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1 Introduction

In this paper we shall investigate the non existence of ground states of quasi-
linear systems of the form −div (A (|Du|)Du) = f (|x| , u, v) ,

−div (B (|Dv|)Dv) = g (|x| , u, v) ,
(1)

in IRN , N ≥ 3. Here D denotes the gradient operator, A,B are positive
scalar functions and f, g are given nonlinearities that will be specified later.

We recall that a ground state of (1) is a positive radially symmetric
solution of (1) such that

lim
|x|→∞

u (|x|) = lim
|x|→∞

v (|x|) = 0. (2)

The corresponding scalar problem, i.e.

− div (A (|Du|)Du) = f (|x| , u) in IRN (3)

has been studied extensively in a series of pioneering papers by Ni and Serrin

([15], [16] and [17]).
In this paper we shall consider some extensions of their results to the

system in (1). As a consequence we shall obtain some results which to our
knowledge are new even in the scalar case.

Besides their intrinsic interest, non-existence results are a useful tool for
proving related existence theorems for the corresponding Dirichlet problem


−div (A (|Du|)Du) = f (|x| , u, v)

−div (B (|Dv|)Dv) = g (|x| , u, v)
in Br0(0) ⊂ IRN ,

u (x) = v (x) = 0 for |x| = r0.

(4)

This aspect is by now well understood in the case when the operator on the

left hand side of (4) are linear, that is, in the semilinear case. See for example

email: mitidier@univ.trieste.it , sweers@twi.tudelft.nl , vorst@rulcri.leidenuniv.nl
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the paper by Gidas and Spruck, [9], or [22]. In view of new applications it is
natural to investigate the possibility of extending the blow-up method (see
[9] and [22]) to the quasilinear situation. Other strategies are available for
the study of (4) (see for example [1], [2], [5], [6] [10], [18], [23], [24] and the
references therein). However, it seems that for not necessarily variational
systems containing strong nonlinearities (i.e. ’superlinear’) methods based
on non existence results are more powerful. Some results concerning this last
aspect are contained in [3]. Our study in this paper is based on a property
shared by positive radial supersolutions of the scalar problem: −div (A (|Du|)Du) ≥ 0 in IRN\Br0(0) ,

∂
∂n
u (x) ≤ 0 for |x| = r0,

(5)

where n denotes the normal at x ∈ ∂Br0 (n =
x

|x|).

The paper is organized as follows. In section 2 we state the lemma that
allows us to control the behavior at +∞ of positive radial supersolutions of
(5). In section 3 we will use this control to obtain non-existence results for
quasilinear elliptic systems. Whenever the system has a variational structure
it is possible to obtain a refined result by using a variational identity from
[20], [25]. This is done in the fourth section.

The sections end with some examples. In the examples quasilinear elliptic
operators such as the p-Laplacian and the mean curvature operator in non-
parametric form will appear.

2 A fundamental Lemma

In this section we shall prove a lemma concerning positive radial supersolu-
tions of (5). This result is our fundamental tool in the rest of the paper.

Let us specify the assumption.

(A1) Let A : [0,∞)→ [0,∞) be such that

∃AM ∈ IR : 0 < A (t) ≤ AM for all t ∈ [0,∞) . (6)
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Lemma 2.1 Let A satisfy (A1) and let r0 > 0. If N ≥ 3 and u ∈
C1 (r0,∞), with r → A (|u′ (r)|)u′ (r) ∈ C1 (r0,∞), is a positive radial su-
persolution satisfying (5),
then

1. u′ (r) ≤ 0 for r ≥ r0

2. the function M (·) defined by

M (r) = A (|u′ (r)|) r u′ (r) + AM (N − 2) (u (r)− u∞) (7)

where u∞ = infr≥r0 u (r) = limr→∞ u (r), is nonnegative and non in-
creasing on (r0,∞).

Proof. We may suppose that u is not constant. First observe that the
positivity of u and u′ (r0) ≤ 0 imply that u′ (r) < 0 for r > r0. Let us put

−div (A (|Du|) Du) = f,

which can be written in radial coordinates as

−
(
rN−1A (|u′ (r)|) u′ (r)

)′
= rN−1f (r) for r > r0

i.e.
−
(
rN−2 r A (|u′ (r)|) u′ (r)

)′
= rN−1f (r)

or

− (N − 2) A (|u′ (r)|) u′ (r)− d

dr
[r A (|u′ (r)|) u′ (r)] = rf (r) . (8)

Hence by (8), (6) and u′ (r) < 0 it follows that

−M ′ (r) = − d

dr
[rA (|u′ (r)|)u′ (r) + AM (N − 2) (u (r)− u∞)] ≥ r f (r)

(9)
which shows that M is non increasing. It remains to prove that M is non-
negative.
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By contradiction let us suppose that there exists r1 > r0 such that
M (r1) < 0. Integrating (9) on (r1, r) we obtain

r A (|u′ (r)|) u′ (r) + AM (N − 2) (u (r)− u∞) ≤M (r1) . (10)

The positivity of u and the fact that u is decreasing gives

AM u′ (r) ≤ A (|u′ (r)|) u′ (r)+
1

r
AM (N − 2) (u (r)− u∞) ≤ 1

r
M (r1) . (11)

Integrating (11) on (s, t) we obtain for r1 < s < t that

u (t)− u (s) ≤ M (r1)

AM
log

(
t

s

)
. (12)

By letting t go to infinity we obtain a contradiction. 2

Remark: In the above lemma one of the crucial assumptions is that A (·)
is uniformly bounded on (0,∞). This assumption can be weakened somewhat

if we assume that A ∈ C1
(
IR+

)
holds and that A is bounded near 0. This is

due to the fact that, if u is a positive supersolution of (5), then u′ (r) < 0 for
large r. Hence, the function ũ (r) = u (r) − u∞, where u∞ = limr→∞ u (r),
is a positive supersolution of (5) such that limr→∞ ũ (r) = 0. By using an
argument of Ni and Serrin (see page 10 of [16]) for ũ (r), it follows that
ũ′ (r) = u′ (r) → 0 as r goes to infinity. Then, if A (t) ≤ M for small t, we
can apply the same kind of proof as in Lemma 2.1. For easy reference we
state this result.

Lemma 2.2 Let A ∈ C ([0,∞)) ∩ C1 ((0,∞)) satisfy

0 < A (t) ≤ AM for sufficiently small t > 0 (13)

If N ≥ 3 and u ∈ C1 (r0,∞), with r → A (|u′ (r)|)u′ (r) ∈ C1 (r0,∞), is a
positive radial supersolution satisfying (5),
then

1. u′ (r) ≤ 0 for r ≥ r0,

2. there is r̃0 ≥ r0 such that the function M (·) defined by (7) is nonneg-
ative and non increasing on (r̃0,∞).
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The following lemma is essentially contained in [15].

Lemma 2.3 Let A satisfy (A1) and let r0 > 0. If N ≥ 3 and u ∈
C1 (r0,∞), with r → A (|u′ (r)|)u′ (r) ∈ C1 (r0,∞) is a non constant pos-
itive radial supersolution satisfying −

(
rN−1A (|u′|)u′

)′ ≥ 0 for r > r0,

u′ (r0) ≤ 0,
(14)

then there exists c > 0 such that for all r sufficiently large, we have

u (r)− u∞ ≥ c r2−N . (15)

Proof. We may assume that u′ (r0) < 0. By integrating (14) on (r0, r) we
obtain

−u′ (r) A (|u′ (r)|) rN−1 ≥ −u′ (r0) A (|u′ (r0)|) rN−1
0 ,

and hence for some c0 > 0 :

−u′ (r) ≥ c0

A (|u′ (r)|) r
1−N ≥ c0

AM
r1−N .

A further integration on (r, t) gives

u (r)− u∞ ≥ −u (t) + u (r) ≥ 1

2−N
c0

AM

(
t2−N − r2−N

)
.

By letting t→∞ we obtain

u (r)− u∞ ≥
c0

(N − 2)AM
r2−N .

2

Now we shall illustrate with some examples how we can apply Lemma
2.1.
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Example i) The mean curvature operator in non parametric form.

Let u ∈ C2 (r0,∞) be radial and positive, and such that
−div

 Du√
1 + |Du|2

 ≥ 0 for r ≥ r0,

u′(r0) ≤ 0.

Therefore Lemma 2.2 applies with

A (t) =
1√

1 + t2
≤ 1.

The conclusion is that the function

M (r) =
r u′(r)√

1 + (u′ (r))2
+ (N − 2) (u (r)− u∞)

is non-negative and non-increasing for r ≥ r0. Hence

−r u′(r)√
1 + (u′ (r))2

≤ (N − 2) (u (r)− u∞) , (16)

and thus limr→∞ r u
′(r) = 0. This implies that there exists ε > 0 such

that for r ≥ r1 sufficiently large we have

(u′(r))
2
< ε. (17)

From (16) and (17) it follows that

−r u′(r) ≤ (1 + ε) (N − 2) (u (r)− u∞) for r > r1,

and hence(
r(N−2)(1+ε)u (r)

)′ ≥ (r(N−2)(1+ε) (u (r)− u∞)
)′ ≥ 0 for r > r1. (18)
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If we assume that

0 < Ainf = inf
t∈[0,∞)

A (t) and sup
t∈[0,∞)

A (t) = Asup <∞, (19)

holds, then we have the same conclusion as in (18). That is, if u satisfies −
(
rN−1A (|u′|) u′

)′ ≥ 0 for r > r0.

u′ (r0) ≤ 0

then the function M (·), defined on [r0,∞) by

M (r) = r u′(r) + (N − 2)
Asup

Ainf

(u(r)− u∞)

satisfies
M (r) ≥ 0 for r ∈ [r0,∞) .

Putting θ = (N − 2) Asup

Ainf
we find

(
rθ u (r)

)′ ≥ (rθ (u (r)− u∞)
)′ ≥ 0. (20)

An example of such a situation is the following.

Example ii) Let ε ∈ (0, 1] and consider

Aε (t) = ε+
1− ε√
1 + t2

t ≥ 0.

The corresponding differential inequality associated to Aε is

−
ε∆u+ (1− ε) div

 Du√
1 + |Du|2

 ≥ 0 in IRN .

This regularizing operator is used for example in [11]. It follows from
the preceding analysis that (20) holds with θ = (N − 2) ε−1. The
particular case when ε = 1 was already known, see for example [12].
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Another example is given by the following generalized mean curvature oper-
ator. (See [15], [16])

Example iii) Let u ∈ C2 (r0,∞) be radial, positive and satisfying
−div

 Du(
1 + |Du|2

) 2−m
m

 ≥ 0 for r ≥ r0,

u′(r0) ≤ 0.

where m ∈ (1, 2]. The case m = 1 is treated above. Lemma 2.2 applies
with

A (t) =
1

(1 + t2)
2−m

2

t ≥ 0.

We find for r sufficiently large that

r u′ (r)(
1 + (u′ (r))2

) 2−m
2

+ (N − 2) (u (r)− u∞) ≥ 0.

Since A (t) ≤ 1 we find for r sufficiently large that(
r (N−2)(1+ε)u (r)

)′ ≥ (r (N−2)(1+ε) (u (r)− u∞)
)′ ≥ 0. (21)

One may also proceed using Lemma 2.1 of [3]. If A is continuously
differentiable and

1) (t A(t))′ > 0 ∀t > 0,

2) 0 <
A(t)

(t A(t))′
≤ C ∀t > 0,

then the functionM (r) = ru′ (r)+θ (u (r)− u∞), with θ = (N − 1)C−
1, satisfies

M (r) ≥ 0 for r ≥ r0.

We have C = 1
m−1

and with θ = N−m
m−1

we obtain(
r
N−m
m−1 u (r)

)′
≥
(
r
N−m
m−1 (u (r)− u∞)

)′
≥ 0. (22)
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For small ε the exponent in (21) is larger than in (22) and hence gives
a better estimate. However, since the estimate depends on ε and it is
valid only for large r, it is not uniform.

3 Non-existence results

3.1 A system with mean curvature operators

As a first example of a non-existence result we consider the following system.

−
rN−1 u′ (r)√

1 + (u′ (r))2

′ = rN−1 f (v (r)) for r > 0,

−
rN−1 v′ (r)√

1 + (v′ (r))2

′ = rN−1 g (u (r)) for r > 0.

(23)

Proposition 3.1 Let f, g ∈ C (IR) with f (0) = g (0) = 0. Suppose that
there exists c > 0 such that for small u and v we have

f (v) ≥ c |v|p−1 v, (24)

g (u) ≥ c |u|q−1 u, (25)

where p, q > 1. If N ≥ 3 and

(N − 2) (pq − 1)

2
≤ max {p+ 1, q + 1} (26)

then problem (23) has no non trivial ground states.
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Proof. Let (u, v) be a non trivial ground state of (23). By integrating the
first equation in (23) on (r0, r), for r large, and using u′ (r) < 0 respectively
v′ (r) < 0 jointly with (24), (25) we obtain

−r u′ (r)√
1 + (u′ (r))2

≥ c r2 v (r)p , (27)

−r v′ (r)√
1 + (v′ (r))2

≥ c r2 u (r)q , (28)

and hence by Lemma fundamentallemma

(N − 2)u (r) ≥ c r2 v (r)p , (29)

(N − 2) v (r) ≥ c r2 u (r)q . (30)

This implies that there exist c1, c2 > 0 such that for large r

u (r) ≤ c1 r
−2 p+1

pq−1 , (31)

and
v (r) ≤ c2 r

−2 q+1
pq−1 . (32)

By Lemma 14 we also deduce that

c3 r
2−N ≤ u (r) , (33)

and
c4 r

2−N ≤ v (r) , (34)

for some c3, c4 > 0 and r sufficiently large. Combining (31)-(33) and (32)-
(34) we obtain a contradiction for r →∞ when the strict inequality holds in
(26). Next consider the case that

(N − 2) (pq − 1)

2
= max {p+ 1, q + 1} .
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Without loss of generality we may assume that p ≥ q. In this case we
have pq = 2p+N

N−2
. From the first equation of (23) and the assumption that

f (v) ≥ c vp for small v we find that for large r that

−
rN−1 u′ (r)√

1 + (u′ (r))2

′ ≥ c rN−1 upq r2p.

Integrating on (s, r) and using (31) shows, for some c∗ > 0, that

−rN−1u′ (r)√
1 + (u′ (r))2

≥ c

r∫
s

ξN−1 u (ξ)pq ξ2p dξ ≥

≥ c∗
r∫
s

ξN−1 ξ(2−N)pq ξ2p dξ = c∗
r∫
s

ξ−1 dξ = c∗ log
r

s
.

Hence, by Lemma 2.1:

(N − 2) rN−2u (r) ≥ −rN−1u′√
1 + (u′)2

≥ c log r,

which gives a contradiction with

rN−2u (r) ≤ c r−2 p+1
pq−1 rN−2 = c

following from (31). 2

Remark: The same result holds if we replace the mean curvature oper-
ators by

TA = −div (A (|Du|)Du) ,

TB = −div (B (|Dv|)Dv) ,

with A and B satisfying the assumption (A1).
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3.2 Uniformly bounded elliptic operators

In this section we shall consider some non-existence results for ground states
of systems of the form −div (A (|Du|)Du) = f (|x| , u, v) ,

−div (B (|Dv|)Dv) = g (|x| , u, v) ,
in IRN (35)

Let N ≥ 3 and suppose that:

(A2) A,B : [0,∞)→ (0,∞) are C1 functions that satisfy

0 < Ainf = inf
t∈[0,∞)

A (t) ≤ A (t) ≤ sup
t∈[0,∞)

A (t) = Asup <∞,

0 < Binf = inf
t∈[0,∞)

B (t) ≤ B (t) ≤ sup
t∈[0,∞)

B (t) = Bsup <∞.

Define

αA = (N − 2)
Asup

Ainf

, αB = (N − 2)
Bsup

Binf

.

The following result generalizes Proposition 3.1:

Theorem 3.2 Suppose that condition (A2) is satisfied. Let f, g ∈ C
(
IR+ × IR2

)
with f (r, 0, 0) = g (r, 0, 0) = 0 ∀r ≥ 0. Moreover suppose that for large r and
small u, v we have

f (r, u, v) ≥ a (r) |v|q − 1 v, (36)

g (r, u, v) ≥ b (r) |u|p− 1 u, (37)

for some p, q > 1, where a, b : [0,∞)→ [0,∞) are continuous.
If, either

(i)

∞∫
r0

ϑ1+αA a (ϑ)

 ∞∫
ϑ

b (s) s1−qαA ds

p dϑ = +∞, (38)

or

(ii)

∞∫
r0

ϑ1+αB b (ϑ)

 ∞∫
ϑ

a (s) s1−pαB ds

q dϑ = +∞, (39)

then the system (35) has no non trivial ground state.
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Proof. The proof is by contradiction. Let us prove the assertion in the
case when (38) holds. The other case is similar. Let (u, v) be a non trivial
positive and radial ground state. Then (u, v) satisfies for r > 0 :

−
(
rN−1 A (|u′ (r)|) u′ (r)

)′
= rN−1f (r, u, v) ,

−
(
rN−1 B (|v′ (r)|) v′ (r)

)′
= rN−1g (r, u, v) .

(40)

Since (u, v) is positive and u (r) , v (r) → 0 as r → ∞ it follows that there
exists r0 sufficiently large such that u′ (r0) ≤ 0, and hence u′ (r) ≤ 0 for
r ≥ r0. A similar result holds for v. We may assume that for some large r0

we have  u′ (r) ≤ 0 for r ≥ r0,

v′ (r) ≤ 0 for r ≥ r0.
(41)

Let us define
M̃A (r) = r A(|u′ (r)|)u′ (r) + Asup (N − 2)u (r) ,

M̃B (r) = r B(|v′ (r)|) v′ (r) +Bsup (N − 2) v (r) .
(42)

Similar as (9) one shows that
− d
dr
M̃A (r) ≥ r a (r) vp,

− d
dr
M̃B (r) ≥ r b (r) uq,

(43)

on (r0,∞). By applying Lemma (2.1) it also follows that the two functions
M̃A (·) and M̃B (·) are nonnegative on (r0,∞). Integrating both inequalities
in (43) on (r, t) with r > r0 it follows that

M̃A (r) ≥ −M̃A (t) + M̃A (r) ≥
∫ t

r
s a (s) v (s)p ds,

M̃B (r) ≥ −M̃B (t) + M̃B (r) ≥
∫ t

r
s b (s) u (s)q ds.

(44)

and hence using the fact that Ainf , Binf > 0 and u′, v′ ≤ 0 for r ≥ r0 we
obtain, with CA = Asup (N − 2)u (r0) > 0, that

CA ≥ Asup (N − 2)u (r) ≥ M̃A (r) ≥
∫ t

r
s a (s) v (s)p ds ≥
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≥
(
rαB v(r)

)p ∫ t

r
s a (s) s1− pαBds, (45)

and similarly, with CB = Bsup (N − 2) v (r0) > 0, that

CB ≥ Bsup (N − 2) v (r) ≥
(
rαA u(r)

)q ∫ t

r
s b (s) s1−qαAds. (46)

In the last two estimates we have used the fact that on (r0,∞) (rαA u (r))
′ ≥ 0,

(rαB v (r))
′ ≥ 0.

(47)

Indeed, the first estimate of (47) follows from (44) and

(
rαA u (r)

)′
=

1

Ainf

rαA−1 (Ainfr u
′(r) + (N − 2)Asupu(r)) ≥ 1

Ainf

rαA−1M̃A (r)

(48)

for r > r0. By (45) and (46) we find that for r > r0

∫ ∞
r

a (s) s1−pαBds <∞,
∫ ∞
r

b (s) s1−qαAds <∞.
(49)

If one of the integrals in (49) equals +∞ the proof is complete. If not we
proceed as follows. For some ca, cb > 0 it follows from (45)-(46) that

(u (r))q ≥ ca (rαB v (r))
pq
(∫ ∞

r
a (s) s1−pαBds

)q
,

(v (r))p ≥ cb (rαA u (r))
pq
(∫ ∞

r
b (s) s1−qαAds

)p
.

(50)

From the first inequality of (43) and (50) it follows that

− d

dr
M̃A (r) ≥ cb r a (r)

(
rαA u (r)

)pq (∫ ∞
r

b (s) s1−qαAds
)p

. (51)
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Integrating (51) on (r, t) yields

M̃A (r) ≥ −M̃A (t) + M̃A (r) ≥

≥ cb

∫ t

r
s a (s)

(
sαA u (s)

)pq (∫ ∞
s

b (ξ) ξ1−qαA dξ
)p

ds ≥

≥ cb
(
rαA u (r)

)pq ∫ t

r
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαA dξ
)p

ds, (52)

and then, using (48) again,

(
rαA u (r)

)′ ≥ 1

Ainf

rαA−1 M̃A (r) ≥

≥ cb
Ainf

rαA−1
(
rαA u (r)

)pq ∫ t

r
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαA dξ
)p

ds. (53)

Setting φ (r) = rαAu (r) we find from (53) that

1

1− pq
d

dr
(φ (r))1−pq ≥ c′a r

αA−1
∫ t

r
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαA dξ
)p

ds, (54)

with c′a =
cb
Ainf

. An integration of (54) on (r, r̃) gives

−1

1− pq (φ (r))1−pq ≥ 1

1− pq (φ (r̃))1−pq − 1

1− pq (φ (r))1−pq ≥

≥ c′b

∫ r̃

r
ςαA−1

∫ t

ς
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαAdξ
)p

ds dς =

= c′′b

[
ςαA

∫ t

ς
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαAdξ
)p

ds

]∣∣∣∣∣
ς=r̃

ς=r

+

+ c′′b

∫ r̃

r
ςαA+1a (ς)

(∫ ∞
ς

b (ξ) ξ1−qαAdξ
)p

dς =
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= + c′′b r̃
αA
∫ t

r̃
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαAdξ
)p

ds +

− c′′b r
αA
∫ t

r
s a (s)

(∫ ∞
s

b (ξ) ξ1−qαAdξ
)p

ds +

+ c′′b

∫ r̃

r
ςαA+1a (ς)

(∫ ∞
ς

b (ξ) ξ1−qαAdξ
)p

dς ,

(55)

with c′′b = c′b/αA. Now we first let t go to infinity and then r̃. Since the
second term is bounded by (45) and (52), and the third term goes to infinity
by assumption, one finds that

−1
1−pq (φ (r))1−pq →∞ when r →∞

which shows that
lim
r→∞

φ (r) = 0.

But this contradicts the fact that φ′(r) ≥ 0 for r > r0. 2

3.3 Possibly unbounded elliptic operators

Next we shall consider a general non-existence result for a different class
of quasilinear operators. Our theorem can be applied for example to the
case when the left hand side of (1) involves two generalized Laplacians. The
explicit statement can be found in the last theorem of this section.

(A1’) Let A,B : IR+ → (0,∞) be C1 and suppose that for some δA, δB ≥
0 , cA, cB > 0 and mA,mB >

1
N−1

we have

(i)A A (t) ≤ mA
∂
∂t

(t A (t)) ≤ cA t
δA t > 0,

(i)B B (t) ≤ mB
∂
∂t

(t B (t)) ≤ cB tδB t > 0.
(56)

(A2’) Let f, g : IR+ × IR2 → IR be C0 with f (x, 0, 0) = g (x, 0, 0) = 0
and suppose that for small u, v and large x ∈ IRN there are continuous
aij : [0,∞)→ [0,∞), with i, j ∈ {1, 2}, such that we have

(ii)A f (x, u, v) ≥ a11 (|x|) |u|p11−1 u+ a12 (|x|) |v|p12−1 v,

(ii)B g (x, u, v) ≥ a21 (|x|) |u|p21−1 u+ a22 (|x|) |v|p22−1 v.
(57)
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Theorem 3.3 Suppose that the above conditions (56) and (57) are satisfied.
Moreover assume that

1. p12p21 > (1 + δA) (1 + δB) and

∞∫
r0

ξ(1+δB)(1+θB) a21 (ξ)

 ∞∫
ξ

s1+δA−θBp12a12 (s) ds


p21

1+δA

dξ = +∞,

(58)
or

2. p12p21 > (1 + δA) (1 + δB) and

∞∫
r0

ξ(1+δA)(1+θA) a12 (ξ)

 ∞∫
ξ

s1+δB−θAp21a21 (s) ds


p12

1+δB

dξ = +∞,

(59)
or

3. p11 > 1 + δA and

∞∫
r0

ξ(1+δA)(1+θA)−θAp11 a11 (ξ) dξ = +∞, (60)

or

4. p22 > 1 + δB and

∞∫
r0

ξ(1+δB)(1+θB)−θBp22 a22 (ξ) dξ = +∞, (61)

with θA = mA (N − 1)− 1 and θB = mB (N − 1)− 1.
Then the problem −div (A (|Du|)Du) = f (|x| , u, v) ,

−div (B (|Dv|)Dv) = g (|x| , u, v) ,
in IRN (62)

has no non trivial ground state.
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Proof. We start by showing that there is no non trivial ground state when
(58) holds.

First we set
EA (t) = ∂

∂t
(t A (t)) ,

EB (t) = ∂
∂t

(t B (t)) .
(63)

System (62) can be rewritten as
−EA (|u′|)u′′ + 1−N

r
u′A (|u′|) = f (r, u, v) for r > 0,

−EB (|v′|) v′′ + 1−N
r

v′B (|v′|) = g (r, u, v) for r > 0,

(64)

and by the estimates in (57) we obtain for large r
−rEA (|u′|)u′′ + (1−N)u′A (|u′|) ≥ a12 (r) r vp12 ,

−rEB (|v′|) v′′ + (1−N) v′B (|v′|) ≥ a21 (r) r up21 ,
(65)

and hence 
−ru′′ + (1−N)u′

A (|u′|)
EA (|u′|) ≥

a12 (r) r

EA (|u′|)v
p12 ,

−rv′′ + (1−N) v′
B (|v′|)
EB (|v′|) ≥

a21 (r) r

EB (|v′|)u
p21 .

(66)

By (56) and u′ < 0 we find

− ru′′ + (1−N)mA u
′ ≥ a12 (r) r

EA (|u′|)v
p12 ≥ cA

mA

|u′|−δA a12 (r) r vp12 , (67)

and similarly with v′ < 0 that

− rv′′ + (1−N)mB v′ ≥ cB
mB

|v′|−δB a21 (r) r up21 . (68)

We put 
M̃A (r) = r u′ + (mA (N − 1)− 1)u,

M̃B (r) = r v′ + (mB (N − 1)− 1) v.
(69)
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From (67) and (68) it follows that for r large enough we have
d
dr
M̃A (r) ≤ 0,

d
dr
M̃B (r) ≤ 0.

(70)

With θA, θB as above this is equivalent to
(
rθA u (r)

)′ ≥ 0 for r > r1,(
rθB v (r)

)′ ≥ 0 for r > r1,
(71)

for some r1 > 0. Hence by Lemma 2.1 of [3] we find that M̃A (r) ≥ 0,

M̃B (r) ≥ 0.
(72)

Since u′ ≤ 0, v′ ≤ 0 we deduce from (72) that θA u (r) ≥ −r u′ (r) = r |u′ (r)| for r > r1,

θB v (r) ≥ −r v′ (r) = r |v′ (r)| for r > r1.
(73)

By integrating (68) on (s, r) with s ≥ r1 and using (73) we find that for some
positive ci we have

c0 v (s) ≥ M̃B (s) ≥ −M̃B (r) + M̃B (s) ≥

≥ c1

r∫
s

|v′ (ξ)|−δB a21 (ξ) ξ u (ξ)p21 dξ ≥

≥ c2

r∫
s

ξδB v (ξ)−δB a21 (ξ) ξ u (ξ)p21 dξ ≥

≥ c2 v (s)−δB
r∫
s

ξ1+δB−θA p21 a21 (ξ)
(
ξθA u (ξ)

)p21

dξ ≥
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≥ c2 v (s)−δB
(
sθA u (s)

)p21

r∫
s

ξ1+δB−θA p21 a21 (ξ) dξ. (74)

Hence there exists c > 0 such that

v (s)1+δB ≥ c
(
sθA u (s)

)p21

∞∫
s

ξ1+δB−θA p21 a21 (ξ) dξ. (75)

Using (67) and (73) it follows that there exist positive constants ci such, that
for all r > r1

− d
dr
M̃A (r) ≥ c1 r

δA u (r)−δA a12 (r) r v (r)p12 ≥

≥ c2 r
δA u (r)−δA a12 (r) r

(rθA u (r)
)p21

∞∫
r

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

.

(76)

We continue as in the uniform case. Integrating (76) on (s, t) for s ≥ r1

yields

c0 u (s) ≥ M̃A (s) ≥ −M̃A (t) + M̃A (s) ≥

≥ c2

t∫
s

r1+δA(1+θA) a12 (r)
(
rθA u (r)

) p12p21
1+δB

−δA
 ∞∫
r

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dr ≥

≥ c2

(
sθA u (s)

) p12p21
1+δB

−δA
t∫
s

r1+δA(1+θA) a12 (r)

 ∞∫
r

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dr.

(77)

And again for some c > 0 we have(
rθA u (r)

)′
= rθA−1M̃A (r) ≥

≥ c rθA−1
(
rθA u (r)

) p12p21
1+δB

−δA
t∫
r

η1+δA(1+θA) a12(η)

 ∞∫
η

ξ1+δB−θA p21 a21(ξ) dξ


p12

1+δB

dη.

(78)
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Hence ((
rθA u (r)

)1+δA− p12p21
1+δB

)′
≥

≥ c rθA−1

t∫
r

η1+δA(1+θA) a12 (η)

 ∞∫
η

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dη. (79)

Integrating (79) on (s1, s2) gives(
s2
θA u (s2)

)1+δA− p12p21
1+δB −

(
s1
θA u (s1)

)1+δA− p12p21
1+δB ≥

≥ c

s2∫
s1

rθA−1

t∫
r

η1+δA(1+θA) a12 (η)

 ∞∫
η

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dη dr =

= c′

rθA t∫
r

η1+δA(1+θA) a12 (η)

 ∞∫
η

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dη


r=s2

r=s1

+

+ c′
s2∫
s1

rθA r1+δA(1+θA) a12 (r)

 ∞∫
r

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dr =

= c′ sθA2

t∫
s2

η1+δA(1+θA) a12 (η)

 ∞∫
η

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dη +

− c′ sθA1

t∫
s1

η1+δA(1+θA) a12 (η)

 ∞∫
η

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dη +

+ c′
s2∫
s1

r(1+δA)(1+θA) a12 (r)

 ∞∫
r

ξ1+δB−θA p21 a21 (ξ) dξ


p12

1+δB

dr.

(80)
Now we let t go to infinity. The second term is bounded independently of s2.
Next we let s2 go to infinity and with (58) we obtain a contradiction. Simi-
larly a contradiction is obtained in the case that (59) holds. This concludes
the proof in the cases when (58) or (59) hold.
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In order to obtain a contradiction in the cases when (60) or (61) hold, we
proceed as before until (67). This estimate is replaced by

−M̃ ′
A (r) = −ru′′ (r) + (1−N)mA u

′ (r) ≥

≥ a11 (r) r

EA (|u′|)u (r)p11 ≥ cA
mA

|u′ (r)|−δA a11 (r) r u (r)p11 . (81)

By (73) we find that there exists c > 0 such that

cA
mA

|u′ (r)|−δA a11 (r) r u (r)p11 ≥ c rδA u (r)−δA a11 (r) r u (r)p11 ,

and as in (74), since p11 > δA + 1 > δA, we obtain that

M̃A (s) ≥ −M̃A (t) + M̃A (s) ≥

≥ c

t∫
s

r1+δA u (r)p11−δA a11 (r) dr ≥

≥ c
(
sθA u (s)

)p11−δA
t∫
s

r1+δA−θA(p11−δA) a11 (r) dr. (82)

The last inequality is equivalent to

(
sθA u (s)

)′ ≥ c
(
sθA u (s)

)p11−δA
sθA−1

t∫
s

r1+δA−θA(p11−δA) a11 (r) dr

or

1

1 + δA − p11

((
sθA u (s)

)1+δA−p11
)′
≥ c sθA−1

t∫
s

r1+δA−θA(p11−δA) a11 (r) dr.

(83)

From (83) and p11 > 1 + δA we find for some c′ > 0 and for s2 > s1 that

1

p11 − (1 + δA)

(
sθA1 u (s1)

)1+δA−p11 ≥
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≥ c

s2∫
s1

sθA−1

t∫
s

ξ1+δA−θA(p11−δA) a11 (ξ) dξ ds =

= c′

sθA t∫
s

ξ1+δA−θA(p11−δA) a11 (ξ) dξ ds

∣∣∣∣∣∣
s2

s1

+

+ c′
s2∫
s1

s(1+δA)(1+θA)−θAp11 a11 (s) ds.

(84)

A contradiction follows if (60) holds. A similar argument is used when (61)
holds. This concludes the proof of the theorem. 2

Example iv) Consider (1) with

f (x, u, v) = |x|a |u|p11−1 u+ |x|b |v|p12−1 v,

g (x, u, v) = |x|c |u|p21−1 u+ |x|d |v|p22−1 v.

If p12p21 > (1 + δA) (1 + δB) and

N − 1 ≤ (mB)−1 (1 + c+ p21) (1 + δA) + (1 + b+ p12) p21

p12p21 − (1 + δA) (1 + δB)
,

or p12p21 > (1 + δA) (1 + δB) and

N − 1 ≤ (mA)−1 (1 + b+ p12) (1 + δB) + (1 + c+ p21) p12

p12p21 − (1 + δA) (1 + δB)
,

or p11 > 1 + δA and

N − 1 ≤ (mA)−1 1 + a+ p11

p11 − (1 + δA)
,

or p22 > 1 + δB and

N − 1 ≤ (mB)−1 1 + d+ p22

p22 − (1 + δB)
,

then (1) has no non trivial ground state.
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Example v) (a generalization of Corollary 2.2 of [12]). Consider

−div

 Du(
1 + |Du|2

) 2−m
2

 = |x|α |v|q−1 v

−div

 Dv(
1 + |Dv|2

) 2−n
2

 = |x|β |u|p−1 u

in IRN (85)

with m,n ∈ (1, 2]. If N > m,n and p, q > 1 and

N − 1 ≤ (n− 1)
1 + β + (1 + α + q) p

pq − 1

or

N − 1 ≤ (m− 1)
1 + α + (1 + β + p) q

pq − 1
,

then (85) has no non trivial ground state.

Remark: The technique used above allow us to obtain non-existence
theorems for ground states of systems containing an arbitrary (finite) number
of equations. However, for systems containing more than two equations the
conditions will become rather involved. Some examples in this direction are
studied in [14].

An application of Theorem 3.3 is the following. Consider a system that
involves two degenerate generalized Laplacians, namely

−div
(
|Du|p−2 Du

)
= f (|x| , u, v)

−div
(
|Dv|q−2 Dv

)
= g (|x| , u, v)

in IRN , (86)

where p, q are such that 2 < p, q < N and f, g : IR+ × IR2 → IR are given
functions specified next.

The result is an analogy of Theorem 3.2 in the degenerate case (i.e. p, q ≥
2). It generalizes Theorem 3.1 of [3].
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Theorem 3.4 Suppose that N > p, q ≥ 2. Let f, g ∈ C
(
IR+ × IR2

)
with

f (r, 0, 0) = g (r, 0, 0) = 0 ∀r ≥ 0. Further assume that there exist continuous
a, b, c, d : IR+ → IR+ with a (r) , b (r) , c (r) , d (r) > 0 for r > 0 and such that
for large r and small u, v we have f (r, u, v) ≥ a (r) |u|α−1 u+ b (r) |v|β−1 v,

g (r, u, v) ≥ c (r) |u|γ−1 u+ d (r) |v|δ−1 v,
(87)

where α, β, γ, δ are positive constants. If one of the following conditions is
satisfied:

1. βγ > pq and

∫ ∞
r0

sN−1b (s)
(∫ ∞

s
ϑp−1−βN−q

q−1 c (ϑ) dϑ
) γ
p−1

ds = +∞, (88)

2. βγ > pq and

∫ ∞
r0

sN−1c (s)
(∫ ∞

s
ϑq−1−γN−p

p−1 b (ϑ) dϑ
) β
p−1

ds = +∞, (89)

3. α > p and ∫ ∞
r0

sN−1−αN−p
p−1 a (s) ds = +∞, (90)

4. δ > q and ∫ ∞
r0

sN−1−δN−q
q−1 d (s) ds = +∞, (91)

then (86) has no non trivial ground states.
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Proof. The demonstration follows straightforwardly from Theorem 3.3 by
choosing

δA = p− 1 δB = q − 1

θA =
N − p
p− 1

θB =
N − q
q − 1

mA =
1

p− 1
mB =

1

q − 1

p11 = α p21 = γ

p12 = β p22 = δ

Remark: The above theorem can be applied to the scalar case

−div
(
|Du|q−2 Du

)
= f (x, u) in IRn,

with for some continuous a : [0,∞)→ [0,∞)

f (x, u) ≥ a (|x|) |u|α−1 u for r large and u small.

In this case we have non existence of ground states if

∫ ∞
r0

sN−1−αN−q
q−1 a (s) ds = +∞. (92)

For a (r) ≡ a > 0 condition (92) is equivalent with (see [16], [17])

α ≤ N

N − q (q − 1) .
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4 Variational systems

In the case that the system under consideration has a variational structure
it is possible to obtain refined versions of the preceding results by using the
variational identities that were proved in [19], [4], [20] and [25]. In this section
we shall consider a general result of this type and discuss some particular case.

We will start by recalling some facts about the scalar case. Consider the
Lagrangian density

J (u) =
1

p
|∇u|p − 1

α + 1
|x|δ |u|α+1 ,

with 1 < p < N . From the paper [20] one may derive the following identity

1− p
p

∮
∂Ω

∣∣∣∣∣∂u∂n
∣∣∣∣∣
p

(x · n) dσ =

(
N − p
p
− N + δ

α + 1

) ∫
Ω

|x|δ |u|α+1 dx. (93)

Using identity (93) one finds that the boundary value problem −div
(
|∇u|p−2∇u

)
= |x|δ u |u|α−1 in Ω,

u = 0 on ∂Ω,
(94)

has no positive solution when Ω is a bounded starshaped domain in IRN and

α + 1 ≥ p (N + δ)

N − p . (95)

See for instance [4]. By variational techniques it can be shown that (94) has
a non trivial solution if

α + 1 <
p (N + δ)

N − p , (96)

which is equivalent to

N + δ <


α + 1

p
(p+ δ)

−1 +
α + 1

p

 . (97)
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Taking Ω = IRN and restricting to radially symmetric solutions, the situ-
ation reverses, and (94) does not have positive radially symmetric solutions
when (96) holds. However, when (95) holds radially symmetric positive so-
lutions are known to exist. See [16]. In the case of systems and more general
nonlinearities we can derive a similar non-existence result by imposing nat-
ural growth conditions on H.

Our next result deals with the case when the system is the Euler-Lagrange
equation δ {J (u)} = 0 of the functional

J (u) =
k∑
i=1

1

pi

∫
IRN
|Dui|p dx−

∫
IRN

H (|x| , u) dx, (98)

that is, with a system of the form
−div

(
|Du1|p1−2 Du1

)
= ∂

∂u1
H (|x| , u)

...

−div
(
|Duk|pk−2 Duk

)
= ∂

∂uk
H (|x| , u)

in IRN . (99)

Here k ≥ 1, N > pi > 1 for all i ∈ {1, . . . , k} and H is a given potential that
satisfies the following assumptions.

(H) Let H : IR+ × IRk → IR be a C1-function such that ∂
∂ui
H (r, 0) =

0 ∀r ≥ 0, i ∈ {1, . . . , k} and

i) for all (r, u) ∈ IR+ × IRk :

N H (r, u) + r ∂
∂r
H (r, u) >

k∑
i=1

N − pi
pi

ui
∂
∂ui
H (r, u) , (100)

ii) there exist δi, αi and ci > 0 such that for all large r and sufficiently
small u ∈ IRk we have:

ui
∂
∂ui
H (r, u) ≥ ci r

δi
k∏
i=1

|ui|αi+1 ,

29



iii) there exists δ ∈ IR, c > 0 such that for all large r and sufficiently
small u ∈ IRk we have:

H (r, u) ≤ c rδ
k∏
i=1

|ui|αi+1 ,

iv)
k∑
i=1

αi + 1

pi
> 1

v) subcriticality:

N + δ <


k∑
i=1

αi+1
pi

(pi + δi)

−1 +
k∑
i=1

αi+1
pi

 . (101)

Remark 1. For k = 1 (i.e. the scalar case) condition (101) reduces
to the usual subcriticality condition (96). For the pure power case, that is
H (r, u) = c rδ

∏k
i=1 |ui|αi+1, (100) coincides with (101).

Remark 2. The strict inequality in (100) can be replaced by ≥ if one
assumes that there is a sequence {rn} with rn → ∞ for which the strict
inequality holds.

Theorem 4.1 Assume that the above condition (H) is satisfied. Then the

system (99) has no non trivial ground states in C2
(
IRN

)k
.

The proof of the theorem is based on the following version of the identity
proved in [20].
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Proposition 4.2 Let u ∈ C2
(
IRN

)k
be a radial solution of (99). Then the

following identity holds.
For any R > 0 we have

∫ R

0

(
N H(r, u) + r

∂

∂r
H(r, u)

)
rN−1 dr +

k∑
i=1

(
pi −N
pi

∫ R

0
rN−1 ui

∂

∂ui
H(r, u) dr

)
=

=
k∑
i=1

(
pi − 1

pi
RN |u′i (R)|p +

N − pi
pi

RN−1 |u′i (R)|p−2
u′i (R) ui (R)

)
+

+ RN H(R, u (R)) (102)

In order to prove the theorem we shall also need some asymptotic esti-
mates.

Lemma 4.3 Let u ∈ C2
(
IRN

)k
be a ground state of (99). If (H) ii), iii) and

iv) hold, then there exists c > 0 such that for all sufficiently large r we have

H (r, u (r)) ≤ c rδ−µ

with µ =

∑k
i=1

αi+1
pi

(pi + δi)

−1 +
∑k
i=1

αi+1
pi

.

Proof. Let u ∈ C2
(
IRN

)k
be a radial ground state of (99). By ii) it

follows that for r sufficiently large we have u′i (r) < 0 for all i, and, for some
c > 0 and all i,

−
(
rN−1 |u′i (r)|

pi−2
u′i (r)

)′
≥ c rδi+N−1 u1 (r)α1+1 . . . ui (r)

αi . . . uk (r)αk+1 .

(103)

Integrating on (r, t) we obtain for all i

tN−1 |u′i (t)|
pi−1

+ rN−1 |u′i (r)|
pi−2

u′i (r) ≥

31



≥ c
∫ t

r
sδi+N−1 u1 (s)α1+1 . . . ui (s)

αi . . . uk (s)αk+1 ds, (104)

and hence by using Lemma 2.2, that is (see (71))(
rθi ui (r)

)′ ≥ 0 for large r,

with θi = N−pi
pi−1

, we obtain

tN−1 |u′i (t)|
pi−1 ≥

≥ c∗
(
rθ1u1 (r)

)α1+1
. . .

(
rθiui (r)

)αi
. . .

(
rθkuk (r)

)αk+1
∫ t

r
sβi ds, (105)

where βi = δi +N − 1 + θi −
∑k
j=1 θj (αj + 1). Using again the inequality

ru′i (r) + θi ui (r) ≥ 0 for r ≥ r0, (106)

and u′i (r) ≤ 0, we deduce from (105) that there exist c > 0 such that

tN−pi ui (t)
pi−1 ≥ c

(
rθ1u1 (r)

)α1+1
. . .

(
rθiui (r)

)αi
. . .

(
rθkuk (r)

)αk+1
∫ t

r
sβi ds.

(107)

By choosing t = 2r in (107) we obtain

2N−pi rN−pi ui (r)
pi−1 ≥

≥ c
(
rθ1u1 (r)

)α1+1
..
(
rθiui (r)

)αi
..
(
rθkuk (r)

)αk+1
γi r

βi+1 , (108)

with γi = 2βi+1−1
βi+1

if βi + 1 6= 0 and γi = log 2 if βi + 1 = 0. Thus for some C
and for every i and sufficiently large r we have

C ui (r)
αi+1 ≥

rpi+δi k∏
j=1

uj (r)αj+1


αi+1

pi

. (109)
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After combining the k inequalities in (109), we obtain

Ck
k∏
i=1

ui (r)
αi+1 ≥

k∏
i=1

rpi+δi k∏
j=1

uj (r)αj+1


αi+1

pi

=

= r

(∑k

i=1
(pi+δi)

αi+1

pi

)  k∏
j=1

uj (r)αi+1


∑k

i=1

αi+1

pi

, (110)

or in other words

Ck ≥ r

(∑k

i=1

αi+1

pi
(pi+δi)

)  k∏
j=1

uj (r)αj+1


(∑k

i=1

αi+1

pi

)
−1

. (111)

Now by using condition (H) iv) in (111) it follows that

C∗ ≥ rµ
k∏
j=1

uj (r)αj+1 , (112)

with

µ =

∑k
i=1

αi+1
pi

(pi + δi)

−1 +
∑k
i=1

αi+1
pi

. (113)

From (112) and condition (H) iii) we find for large r that

H (r, u (r)) ≤ c rδ
k∏
j=1

uj (r)αj+1 ≤ c1 r
δ−µ.

This concludes the proof of Lemma 4.3. 2

Proof of Theorem 4.1. We argue by contradiction. Let u be a non
trivial ground state of (99). Applying identity (102) to this specific situation
it follows that the left hand side of (102) is bounded away from zero for
R large. On the other hand by using Lemma 2.1 of [3] and the fact that
u′i (R) ≤ 0 ∀i we know that the first term of the right hand side of (102) is
non positive. We conclude the proof by using Lemma 4.3 in order to show
that the second term of the right hand side of (102), namely H(R, u (R)) RN ,
converges to zero as R goes to +∞. As a result we obtain a contradiction. 2
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Remark: The same technique used in the proof of the last theorem
allows to study more general systems than (99). It is possible to show that
non-existence results can be obtained for systems of the form

−div (A1 (|Du1|)Du1) = ∂
∂u1
H (|x| , u)

...
−div (Ak (|Duk|)Duk) = ∂

∂uk
H (|x| , u)

where each operatorAi satisfies (i)Ai of (56) and where the potentialH (|x| , u)
is controlled by a suitable growth condition. This problem will be considered
in a forthcoming paper ([14]).

Example vi) See [24]. As an example of a system with a variational
structure we consider

−div
(
|Du|p−2 Du

)
= |x|δ |u|α−1 |v|β+1 u,

−div
(
|Dv|q−2 Dv

)
= |x|δ |u|α+1 |v|β−1 v.

(114)

We have, after a possible rescaling, that

H (r, u) = rδ |u|α+1 |v|β+1 .

Suppose (α+1)
p

+ (β+1)
q

> 1 and N > p, q > 2. If

N + δ <

(α+1)
p

(p+ δ) + (β+1)
q

(q + δ)
(α+1)
p

+ (β+1)
q
− 1

then there is no non trivial ground state of (114). The proof follows
from a straightforward calculation using Theorem 4.1.
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