P. CLEMENT AND G. SWEERS
On subsolutions to a semilinear elhptlc
problem

ABSTRACT: The relation between the existence of a subsolution for the
problem -Au = f(u) with 0 — Dirichlet boundary value on a bounded domain and
on a ball of R"

the existence of solutions when f changes sign is given.

is considered. As a consequence a necessary condition for

1. INTRODUCTION AHD STATEMENT OF RESULTS

In this paper we consider the following problem:

-Au = f(u) in @,

(1.1)
u==0 on 9%,

where © is a bounded domain of RN, N > 1, and the function f: R > R is
assumed to be only continuous.

\le call a function u €C(R) a "subfunction on Q" if the following
differential inequality

JQ [u(-Ad) - f(u)oldx £ 0 (1.2)

holds for every ¢ € p*(2), vhere D*(Q) consists of all nonnegative functions
in C(a).

\le shall make use of the following result (see [8, Lerma A.4, p. 105]):
let u and v be subfunctions on @, then max(u,v) is also a subfunction on €.
If the function u also satisfies

< 0 on 3%, (1.3)

then we shall call u a "subsolution on Q". If the inequality in (1.2)
(resp. (1.2) and (1.3)) is reversed, then we call u a superfunction on & .
(resp. a supersolution on ©). A solution on Q is a function u which is
both a sub- and a supersolution on ©. lle shall use the following notation:
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for Xg € RN and R > 0, B(xU,R):= {x € RN; ]x-xol < R} and BR = B(0,R).

THEOREIT 1: Let u be a subsolution on Q satisfying qsx u>0. Then there
exist R > 0 and a subsolution v on BR with max v = max u, satisfying:

Bp
(i) v is positive on By and v = 0 on 9Bp,

(i1) v is radially symmetric.

REIMARK: The function v can even be chosen such that |x| -+ v(x) is non-
increasing on [0,R]. As a consequence, we have

THEORENT 2: If u is a subsolution on Q with max u > 0, then
2

max u )
J f(t) dt > 0 holds for all s € [0,max u). (1.4)

S

A first result in this direction was obtained by De Figueiredo in [6].
With additional regularity on f and for positive solutions, condition (1.4)
has been proved to be necessary in Dancer and Schmitt [6]. See also for
related results [2], [3], [9]. In the proof of Theorems 1 and 2, we avoid
the use of a theorem of Gidas, Ni and Nirenberg [7], which requires the
positivity of u and more regularity on f.

Concerning a partial converse of Theorem 1, we mention the following
result [10]: Let v be a subsolution on B1 satisfying ﬂ;x v > 0, Suppose
either f(0) 2 0 or Q satisfies a uniform interior spherL condition [1]. Then
there exist A > 0 and u € C(Q) satisfying

j u{-0¢)dx < A J f(u)o dx, for every ¢ € D*(Q), max u = max v,
Q Q

u is positive on £, and (1.5)

u =0 on 90,

If £(0) < 0 and  does not satisfy a uniform sphere condition, it may happen
that the conclusion fails.
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EXAIPLE: Let f(u)=-cos u. dThen if the bgundary of @ is of class C3, there
exists a pair (A,u) € R x ¢%(&) := R x c°(Q) n C7(8) satisfying

-Au = Af(u) in Q,

(1.6)
u=20 on 9%,

with u positive in  and max u € (m,3n/2) (see, for example, [3]). This is
true in particular if @ is the unit ball in RN. However, it is shown in [8]
that if € is a hypercube there is no pair (A,u) € R x Cd(ﬁ) satisfying (1.6),
with u positive in © and max u € (m, 31/2). Since 3m/2 is a supersolution

of (1.6) for every A > 0, there is no positive subsolution of (1.6) with
maximum lying in (m, 3m/2) for every A > 0. For a proof of this statement

and for more results in this direction, we refer the reader to [6] and [10].

2. PROOFS

PROOF OF THEOREM 1: Let u be a subsolution on £ satisfying max u > 0.
Q

Without loss of generality we may assume, by using a transiation, that the

maximum of u is achieved at the origin. Since Q is bounded, we may also
assume, by using Tietze's theorem, that thefunction u is the restriction on Q
of some continuous function on RN, nonpositive outside of © and zero outside
of a ball large enough. ile shall still denote the extended function by u.
Define

u*(r) = max{u(x); |x| = r} for every r z 0.
Observe that u® is continuous since the following inequality holds:
* *
Ju*(ry) - u™(r))| g max [u(rye) - u(r,e)| (2.1)

lef=1

and u is uniformly continuous on R,
We also have

u*(0) = u(C) = max u = max u* > 0.

Denote by R the first zero of u*. Define



v(x) = u*(|x]|) for |x| € [0,R].

Then v is continuous on ER’ positive on BR’ v=>0on aBR, ngx v = mgx u, and
v is radially symmetric. R
We shall prove that v is a subfunction on BR’ and therefore v satisfies
all the required properties. By using partitions of unity and the corpactness

of the support of the test functions ¢'s, it is sufficient to prove that
for every Xg € BR there is ro > 0 such that B(xo,ro) lies in BR and that v
is a subfunction on B(xo,ro)l\.l Let xq € By and a = v(xO) > 0. From the
uniform continuity of u on R, one finds re > 0 such that

lu(x) - uly)] < %—u for |x=y| < rgs XsY € R\, (2.2)
From (2,1), we also have

|u*(s1) - u*(sz)| < %«x for |51'521 < rgsSyeS, 2 0. (2.3)
From (2.3) we get

u (r) > %—a >0 for |r - Ixoll <rg. (2.4)

One finds that B(xo,ro) Ties in BR’ since u* is continuous and vanishes at R.
Define

{6 €Rr"; |o] = 1) and

™~
n

Z 1

{6 €14 ]x0|6 € 2 and d([x0|6,89) 2 ro}. (2.5)

let 0 € IN' and y € B(lxole,ro), then it follows from (2.2) and the fact
that u £ 0 outside of , that u(y) < % a.
Recalling (2.4) we obtain

u*(r) = max {u(r8); 6 € £}= max{u(rd); 6 € L'} for Pr=ixgl | <rg-

lle can even choose a countable dense subset Z" of Z' such that
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u*(r) = max{u(rg); o € "} for |r-|x0|] <rge

Denote by 60207908950+ +36, 50" the elements of $". It follows from the
definition of 1', (2.5), that B(|x0|en,r0) <gq for all n € N, loreover, u

is a subfunction on B(]xo[en,ro) n € N. For every n € Il, there is a rotation
Rn which maps B(xo,ro) onto B(|x0\en,r0) and such that

v(x) = max{u(Rnx); n €M}, x € B(xo,ro).

From the rotation invariance in (1.2), it follows that the functions W
defined by wn(x) = u(Rnx) are subfunctions on B(xo,ro). Then

Vp = max{wk; 0<kz<n}

is an increasing sequence of subfunctions on B(xo,ro) and by Dini's theorem

v.=sup v = Tim Vi is a subfunction on B(xo,ro). This completes the proof
nz0 N
of Theorem 1. o

PROOF OF THEOREIl 2: Let u be a subsolution of Q with p = max u > 0. Let
R > 0 and let v be the subsolution on BR from Theorem 1.

P
Suppose that there is s € [0,p) such that J f(t) dt < 0. Ve will obtain

a contradiction. For n = 1,2,..., define s

_f(t) for t £ p,
£ (t) =1

n

\

f(p)[1+n(p-t)] for t > o .,

Then f, € C(R) and fn(p +1/n) = 0., Then v is a radially symmetric subsolution
to the problem

n
ey
u=20 on SBR,

and p + 1/n is a radially symmetric supersolution of (Pn) satisfying
v+ 1/n. Byusing a result of [4], there exists a solution Uy of (Pn),
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satisfying v < usp * 1/n. By using a slight modification of the argument
of [4], nanely by applying the Schauder fixed-point theorem on the space of
continuous functions on B which are radially symmetr1c, one can assume that

u, is radially symmetric. Then we obtain, since Uy (B ),
" -1 _
“up(r) - =—=ur(r) = £ (u (r)), r €[0,R],
(2.6)
up(r) =0, u (R) =
By integration, we obtain
un(O) Fyo,
Fals) ds 2 (o) | L s ds, v € 0,0, (2.7)
up(r) 0

Since the functions fn(un) are uniformly bounded on [0,R], it follows from
(2.6) that the functions u n? ué and u; are uniformly bounded on [0,R]. For
every n € N, there exists "n € [0,R] such that U, (r ) = s. There exist a

function u € C [0,R], re€ [0 R] and a subsequence wh1ch we still denote by

(un,rn) such that u, converges to u in C1[O,R] and r, to r.

Since p > s = limu (r ) = u(r) and u(0) = p, we have r > 0. From (2.7),

n
N->co
we obtain
Fq_2 r"1
JO -fu' (t) dt = Tim IO -i:- (t) dt = 0,
N>

Hence u(t) = p on [0,r], and s = u(r) = p, a contradiction. This completes
the proof of Theorem 2, o
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