hence for x from
(2.12):
(2.21) ux) < v(ix) + a< v(x*) + a=0. o

The first part of Lemma 2.1 can be used to construct sign—changing stable
solutions on smooth domains. As an example:

Corollary 2.2: Set f(u) = (u2-1)(10—u) and
(2.22) D(e) = { (x1,xa) € R% x> 0, x5 < x%(l—xl) -¢}
a.  Then there is Ay > 0 such that for all A\ > Ay and € € (0,1/10) there is a
stable solution Uy g of (1.1) on D(g) with max Uy g€ (1,10).
b. Forall A > )\ there is e(A) > 0 such that Jor € € (0,e(N)],
Uy e changes sign in D(g).

Note that D(g) has a C*~ boundary for ¢ € (0,!/10).
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D(0) D(!/100) in RZ.

FIG. 1

Proof:  Fore € (0,1/19) we find that
(2.23) (3/3,0) € D(/10) C D(e) € D(0) C { (x1,%2); |%2| < x4 }.

Hence there is § > 0 with B((2/3,0),6) ¢ D(e) for all € € [0,}/10]- By
Lemma 3.1 there exist 4 > 0 and v € C*(B(0,1)), with v radially
symmetric, which satisfy
~Av = pf(v) in B(0,1),
(2.24) 1<v(0)<10,
vi(r) <0 for0<rg<l,
v(l)=-1.

Extend v by -1 outside of B(0,1).
Now we define Ay = 1 6 2 and

(2.25) V(xiyxa) = v( (A x=3) , (\Mw)ixe)

which is, see Corollary 3.5, a subsolution of (1.1) for all A > A; and
€ < 1/10" on D(e), satisfying V = -1 on 8D(e). The constant function
W = 10 is a supersolution for all A > 0. By Lemma 3.6 there exists a
stable solution Uy e in [V,W] of (1.1) on D(e). This proves the first
part. We fix A > ) and we let t1 be as in Lemma 2.1. Take £()) so
small that A7, € D(e(})). The second part of the corollary is a
consequence of the remark following Lemma 2.1. o
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In the next lemma we will show that for a top-shaped domain, with an

aperture corresponding with a very wide cone, there does exist a positive

solution of (1.1). )

Define for ¢ > 0 and Xr = (X2,X3,...,xn) €R" ¢~

— “y-1, .2
(2.26) A(c) = {(x1,xe); (0-1) | xe] < exa + ((0-1) M4 )*,1 -
x; < —¢((n-1)"4c) % },

(2.27) S(c) = A(c) UB(0,1),

where B(0,1) is the unit ball.
Let X denote the vertex of S(c):
(= (@-1)t4cD)t0,...0).
Then 35(c)\{X} is C™"".

FIG. 2 S(3) for n=2

Lemma 2.3: Let f satisfy (1.3), (1.4) and suppose f(0) < 0. Then there arec > 1,
X and u, with u > 0, which satisfy (1.1) on S(c).

Proof:  There is a radially symmetric subsolution (A,U) of (1.1) on B(0,1),
which satisfies U'(r) < 0 for r € (0,1]. Indeed, there is f*€ c! with
f*< f , which still satisfies (1.3) and (1.4). Thereupon Lemma 3.1 yields
the existence of a positive radially symmetric solution on B(0,1) with f
replaced by f*, which is a subsolution of the original problem. We will
show that for some ¢ € (1) there exists a positive solution on S(c)
with the same A.

Fix the negative number fy = min { f(s) ; 0 < s < p } and define for
c>1

2.28)  Ve(xixe) = =4 fu (1) ((exi + (0-1) 4D P2 - (1) 2 ),
which is positive on S(c). Moreover, a direct computation shows:

(2.29) —AVe = Ma < M(Ve) if 0<Ve<p.
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Define
We(x) = Ve(x) for x € &) \ B(0,1) ,
(2.30) We(x) = max( Ve(x), U(x) ) for x € A(c) nB(0,1) ,
We(x) = U(x) for x € B(0,1) \ A(c) .
Let a> 0 besuch that U(x) > a(1-|x|?) for x € B(0,1). Then for c
defined by
(2.31) e=(1-Afa(@-1)T o)t 5y
we find that
(2.32) Ve(xi,xe) = =4 fn (P-1) 7 (0-1)7F (14 An-1) ) o nd ) =
= a( (1+c2(n—1) )—l—x% ) = a(l -xi-x? ) <
< Uxy,x:) for (x1,xr) € dA(c) N B(0,1).
For x € A(c) n dB(0,1) it follows that -
(2.33) Ve(x) > 0 = U(x) .

Hence W, € C(Sici) and Corollary 3.5 shows that W, is a
subsolution. By the construction W¢ is positive in S(c). Applying the

results in [6] shows the existence of a solution u € [We,p] c C(Sici).
Hence u is_positive. o

Before we are able to state the main result we need the following. See also
Definition 1.2.2.1 of [9].

Definition 2.4: A domain Q) has the uniform interior cone property with constant c
if Q=U{eSi;i€l} for some € > 0, where every S; is the image of
S(c) under an orthonormal transformation.

( S(c) is defined in (2.27) ; T is an orthonormal transformation if
[T(x)-T(y)] = |x-y| for all x, y € R", where |-| is the Euclidean
norm ).

Proposition 2.5: Let f satisfy (1.3), (1.4) and f(0) < 0. Fiz the dimension n > 1.
Then there is co € (1) for which the following holds. Let  a be
bounded domain inR".

1) If Q has the uniform interior cone property with constant ¢ > cy, then
Ao exists such that for all A > Ao there is a positive solution u ) of (1.1).

2)  If O contains a pointy such that for some orthonormal transformation
T, some € > 0 and for some ¢ < co, the following holds:
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(2.34)

Remark :

SWEERS

T(eQ) ¢ S(c),
T(ey) = X ( the vertez of S(c) ),
Then there is no positive solution (A\,u) of (1.1).

For convex domains © in R? this proposition can be formulated as
follows. Let ¢ denote the largest constant such that  satisfies the
uniform interior cone property with constant c. If ¢ > co then there is
a positive solution (Ao,u) of (1.1) on © (and hence for all A > JXo). If
¢ < ¢g then there is no positive solution (A,u) of (1.1) on Q.

Proof: i) Let ©; and Q3 be two bounded domains in R". Suppose there exists a

(2.35)

(2.36)

iii)
(2.37)

positive solution (As,u;) of (1.1) on £, and suppose there is ¢ > 0 and
a family { T; ;i €I} of orthonormal transformations in R" such that
Qa=U{Ti(e);iel}. Since & and Qs are open one can assume
without loss of generality that I is countable. By Corollary 3.5:

vi(x) = sup { u(e*lT—{l(x)) ;i€ {ifyik} c1}

is a subsolution on U { Ti(ef) ;i € {is,...,ix} } for A = e 2. Using
the dominated convergence theorem one finds that

v(x) = 111 yy(x)

satisfies condition ii) in Definition 3.2. Since {vy} is an equicontinuous
family, v also satisfies the conditions i) and iii) in Definition 3.2/3.3.
Hence v is a subsolution on ) for A = /\15_2. By v>0 in b,
max v =maxu and again the supersolution w = p, one gets the
existence of a positive solution (Az,us) of (1.1) on 9, with Ay = A2
and v<u<w.
Suppose (Ao,uo) is a positive solution of (1.1) on Q and € is convex.
Then @ =U{x+ 8(Qx);x €N} forall §e (0,1). Part i) shows that
there will be a positive solution of (1.1) on £ for all A > Xo.
Define

J = { c € (0) ; 3 a positive solution (A,u) of (1.1) on S(c) }.
By Lemma 2.1 thereis ¢; > 1 such that ¢; ¢ J. Lemma 2.3 shows that
there is ¢z < o Such that ¢ € J. Part i) of this proof shows that if
c€J,then [co) CJ. Hence ¢o=inf {c€J } € (1m) is well defined.
With part ii) this shows that V¢ > co 3 A >0 withV A > ¢ thereis
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a positive solution (A,u) of (1.1) on S(c). If 0 satisfies the uniform cone
property with a constant ¢ > ¢y then from part i) there is a positive
solution (A,u) of (1.1) on © for all A > A € 2. This shows Proposition
2.5.1).

iv)  We still have to prove the second statement.
Since 85(c)\{¥} is C! thereis # > 0 and a family of orthonormal
transformations { T; ; i € 1 } such that

(2.38) S(e) = U { T,(4R);iel}.

If there is a positive solution of (1.1) on Q, then part i) gives the
existence of a positive solution of (1.1) on S(c), which is contradicted
by part iii). o

The result of the last proposition may be used for f with f{0) < 0 which does
not have a falling positive zero p, if the domain has a corner with an angle
less than or equal to 47 For example for the square one can -show the
following.

Corollary 2.6: Set © = (0,1)2, let A >0 and f€ CR) be such that £(0) < 0.
Then there is no positive solution of (1.1) on Q.

Proof:  Suppose u is a solution of (1.1). After modifying f on (max u,») such
that f(u) =0 for u> maxu+ 1 one may apply Proposition 2.5.2) to
find that u is negative somewhere in €. o

Similarly to Corollary 2.6 one can show that for all f with f(0) < 0 there are
no positive solutions of (1.1) on the hypercube, 2 = (0,1)".

For domains in dimensions higher than two there is no longer a unique
critical cone. For example in R® one may use the following superfunctions to
prove nonpositivity:

(2.39) V(x1,X2,x3) = — $ £(0) ( (et k)%= 03 — (1-0)x3 ) In(kxy+ §).

With every # € (0,1) one can find a critical cone. Replace S(c) in Definition
2.4 by

(2.40) S(6,¢) = { (xaxa,x3) 5 (x1,(20) Exa,(2~20)1x5) € S(c) }
and one can prove the equivalent of Proposition 2.5 for every 6 € (0,1).
Moreover, we may use the result in two dimensions for domains in higher
dimensions. For example:
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Corollary 2.7: Let Q denote a half ball, @ = { x €R"; |x|<1, x>0}, for any
dimension n > 1, let A >0 and fe C(R) be such that £(0) < 0.
Then there is no positive solution of (1.1) on Q.

Proof:  Suppose u is a positive solution of (1.1). We start by modifying f on
(max u,w) such that f(u) = 0 for u> max u+ 1. Next we define a
positive subsolution on the half ball in R*:

(2-41) v(x1,%2) = max { u(x1,X2,X3,...,Xn) ; B xicl-xi- x5 }

Since w = p = max u + 1 is a supersolution above v, there exists a
positive solution in [v,w] on the half ball in R?, which is contradicted
by Proposition 2.5. 0

3. SOME PRELIMINARIES

Lemma 3.1: Letf € Cl(IR) satisfy
(3.1) f(p) =0 for some p>0
and

(3.2) JZ f(s)ds > 0 jforallu € [0,p).

Then for alle > 0 thereis >0 and ve C2[0,1] such that:
—(v" +£%lv' ) = ui(v),
(3.3) v(0) € (p<.0),
v'(0) = v(1) = 0,
v'(r) <0 forr € (0,1].

Proof:  For a proof see also [5].

Change f for negative numbers such that
(3.4) i(s) > |f(-s-2)| fors< -1

and ‘

p
(3.5) J f(s)ds >0 forallu < p.
u
Moreover assume

(3.6) f(s) <0 fors > p.
Take a minimizing sequence {ux}, for fixed g, of

(3.7) I(up) = 4 JB |Vu|2dx -b JB J: f(s) ds dx ,
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for u+l € W(I)’2(B) , where B denotes the unit ball in R™. Since
I{|ug+1|-1,4) < I(uy,p) and since I(.,u) is sequentially weakly lower
semicontinuous and coercive, I(.,) possesses a minimizer u ”2 -1 in

WI’Z(B) with uu=—1 on 0B. Regularity theory, see [8], shows that

u,€ cY(B). By [7] one finds that u, is radially symmetric and
u"‘(r) <0 for all r € (0,1). Hence u, satisfies the first and fourth
condition (except for r=1) in (3.3). By the strong maximum principle
one finds uu(O) < p.

Suppose u ”(0) < p— for all g > 0. Then define

39) wg(r) =p for r < 1-4,

3.8
wg(r) = 5 (1-1)(14p) -1 for 1-6 < r< L.

Since I{u #,p) > I(wg,pu) for ularge and 6 small if u, < p—e, this yields

a contradiction. Hence for some g one finds that p-e<u ”1(0) <p.

Since u \ is strictly decreasing for r > 0 , there is a unique r; € (0,1)

with u m(rl) = 0. Then v and g defined by

(3.9) v(®) =, (rr) , p=part

satisfy (3.3). o

Definition 3.2: Let  be an open bounded domain in R", and let f € C(R).
We call a fanction u @ superfunction (subfunction) of
(3.10) —-Au = {(u) in §,

if i) ueC(®),
where D*(N) consists of all nonnegative functions in C3(f).

Definition 3.3: Let 92 be an open bounded domain in R", let f € C(R) and
g € C(80). We call a function u a supersolution (subsolution) of
-Au = f(u) in Q,
[ u=g on 09,
ifu satisfies 1), ii) and
iii) u2 () g on M.

(3.11)
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Lemma 3.4: Let uy and up be subfunctions of (3.10) on an open bounded domain (),
with f only continuous. Then u* defined by

(3.12) u*(x) = max (uy(x),u(x)) for x €,
is a subfunction of (3.10) on 2.

Remark : A related result can be found in [4]. However, there the definition of
weak subfunction is different.

Corollary 3.5: Let vi be a subfunction of (3.10) on Q = Q;, whereiis1 or2.

Define v by
[ v(x) = vi(x) Jor x € {4\ Oy,
(3.13) v(x) = max (v1(x),va(x}) Jor x € QN Oy,
| v(x) = va(x) for x € Qo\ Q4.
Iy
vi < vy ond Ny,
(3'14) va< vy ondlanQy,

then v is a subfunction of (3.10) on 2 =QU Qs .

Remark 1. Let v; be a subsolution of (3.11) on ©; with g = g;, where i=1 or 2. If
vy,ve and v are like in Corollary 3.5, then v is a subsolution on ;U Q.
for every g with g > gi on 904\ Q2 and g2 g2 on A\ Q.

Remark 2. Let { u; ; i=1,...k } be a family of subfunctions on €. Then one finds
that the maximum of these subfunctions is again a subfunction.

Remark 3. Similar results hold for superfunctions and supersolutions if one
replaces maximum by minimum and reverses the inequality signs.

Proof of the Corollary : By construction i) in Definition 3.2 is immediate;
ii) remains to be proved. Let ¢ € 2 *(fjU ). Because of (3.14) and
the continuity of vi and vy, it is possible to find ¢, ¢2 and g3 in
DU Q) such that ¢ = p+pa+p3, v = vi on support(y;) for
i=1, 2, and support(ws) C N 2. Hence it is sufficient to prove ii) of
Definition 3.2 for all ¢ € Z*(HN Qg). This follows from Lemma 3.4. 0

ProofofLemma 3.4.:
Condition i) from Definition 3.10 i3 immediately satisfied.

We will show condition ii) by the Kato—inequality (see [12,

Lemma Al):
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(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

«—L) Iw|Apdx < —Jnsign(w) Aw pdx  for we C(f2), p € F+(Q).
For uy, ug € C2(£2) the result directly follows:

—-J.Qu* A¢dx=—%JQ (u1 + ug +|ug - ug|) Apdx <

<-4 IQ (Am + Aug + sign (u3 — ug) (Ayy - Aug))go dx £

€ J o g T30+ Xy 108) + 4y ) +8002)) ) =

= | 1{(u*) pdx,
la
For uy, uz € C(f1) we will use the mollifier J, defined in [9, p 147}, that
is, with:

IJ(x) =

0 for [x] 21,
-1

3460 =J 3@ oy 7 5
For v € C(f2) define J * v € CH(R") by

(e (= Ibey) v(y) oy,

for p € Z+(Q).

{exp ((Ix]-1)™) for |x| < 1,

_ andset u$ = J. xuy, u§ = J, * ua.

Let v be a subsolution and let § > 0.
Moreover, for sake of convenience, define

Q(8) = {x € Q; d(x,090)>6 }.
Then for all ¢ < § we have

A (Jxv)-Jxf(v) <O in Q(6).

Indeed, we find for p € F+*(92(6)) that:

02 | o (78U 9= 1) (x ) ) x =
= Jﬂ(b)( “Al v) =T x £(v) ) pdx.

Hence, if ¢ < §, (3.21) shows that:

-Aug < Jxf(w)  in Q(6),

-Aug < Jxf(uz)  in Q(6).
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Similarly to (3.16) we find
(3.24) -J max(us , u§ ) Apdx <
Q

£ JQ ( X[us > ue] Je * f{ur) + X[ue < ue] Je * f(ug) +

+ e = ue](J *f(u1) + J, * f(uz)) ) pdx.

Since uy and up are continuous max(u$, ug) -+ max(uy, uz) = u* and
J¢ * f(u;) - f(us) (i=0,1) uniformly on supp(¢) for ¢ | 0. Moreover, the
first term in the right hand side of (3.24) can be estimated as follows.

(3.25) Joo ¥ lug > ug) e ) = 107) e

<[ tug > ug Ve €0 =] 0+ [ e s o 1(u0) = €9)] <

ST f(u) - f(ul)"Lm(Q(é)) J.nV’ dx + ||f(“2)||m Jnx[u% > ug]"[m < ug] p dx.

By using the continuity of f(u;) on Q for the first term and the
Lebesgue Dominated Convergence Theorem for the second term we see
that the right hand side in (3.25) goes to zero for ¢ | 0. The two
remaining terms in (3.24) can be estimated similarly.

Hence

(3.26) —Jﬂ v Apdx < Jn f(w¥) pdx  forall pe QD).
Since (3.26) is true for every & > 0, the inequality holds for all
we FHN). 1]

Lemma 3.6: Let f € C1(IR), Q be bounded and 90 € C° and set g=0. If u,
respectively ug, with w < uy in Q, are respectively a sub- and a
supersolution of (3.11) with u < 0 < uz on &, then there erists a
stable solution u € [u,u2] ¢ C(RN) of (3.11).

Proof: In order to get sub and supersolutions in C2(ﬁ), we will use the first
two steps in a monotone iteration scheme.
Set & = min { —u(x), ux(x) ; x € 3 } and define

(3.27) w = max{ f'(u) ; min u(x) < u < max us(x) },
and the operator T : C(f2) » C(%) by
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(3.28)

(3.29)

(3.30)

To(u) = (=B + w Yot (@ + M(u) ),

where (-A + w );i is the inverse of —A + w with Dirichlet boundary
condition u = o¢, o € {~,+}. The operators T, are order preserving.
Moreover, if v is a subsolution of (3.11) with g = -¢, then T_(v) > v
and T_(v) is also a subsolution (see e.g. [16] or [7]). By regularity

theory (see [8]) T_%(uy), T.%(u) € C*(@). Since T_%(u;) < T,%(us) in

{1, are respectively a sub and a supersolution, one can use [16, Th.3.6].
Sattinger showed that the unique solution U; of

Uy - AU = f(U) in QxR
U=0 on 0 xRY,
Uio)y=9a on Q,

with @ = T_g(m), satisfies Uj(x,t) 7 vi(x) fort + « , and v, is a
solution of (3.11) with g=0. Similarly the unique solution U, of
(3.29) with @ = T,%(up) satisfies Us(x,t) | va(x) for t-w , and
v22 vy is also a solution of (3.11) with g=0. By the maximum
principle for elliptic problems, [15, Th.2.6], one finds:

uy < T.2(111) <vi€vy < T+2(u2) <up inTY,

By the maximum principle for parabolic problems, [15, Th.3.12], every
solution U of (3.30) with T. (u1) <P <v; convergestovifor t 4o .
Hence vy is stable from below. Similarly v, is stable from above. By
(13, Th.4.3] one finds that there is at least one stable solution
u € [vy,va] C [u,ug] ¢ C(5Y). o
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