Existence of solutions to a semilinear elliptic system through
Orlicz-Sobolev spaces

Ph. Clément*, B. de Pagter*, G. Sweers* & F. de Thélin'

December 29, 2003

1 Introduction

In this paper we consider systems of the type

—Au= f(v) inQ,
—Av=g(u) inQ, (1.1)
u=v=0 on 9J,

where (2 is a bounded domain in R”, with a smooth boundary, and where f,g : R - R are
suitable monotone increasing functions satisfying f (0) = g (0) = 0. The special case for which
f and g are (asymptotically) pure powers has been treated by numerous authors of which we
mention [16], [17], [6], [10], [13]. Indeed, if f(v) = |[v|* ' v and g(u) = |u|’ ' u with a, 3 > 0,
then possesses at least one smooth positive solution for dimensions n > 3 if the following

holds: ] 1 5
—_—>1——. 1.2
a+1+ﬂ+1 n (1.2)

The first inequality corresponds to ‘superlinearity’ which leads to existence of solutions via a
minimax argument. The second inequality corresponds to ‘subcriticality’ which guarantees the
required compactness in the application of a Mountain Pass Lemma as well as regularity of
solutions through a bootstrap argument.

The main goal of the present paper is to allow more general nonlinearities. The nonlinearities
that we consider still have polynomial growth but are not necessarily asymptotic to a pure
power. We will still assume ‘superlinearity’ and ‘subcriticality’. In this present setting a similar
condition as in is used but the numbers « and § that appear in the right hand side do not
need to be the same as the ones in the left hand side.

We obtain a positive solution to by inverting the first equation in and employing
a variant of the Mountain Pass Lemma of Ambrosetti-Rabinowitz ([2]). The right setting for
this approach is the use of Sobolev-Orlicz spaces. See e.g [9].

1>

The paper is organized as follows. The exponents mentioned above are introduced in section
2. Our main result is stated in Theorem This theorem addresses both existence and
regularity. The existence part is based on an abstract result stated in Proposition which
generalizes [7, Theorem 2]. This result is stated and proved in section 3. The verification of
condition ii) in Propositionrequires an interesting elliptic regularity result in (Sobolev-)Orlicz
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spaces which is based on an interpolation theorem of Boyd ( [5]). This is the content of section
4. The regularity part of Theorem is established by a bootstrap argument similar as in [6].
Section 5 contains the proof of Theorem For the sake of easy reference and completeness
we collect some auxiliary results in the Appendix.

2 Preliminaries and main result
Before we state our main result we have to fix the conditions on the nonlinearities f and g.
2.1 Admissible functions
Condition 2.1 We call ¢ admissible if:
i. o € C(R;R);
it. @ is odd: ¢ (—t) = —@ (t) for allt € R;
114. @ s strictly increasing;
iv. p(R)=R.
Note that if ¢ is admissible the inverse exists and is also admissible.

Notation 2.2 For an admissible function ¢ we will use the following:

The function ®* is called the complementary function to ®.
Note that (®*)" = ® and that
O (s)+ D" (p(s)) =s¢(s) forall s € R. (2.2)

We will fix some numbers which will replace the role of the pure powers appearing in ®
respectively ®* in the homogeneous case.

Notation 2.3 For an admissible function ¢ with ® as in we define:

My = Sup Le(t) m = lim sup be(t) My, = lim sup M
e N I (2.3
_ g 20 o 1. e to(t s log (R(t)) :
be = inf o(t) ¢’ = liminf o(t)’ to = liminf logt
The Boyd exponents for the Orlicz space Ly (), when Q is bounded, are given by
qLy(0) = inf {q; lillzpl B(t)h < oo} and PLq () = SUp {p; Al,?zfl D)7 >0p. (2.4)

Lemma 2.4 For an admissible ¢ it holds that

b ly ST < qrg) S lp < My S Pry@) S mg < Me;
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1 1 1 1 1 1
1. =1, —+ =1 and — + = =1.
M €¢71 me 6@_1 My g@_l

For the proof we refer to Corollary [C.5 and Lemma [D.1]

Remark 2.4.1 The numbers defined above all have their specific role: £,, my, will play a role
in the Mountain Pass Theorem that we will use. Necessary for the elliptic reqularity through
interpolation are 1 < qr, ) and pry) < 0o. Reflexivity of the spaces involved is related to

1 <tZ and mZ < oo. Finally, the numbers ggﬁ and my, will appear in the imbedding results for
the Orlicz spaces that we will use.

Let us finish the introduction with some examples showing some differences in these numbers.
Example I In case of a pure power, that is ¢ (t) = |t|a71 t with o > 0 one finds
E@:€$:g¢:a+1:m¢:mm:mw.
Ex. IT For ¢ (t) = t*log (1 + tﬂ) fort >0 with o, 3 > 0 one finds
€¢:€~¢:a+1:m¢:mfj’<m¢:a+ﬂ+1.

Ex. IIT For ¢ (t) = % fort >0 with 0 < 8 < « one finds

£¢:a—ﬂ+1<ggp:a+1:ﬁ%:m¢.

Ex. IV The next ¢ is not admissible since it is not continuous and, although increasing, not
strictly increasing. A slightly perturbed . however will be admissible. Set

o(t) = e8] for ¢ >0

with [z] = sup {n € Z;n < x}. Then

& 2liog(®)] fort > 0.

®(t) = tellee®] —
e+1

Straightforward computations show that
1+671:€g°<l7@:2:m@<m$°:1+e.

We remark that

ettt < pt) <t for allt >0, 25)
2.5
gttt < @) < ¢t forallt>0,

_ P(th) 2 o
4e 2 ¥4 < < (e+1) 2 ¥4
e D(t)hr — "

which shows that qr., Q) = PrLy@) = 2-
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2.2 The main result

Throughout the paper we assume the following.

Condition 2.5 The admissible functions f and g satisfy:
i) my < oo, it) Ly >1,
iii) mg® < oo, iv) £y > 1.

Notice that we hence find that both for ¢ = f and ¢ = ¢ :

1<y, <X <Ly <, <my < oo.

There is no restriction from above for my and my.

Theorem 2.6 Let Q0 be a bounded domain in R™ with 0 € C?. Suppose that f and g are
admissible functions satisfying Condition |2.5]

o If
1 1 1 1 2
1>—+—and — +—>1—— (2.6)
by Ay my My n

then system has a positive solution (u,v) € (W2P(2) N CO(Q))2 for all p € (1,00).
o If @ holds and if f,g € C?(R) and 0 € C*7 for some v € (0,1), then

(u,v) € (C*7(Q) N Co(Q))°. (2.7)

The existence part of this theorem is a consequence of an abstract result that is proved in
the next section. The proof of the theorem above will be postponed accordingly.

Remark 2.6.1 Note that since £, < my, for an admissible function ¢ we may reformulate
as

1 1 1 2
— > — 4 —>1-= (2.8)
by Ly — my My n

Remark 2.6.2 In case that f and g are pure powers: f(t) = [t|* 't and g(t) = |t|°~ ¢, the
condition in (2.6) reduces to the well-known (see [6]) inequalities (1.9).
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3 An abstract existence result

In this section we give an existence result for an abstract variational problem which is used in
the proof of our main theorem. Let f, g be two admissible functions with F' and G as in ([2.1)
and such that Condition 2.5 is satisfied.

Let (2, F, ) be a finite measure space and let Lp(Q2), Lp-(Q2), Lg(2) and Lg+(2) be the
corresponding Orlicz spaces as defined in (A.3)). Supposing that X is a real Banach space and
A € Isom (X, Lp+(2)) we define the following functionals:

I (u) == /QF* (Au) dp for v € X,
I (w) :== /QG(w) dp  for w e Lg(Q), (3.1)
Iy (w) = /QG (wh) dp for w € Lg(Q) where wh = w V0.

In view of Lemmawe have I} € CY(X;R), Iz, I+ € C' (Le(Q);R) . Supposing that X
is continuously imbedded in Lg(2) we may define

I(u):=1(u)—Iy(u) foruelX,

(3.2)
It (u) == I (u) — Iy 4 (u) forueX.

We also have I, I, € C' (X;R). Notice that I (0) = I, (0) = 0.

Lemma 3.1 Let (2, F,pu) be a finite measure space, and let f,g be two admissible functions
which are such that Condition[2.5is satisfied. Assuming A € Isom (X, Lp+(Q)) and X — Lg(2)
let I and Iy be defined as in . Suppose moreover that

. 1+1<1
7. — + — :
gf gg 7

it. X 1is compactly imbedded in L ().
Then there exist u, u4 € X, such that
I(u)>0 and I'(u)=0,
I+ (ﬂ+) >0 and Ifi- (a+) = 0.

Since we have

, X , X € Lg
Bl
l 0 mya AN N
L+
a scheme for the situation is as follows:

Proof. The proof consists of two major steps. First we will show that the assumptions of the
Mountain Pass Theorem as in Proposition are fulfilled. Next we shall establish the existence
of the critical point @ (respectively w4 ).

Step 1.a: Verification that r,a > 0 exist such that [ju| y = r implies I (u) > «a.
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Since A € Isom (X, Lp+(Q2)) we may choose [luly = [|Aul; .. In view of the second
assumption of Lemma [3.1] there exists ¢ > 0 such that

lullz, < cllAullg,. -

For u € X with 0 < |Jully < 1+C we have both [[u|,, <1 as well as |Au|| , < 1. From Lemma

item ((C.11)) we have for such u that

* Z*
P (w du> aall, (3.3)

with & = 1— =
Zf Ly mf,l

_/QF* (Au) dp > (i)g? HuHL*G (3.4)

On the other hand in view of Lemma item (C.9) we have
¢
/Q G (u) du < Julf, (35

We may even assume that [|Aul|, , =r < min (1,¢7!) and find for such u by combining 1}

and (3.5)) that
/F*(Au( dﬂs—/G x))dr =

I (u)
A L ly—0}
”AUHLF* ||u||L = ||Au||LF* c HAUHLF* .

Y

-1
Since 8} = (1 — %) < {4 one finds that appropriate r € (0, min (1, c_l)) > 0 and a > 0 exist.

Since for all u € X
/G dp</G

the same r and « can be taken for I .

Step 1.b: The verification of the second condition of Proposition
Take ugp € X with / G (uar) dp >0 and A > 1. Then, in view of Lemma |C.3liv,
Q

/ F* (Mug) dp < A\ / F* (Aup) du
Q Q

and by Lemma [C.3]ii

/G(/\ug) d,uZ)\Zg/ G(ug) dp.
Q Q
Then

I (Mug) < Iy (Aug) < X7 / F* (Aug) dp — s / G (uf) dp < —1
Q Q

for A sufficiently large since £, > 6’} and / G (ug) dp > 0.
Q
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Step 2: With the result of the first step we may apply Proposition Let {un}rr, C X be
a sequence as in the conclusion which is such that I (u,) — ¢ > 0 and I’ (u,) — 0 in X’ for
n — oo.

Step 2.a: First we will show that {u,},-; is bounded in X.
We will proceed by contradiction and suppose that ||Auy|| L. — 00 for n — co. Then one

finds by Lemma item (C.10]) for ¢ = f~! that for n large
e*
I () = / F* (Au,) do > [[Aug |7 (3.6)
Q

and hence I (u,) — oc. Since I (uy) is bounded one finds that also [ G (un) dz = I (u,) — oo.
One can even conclude that

i Jo G (uy) dz _ . T (uy)

LTI b am—— =1. .
n—oo [o F* (Auy,) dzx n—oo I (uy,) (37)

The assumption I’ (u,) — 0 in X’ for n — oo means that there are £, > 0 with &, — 0 such
that

1 (Au,) Avdx — /Qg (up) vdx

<en||Av[|,, foralveX. (3.8)

It follows from the definition of E} and /g, , 1) and 1) that

) ng Up,) Undz ng (un) updx
b, < 1 i1 | e
9 = lTl;Il_)Solip fQ (up) dz 1,228;? o F* (Auy) dx —
Y (Auy,) Auy, Au,
< lmsup Jo f71 (Auy) Aupda [ Aunllf,. -
n—>00 fQF* (Auy,) dx fQ F* (Auy,) dz

1-2%
< {; +limsupe, ||Aun||LF*f =03,
n—oo
~1
contradicting the restriction for £, and £ in this lemma. Indeed ¢} = (1 — %) < Ly. So we
may assume that [|Auy,ll, . < C for some C' € R¥.

Step 2.b: Existence of a limit @ € X with the desired properties.

Since X is a reflexive Banach space we may assume that there exists a subsequence, again
denoted by {un},-, and a @ € X such that u,, = @ in X. Since X is compactly imbedded in
L (€2) by condition ii, we have u,, — @ in Lg(Q2).

Since Iy € Ct (Lg(2);R) it follows that Iy (u,) — Iz (@) and I} (u,) — I (@) . Since F* is
convex it follows that

I (v) = I1 (un) > (11 (un) ,v — up) for allv e X.
Hence
I (v) — I (up) <I2 (up, ,v—un>2<ll(un),v—un>2
> fHI’ (un)HX/ lv—upllxy — 0 (3.9)

since I’ (uy) — 0 and ||v — u, ||y is bounded. Since I} (u,) — I} (@) in (Lg(2)) and v — u,, —
v—1uin Lg(Q) it follows that

(I3 (un) ,v — up) — (Iy (@) ,v — ).
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By (3.9) we obtain
I (v) = limsup Iy (un) > (Iy (@) ,v — u)

n—oo

and taking v =1u
limsup I1 (uy,) < I (@).

Since I is lower semi-continuous lim inf Iy (u,,) > I; (@) holds and hence we find that lim [ (uy) =

n—00 n—00
I (ﬂ) .
Since lim I (u,) = Iz (2) and lim I (u,) = I; (a) we have
n—oo n—oo

I(u)= nh_)rgo (up) = c.

By I' (uy,) — 0 and I} (u,,) — I} (@) one finds I1 (u,) — I} (2) and hence by it follows that
I (v) = I (up) > <I{ (a),v— un> =
= (I3 (@) ,v — un) + {I7 (un) — I3 (@) ,v — up) for all v e X.
We find as in [9] that
I (v) = I (a) > (I3 (@) ,v —u) forallve X

and hence I] (@) = I} (a) and I' (@) = 0. Moreover I (@) = ¢ > 0.
Notice that the last part of this proof is identical when I is replaced by I. [

We conclude this section by giving an existence result for an abstract system of the form

Au=f(v),
{ Bo = g(u). (3.10)

Proposition 3.2 Let f and g in system be admissible functions satisfying Condition .
Let (0, F, 1) be a finite measure space and let X, Y be two real Banach spaces.
Suppose that

i. X andY are continuously imbedded in respectively L () and Lp(Q);
ii. A€ Isom(X;Lp-(Q)), B € Isom (Y; Lg-(Q2));

11. /Auvd,u:/qudufor allue X,veY.
Q Q

If moreover

) 1 1
w. —+— <1 and
ﬂf I

v. X is compactly imbedded in Lg(82),

then system possesses at least one nontrivial solution (u,v) € X x Y.
If in addition
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vi. A is inverse positive: 0 < z € Lp«(Q) implies 0 < A7 1z;
then system possesses at least one positive solution (u,v) € X x Y.

Proof. In view of Lemma [3.1] there exists u € X\ {0} such that
/ 1 (Auw) Aﬂd,u:/g(u) adp for all u € X. (3.11)
Q Q

Set v := f~!(Au). Since Au € Lp+(Q) it follows from Lemma that v € Lp(€). Since
u € X C Lg(Q) we have g (u) € Lg+(Q2) and hence © := B~!g (u) € Y is well-defined. Therefore
v,0 € Lp(f2) and from the third condition in the proposition and (3.11)) we have

/vA&d,u:/g(u)ad,u:/Bﬁﬂdu:/ﬂAﬁdu for all u € X.
Q Q Q Q

Since A is surjective we obtain v = 0. Hence, (u,v) € X x Y is a solution of (3.10).

In case that the operator A is inverse-positive we replace Iz by I» 1 and obtain (u,v) € X xY
such that Au = f (v) and Bv = g (u") . We are done provided that also B is also inverse-positive.
For the sake of convenience we give a proof.

Let v € Y be such that Bv > 0. Then for every z € Lg(Q) with z > 0, we have A1z > 0
and

/vzdu—/vA(Alz) du—/BvAlzduZO.
Q Q Q

Hence v > 0. [ ]

4 Elliptic regularity in Orlicz spaces

Let us consider

w = 0 on 012, (4.1)

with © a bounded domain in R™. Let Lg(€2) be the Orlicz space associated with the Lebesgue
measure on ). If the Boyd indices pr, ) and g1, (q) are such that 1 < pr, (o) and gz, Q) < o©
d

{—Aw = f inQ,

one may use interpolation theory in order to show that the solution operator for (4.1) is an
isomorphism from Lg () into W2®(Q) N W()l’q)(Q).

Lemma 4.1 Suppose that Q is a bounded domain in R™ with 0Q € C?. Let ¢ be admissible
with 1 < £ and mZ < oo. Then for every f € Lg there exists exactly one solution w €

W22(Q) N Wol’q)(Q) of . Moreover, there exists a constant c, independent of f, such that
[wllyze < cllfllL, -

Proof. Uniqueness. Let u € W2%(Q) N Wol’q)(Q) be such that Au = 0. Then by and
Definition u € W4(Q) N Wol’q(Q) for ¢ € (1,@0) . By standard results for elliptic p.d.e.
([12)) it follows that u = 0.

Existence. Since the Boyd indices are strictly between 1 and oo there are p and ¢ with 1 < ¢ <
p < 0o such that LP(Q) — Lg () — L1(Q). Moreover, Boyd’s interpolation Theorem (see [15]
part II, Theorem 2.b.11, page 145]) applied to Z € L(L9(f2)) with Z|1»q) € L(LP(S2)) yields
that Z, ) € L(La(R2)). For f € L(Q) let the function K f := u denote the unique solution
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of —Au = f in W24(Q) N Wol’q(Q). By elliptic regularity ([12]) one finds that Z, := D*K €
L(L1(2)) for « € N with |a| < 2 and D* = H?:l(%)ai and also that Z,zr) € L(LP(Q)).
S0 ZajLa(@) € L(Lo(R2)) holds. Tt remains to show that Zap, ) f = D* (K f) for f € Lo ().
Since Lg(§2) < L%(Q) one has f € LY(Q) and Zy1,)f = Zaf = D (K f) as a weak derivative
in L9(Q) and hence in Lg (). Therefore K f € W2®(Q) N W, ®(Q). The inequality follows from
the boundedness of D*K in Lg(£2). ]

Whenever we are proceeding with inequalities for the coefficients of the spaces involved it
will be sufficient to proceed through imbeddings and we may not need maximal regularity. Then
we could use £y, > pr (o) and My < qry(Q)-

Lemma 4.2 Let Q be a bounded domain in R™ with 02 € C? and let p be an admissible function
with .
1<, <my, < o0. (4.2)

Then for every e > 0 there is c: > 0 such that for every f € Lg(§2) problem has a solution
w e Wh=52(Q) N Wé“”l(Q), and moreover

”wHWlprsQ(Q) < ce ||f||Lq> :

Proof. Since Ly(f) is continuously imbedded in Lgv_s(Q) for any € > 0 one finds HfHwa <

¢ Ifllz, - By regularity theory (see [I2]) there is a unique solution w € W@—ag( )N WZ“” (Q

with Hw”wzvﬁ,z < 5HfHLZ¢75- .

5 Proof of the Theorem (2.6

Let X = W2 (Q)n Wol’F*(Q) and Y = W3¢ (Q)n Wol’G* (©) supplied with the Lebesgue
measure. See Definition [A]]

5.1 Existence through Proposition

We will verify the conditions of Proposition
I. X is compactly imbedded in Lg(2). Indeed, this result follows from the assumption in the
right hand side of , Lemma ii. and Corollary . By symmetry Y is compactly
imbedded in Lp(Q).
IL (-A);' : Lp+ () — X and (—A)y' @ Lg=(Q) — Y are well-defined and continuous. This
result immediately follows from Lemma [£.T]
ITI. By the assumption in and by Lemma we find

1 1 2 1

— + — > 1——and—+~ = 1.
my myg n my €f1

Hence the conditions of Corollary are satisfied and there are p € (g, 00) and ¢q € (1, Zf—l)
such that
W2 (Q) c W29(Q) € LP(Q) C L ().

The following relation holds:

1 1 1
> - > -

mg P g
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which is, due to Lemma [2.4] equivalent to

1 2 1 2 1 1
- <l Sl < —.
byt M p n q my
Defining p* and ¢* by = + -5 = 1, respectively = + - = 1 we find

and hence by Lemma respectively Rellich-Kondrachov (see [I, Theorem 6.2]), it follows
that
WE(Q) c WP (Q) € LT (Q) C Lp(Q).

So for u € X we have u € WQ’q(Q) N Wol’q(Q) C LP(Q) and, by symmetry, for v € Y that
v e WH(Q)N WO P (Q) C LI (Q). Hence the following integrals are well defined and the

identity holds:
/(Au)v dx:/u(Av) dx.
Q Q

Since (—A)al : Lp+(2) — X and (—A)al : Lg+(2) — Y are positive operators one even has
u > 0and v > 0.

This completes the verification that the conditions of Proposition hold. We find that
has a positive solution (u,v) € X x Y.

5.2 Bootstrapping to regularity
Here is the result for one step in the bootstrapping argument in LP()) spaces.

Lemma 5.1 Suppose that Q is a bounded domain in R™ with 0Q € C? and let (u,v) € X x Y
be a solution of with u € LP(Q?) and p > my.

01f~£<( %)(1—%)2 then uw € LP(Q) for every p satisfying
My g 72
1 1,2
sel1s 7y Ty +ﬁm —1
)
n
oIf~£:<1—~1><1—~1)ﬁ,thenuELﬁ(Q)foreveryﬁe(1,00).
My Mg my) 2
b _L)( 1)@ 0
°Ifmg><1 my ) L= @7 2,thenu€C(Q).

Remark 5.1.1 Notice that whenever p > mgy the assumption in (@) guarantees that

1 1 2 p
= — +—-———-1>0.
mg mf nmg
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Proof. By Remark one finds that for any ¢ > 0
g(s) < Cq s G (s) < Cae s™s~1+ for s large enough.

Hence, if u € LP(Q) then one finds g (u) € LP(Q) for any number p € (1,p/ (my — 1)) . Standard
regularity, see [12], implies that v € W2%(Q) and by Sobolev imbedding

ve LTH(Q) if < In,

veC(Q) if p> in.

Repeating similar steps for v if p/ (g — 1) < %n we find for any

~ np/ (mg - 1)
== 2p/ (my — 1)

that f (v) € LI(Q2) and hence u € W24(Q). By Sobolev imbedding

P
mg—1—28) (my; —1)

/(mf_l):(

we Lim(Q) ifg< %n,
u € C(Q) if ¢ > 5n.
If (mg—l—ﬁ)(mf—l) < #n, then u € LP() for all p satisfying
p
n
fg—1—22) (1 r—1 1
N s e I .

] (mg — 1) (my — 1) — 2By,

my—1)— 2%7?» ¢ < 1. This inequality is equivalent to
1 1 2 p

my  mg  nmg

Notice that p > p whenever (mg — 1) (m

Corollary 5.2 Suppose that Q is a bounded domain in R™ with 92 € C? and let (u,v) € X xY
be a solution of with w € LP(QY) and p > my. If
11 2 p

S P (5.1)
mg ’I’)’Lf nmg

then u € Co(L).

Proof. Since li holds and p > 7, one obtains for m < g) ( > 2 that
A 41 4 2p A 41 42
1+ sty b, ! > 1+ iy iy 0T >1

( mg)(l—%f)—%ﬁ% (=) (-a7) -2

independently of p, and hence, after ﬁnitely many iterations using the first item in Lemma

= (1 - mg) ( f) % holds then
after a smgle step one arrives to the third item. This thlrd item in Lemma [5.1] . yields u € C(Q).

Since Wo P(Q) N C(Q) C Co(R) the conclusion follows. ]

Whenever one reaches an L°°-bound one continues by standard arguments to find higher
regularity. We have the following result.




Existence through Orlicz-Sobolev spaces 13

Lemma 5.3 Fix vy € (0,1). Let f,g € C7 (R) and suppose that Q is a bounded domain in R"™
with 0 € C*7. Let (u,v) € X x Y be a solution of with u € Co(Q). Then u € C%7(Q).

Proof. If u € C(Q2), then g (u) € C(2) C LP(Q) for any p € (1,00), and one finds (see [12, Th.
9.15)) that v € W2P(Q) N Wol’p(Q) for all p € (1, 00) . Taking p > n the Sobolev imbedding gives
v € CY(Q) which implies that f (v) € C7(£2). Since also 92 € C?7 holds, regularity results (see
[12, Th. 6.14]) yield u € C*7(€). n

Now we may complete the proof of Theorem In the previous section we found that there
exist a positive nontrivial solution (u,v) € X xY. Moreover by Corollaryone finds that there
are appropriate p and g such that u € W24(Q) N Wol’q(Q) C LP(2) with p > m,. Next Corollary
implies that u € Co(Q). Similarly v € Cy(Q2) holds. With the additional assumption that
f,g € C7(R) and 99 € C%7 for some 7 € (0,1) one finds by Lemma [5.3| that (2.7) holds.

Appendices

A Orlicz space setting

Let us shortly recall the setup for Orlicz spaces. Every convex function ® : R — ]Rar with
® (0) = 0 can be represented by ® (s) = [ ¢ (t)dt where ¢ : R — R is right continuous and
nondecreasing (see [14, Theorem 1.1]). If ¢ (0) = 0, ¢ (t) > 0 or t > 0, ¢ nondecreasing and
such that lim; .~ ¢ () = oo the function ® is called an N-function (see also [I, Chapter VIII]).
If we assume the somewhat stronger condition above that ¢ is admissible then ¢! is admissible
and ®* is also an N-function.

The Orlicz class Kg(2) is defined by

Ka(Q) = {u . — R measurable; /Q B (u (2)) do < oo} (A1)

and the Orlicz spaces Fg(Q2) and Lg () by

Es(Q2) = the maximal linear subspace of Kg(2); (A.2)
L3(Q2) = the linear hull of Kg(£2). (A.3)

The Luxemburg norm for Lg(2) is defined by

lull ., = inf {k: > o;/ﬂ@ <“§f)> do < 1} . (A.4)

Assuming that  has a finite volume and that the /As-condition holds for large numbers one
finds (see[l, page 240]) that
Es(Q) = Ko(Q2) = La(Q).

Moreover, if € has finite volume, then Lg () is reflexive if and only if the As-condition for large
numbers holds both for ® and ®*. In that case the mapping R : Lg«(Q) — (Lo())’, defined
for u € Ly« (S2) by

(Ru) (v) = / uvdpu, for every v € Lg(Q),
Q

is an isomorphism.
Higher order Sobolev-Orlicz spaces are defined as follows.
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Definition A.1 Let k € N and Lg(Q2) as above. Set

WE2Q) = {u:Q—R ;D e Le(Q) for all k € N* with |k| < k},

lullyre = Z D"l »
0<|k|<k

where k € N" is a multi-index and || = >, K.

In order to define the Sobolev-Orlicz spaces of functions that vanish on the boundary we
remark that the trace operator T, : W1P(Q) — LP(99) with 1 < p < oo is uniquely defined (as
the only continuous operator with Tpu = ujpq for u € W(Q) N C(Q); see [I1, Section 5.5])
and is such that T,u = Tyu for all u € W1P(Q) with p € (1,00) whenever Q is bounded and
o0 € C'. Indeed, in that case C1(Q) is dense in W1?(Q) and T, = T} on C1().

So we have

Wy P(Q) = {u € WHP(Q); Tyu =0}, (A.5)

and may define W(f () in a similar way.

Definition A.2 Assume that Q) is bounded and 0Q € C* (see [1, page 67]). We will define the
Sobolev-Orlicz space of functions vanishing on the boundary by

Wy ®(Q) = {ue Wh-?(Q); Tiu =0} . (A.6)
Remark A.2.1 For Q) is bounded and 02 € C' one may also define
Wh® Q) = {u € WH®(Q); TiD u = 0 for all k € N™ with |r| < k — 1} .
Next we state a lemma relating convergence in the mean to convergence in norm.

Lemma A.3 Let ¢ be an admissible function. Suppose that pu(2) < oo and that ® satisfies the
Ng-condition for large numbers. Let {un} > | in Lo(Y). Then the following are equivalent:

o lim [, ®(u,)dp=0;

n—oo

o lim f[unly, @) =0

Proof. (=) It is sufficient to show that a subsequence {up, }r-, tends to 0 in norm. Since
® (up) converges in L'(Q) there is a subsequence {uy, }7, and a g € L*(€2) such that

Up, — 0in Q p-a.e.,

lun,| < g¢in Q p-ae.
Let € € (0,1) . Since ® satisfies the Ag-condition for large numbers there are m, R > 0 such that
O (ht) <h™®(t) forallt > Rand h > 1.

Let Q := {z € Q;|up, (x)| < R}. Then

/Q\Qk ® (“"kg(x)> et /Q\Qk ® (un, (x)) dp < &7 /Q D (up, (x))dp — 0 as k — oo.



Existence through Orlicz-Sobolev spaces 15
On the other hand 1, () ® (U"’CT(I)> — 0in Q p-a.e. for £ — oo and

o, ()< {§ ) HEGE

which is integrable, imply that

/ @(uﬂk(x))duHOaskHoo.
Qp €

Therefore there exists K € N such that for k > K

o) e

and hence Hunk||Lq>(Q) <efor k> K.
(<) Since @ (0) = 0 and  is convex ® (s) <e® (1s) for e € (0,1). Hence

Op := inf {ﬁ > 0;/ P (unﬁ(x)> du < 1} — 0,
Q

implies that for n large (5, < %)

/Q<I>(un (x))d,u§2ﬁn/ﬂtl>(ugﬁ(:)>du§25n—>0.

Lemma A.4 Let (2) be a finite measure space and let ¢ be an admissible function with mg <
0o. Then

i (e ® () € C (Lo(©); L(@)) ;
ii. @ (u) € Le+(QQ) for every u € Lgy(R);
If moreover {37 > 1, then

iii. (u— ¢ (1)) € C(La(Q); Lo-(Q)).

Proof. First let us recall that mZ” < oo implies the Ag-condition of ® for large numbers. See
Remark
i. Let u,,u € Ly(2) be such that u, — u in Le(12), in other words,

B, ::inf{ﬂ>0;/@(unﬂ_u)dugl}aO.
Q

Since mg’ < oo it follows by Lemma interchanging the role of ® and ®* and using 3, = h™!,
that (n large implies 23, < 1)

/ch (tn — ) dpt < (zﬁn)f/ﬂ@ <“gﬁ_n“> dp < (28,)" — 0.
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Hence ® (u,, —u) — 0 in L'(2) and hence there is a subsequence {uy, }5-, and g € L'(£2) such
that

® (up,, (x) —u(z)) — 0 for x € Q p-ae., (A7)
Q (up, (z) —u(z)) < g(x) for z € Q p-a.e. (A.8)

Since @~ is continuous we find u,, (z) — u (z) for z € Q p-a.e. and by the continuity of ®
hence ® (up, (z)) — ® (u(x)) for x € Q p-a.e. By convexity and the As-condition of ® for large
numbers for z € Q p-a.e.

® (un, (2)) = @ (u(@)+un, (2) —u (@) < 5P 2u(2)) + 5P (2 (un, (z) —u(2)))
< CHa®(u(@)+a®(uy, (z) —u(z) <C+ca®(u(z)) +ag(x).

The dominated convergence theorem implies:

lim [ @ (up,)dn = /<I> (u) dp.

k—o0

Since this holds for any subsequence {uy, } of {u,} one finds continuity of ®.
ii. For the second claim notice that

2s
" (p(s) <@ (s) + 2" (¢ (s) = s9(s) S/ p (1) dt < @ (2s),

and hence by the As-condition for large numbers
[ [eeodizcre [owan
Q Q Q

implying [, ®* (¢ (u)) dp < oo and hence ¢ (u) € Lo+(£).
iii. We proceed as in the proof of i. Let {uy,},-, be a subsequence in Lg(Q) satisfying
(A.7THA.8) we have ¢ (up, (x)) — ¢ (u(x)) for x € Q p-a.e. and hence

D" (¢ (up, () — ¢ (u(x))) for z € Q p-a.e.

Observe that ¢ (un,),p (u) € Le«(2) by ii. and hence since €3 > 1 that ¢ (un,) — ¢ (u) €
La+(€2). Moreover we have by convexity and the Aj-condition of ®* for large numbers (since
€2 > 1) that for x € Q p-a.e.

" (¢ (uny, (7)) = ¢ (u(2))) < C+1®" (¢ (Uny, (7)) + 12" (¢ (u (2))) -

The right hand side is integrable since () < oo and since ®* (¢ (v)) < @ (2v) < C + 1P (v)
for v € Ly(Q2). Notice that

O (¢ (un,, () < C+ 1@ (up, (2)) < C"+ g (2) + 42 (u(x)).

Again the dominated convergence theorem implies

lim | @ (¢ (un, (&) - (u () dp = 0.

k—o00

By Lemma [A.3] we find
klirglo o (tn,,) — @ (u)|’Lq,*(Q) =0.

We end this section by a differentiability result.
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Lemma A.5 Let ¢ be admissible and let u(Q2) < co. Set
Iy (u) := /Q(I) (u) dp for uw € Ly (S2),
Ip 1 (u) := /Q(I) (ut) dp for u € Lo(Q2).
Then the following holds:
i. Ip,Ip 4 € C(La(Q);R);
it. Ip,Ip 4 are everywhere Gateauz-differentiable and
Ih (u) (v) = /ng(u) vdp for u,v € Lg(Q),
Ip o (u) (v) = /Q(p (u) vdp for u,v € Lo ().
If moreover €3 > 1, then
iii. Ip, I+ € C' (Lo(Q);R).
Proof of i. This follows from Lemma @i for Is. For Is 4 one uses that
H“+ - U+HL¢(Q) < lu =2l

ii. Let u,v € Ly(f2) and take ¢ # 0 with |¢| < 1. Then

> (1o (e t0) — Ta () —/QSD(U) vduz/gi/om(x) (0 (@) +9) ¢ () ) dsdn

and for all x € Q) :

1

tv(x)
[ @) e < (¢ (u@l o@D + e (@) ) b @]

The right hand side belongs to L!(€2) and the left hand side tends to 0 for every x € £ which
proves claim ii for Is. For I , one observes that

I 1 (u // s)dsdu = // s)dsdp,

L. Je(s) ifs>0,
g0(5)_{0 if 5 < 0.

where

The proof is similar as for Ig.
iii. Since (u+ ¢ (u)),(u— ¢ (u)) € C(Lo(); Le+()) both Iy, Ip 4 are continuously
Fréchet differentiable. ]
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B A Mountain Pass Theorem

Proposition B.1 (Ambrosetti, Rabinowitz, Ekeland) Let X be a real Banach space and I €
C' (X;R) with I(0) = 0. Suppose that for some r > 0 :

e There is a > 0 such that ||u| y = r implies I (u) > o

e There is e € X such that ||e]|x > 1 and I (e) < 0.
LetT'={y € C([0,1];X);v(0) =0, v(1) = e} and set

= inf 1 .
= inf g 1 (1 @)

Note that ¢ > a.
Then there exists a sequence {un},cy C X such that I (up) — ¢ and I' (u,) — 0 in X',

This particular version can be found in [9].

C A zoo of growth conditions

Let us recall the following condition for ®.

Definition C.1 (As-condition) Suppose that ® : R — R is conver, even and such that
®(0) = 0. Then ® is said to satisfy the Ng-condition on [R,00) if for some Copp > 0 it
holds that

¢ (25) < Cp.r®(s) foralls > R. (C.1)

Remark C.1.1 If ¢ is admissible and ® is as in this definition then
O(s) < sp(s) < Cp rP(s) for s > R.
Indeed ®(s) < ®(s) 4+ D* (p(s)) = s@(s) for all s, and sp(s) < ffs e(t)dt < ®(2s) for all s > R.

The As-condition for @ is related with superhomogeneity of ®*. In fact both conditions give
growth restrictions respectively from above and from below for ®.

Definition C.2 (superhomogeneous) Suppose that ¢ : R — Rar is convex, even and such
that ® (0) = 0. Then ® is said to be superhomogeneous of degree £ > 1 on [R, 0) if it holds that

®(hs)>h'®(s) forall h € [1,00) and s € [R,0). (C.2)

In the first section we defined £, (77, lzo, mg, mg’ and mg, which all represented some growth
rate of the nonlinearity involved. A technical lemma that relates the different growth rates is

the following.

Lemma C.3 Suppose that ® is an N-function with ® (s) = fosw (0)do and with ¢ admissible
and let ®* be the complementary function as in . Let ¢ € (1,00) with £* defined by %+£% =1.
and suppose that R € [0,00).

e Then the following four statements are equivalent:
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59 (s)
¢

ii. ®(hs)>ht®(s) for all h € [1,00) and s € [R,0);
Lo ()

E*

. ®* (ht) < h' ®* (t) for all h € [1,00) and t € [p (R),0).

i. ®(s) < for all s € [R, 00);

iti. ®* (t) >

forallt € [p(R),0);

e Moreover each of the above conditions implies that:
v. ®* satisfies the Ng-condition on [ (R),00) with constant Cg+ = 2°.
vi. for some ¢; > 0 it holds that o' (t) < ¢y =1 fort > o (R).
vii. for some cg > 0 it holds that ¢ (s) > ¢ s*1 for s > R.
e Fach of the above conditions is implied by:
viti. O satisfies the Ng-condition on [ (R) ,00) with constant Cex = £* + 1.
Remark C.3.1 Results as above can be found in [1], Chapter I. §4].

Proof. For the sake of easy reference we will give a complete proof.

Pl IF® (s) < s¢€(s) for all s € [R, 50), then for h € [1, 00)
log (@ (hs)) — log (& (s)) = /shs ggg))da > /shs gda ~log h. (C.3)
i =i If ®(hs) —h'®(s) >0 forall h € [1,00) and s € [R, 00) then
sgp(s)—ffb(s):;(@(hs)—heé(s))h1 > 0. (C.4)

i < 5. With (2.2)) one finds for s > R that

B (6 (5) = 5 (5) = B (5) > spp(5) - 2212 _ 200)

and hence i1 for t > ¢ (R) and vice versa.
111 < . As before in (C.3|) and (C.4) but now with reversed inequality signs:

ht  —1 ht px
log (&* (t)) — log (&* (s)) = /t e ((TT))dTg /t %dT:loth*,

and

toe () — D% (t) = % ((I)* (ht) —h" @ (t)) > 0.

h=1
1w = v. This comes straightforwardly by using h = 2.
i1t & v =-vii. One finds for ¢t > ¢(R) that

* * e* * k *
< TEO (L) o) ¢ i(}(;gz)) e

vii = vi. Taking ¢ = ¢ (s) the result follows from (C.5)).
viii = iii. By assumption and since ¢! is increasing one finds

D% (1) > BF (2t) — B* () = /Zt o () dr >t (1), .
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Lemma C.4 Suppose that ¢ is admissible and let !20, mwtzp_l,m —1 be defined as in Definition

2.3 Then

P

1 1 1
+ b (C.6)

1z
L e 0

Proof. Since ¢ is admissible ® and ®* are strictly increasing on [0, 00) and are hence invertible.
Since ts < @ (t) + @* (s) for all s, > 0 we have

() @t (1) <@ (@7 () + @ (@™ () =2t for all t > 0. (C.7)
Since @ (t) <t (t) and ®* (s) < s~ ! (s) it follows that
P (q)t(t)> < q)it) o ! (@) < (I)t(t)go_l (p(t)) = ®(t) forall t >0

and hence, setting s = @ (¢):

o~ ((IJ—f(s)> < (' (s)) =sforall s >0,

which implies
‘I)%(S) < ®*71(s) forall s > 0. (C.8)

Combining (C.8) and (C.7) one finds (see also [I, p. 230]) that
t<® () @571 (t) < 2t for all t > 0.

Consequently log (t) < log (®~* (¢) %71 (¢)) < log (2t) and

- log (@71 (¢)) N log (@71 (1)) < log 2

1 for all t > 1.
—  log(t) log (t) *log(lt)Jr oraft~

Hence we obtain

log (@71 (¢)) log (@71 (1))

li — " = ] —-liminf ————~%~
e log (t) s log (t)
log (&1 (¢ log (&%~ 1 (¢
lim inf oe\® W) ( ( )) = 1—limsup oe\® W) ( ( )) ,
t—o0 log (¢) t—o0 log (1)
and since . .
1 O (¢ log (® -
lim sup 7og( ( )) = (liminf 70g( (s))) )
t—00 log () s—oo log (s)
the claim follows. ]

Corollary C.5 For an admissible ¢ it holds that

1 1 1 1 1 1
. — + =1, —+ =1 and —+==——=1;
mey Ew,l My &P*l
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Proof. The first three identities follow by Lemma respectively Lemma [C.4]
For the inequalities the only ones which are not immediate from the definition are m, < m

and the dual £3° < lzp. Since for all € > 0 and ¢ > t; large enough

00
©

t t o +e
log (@ (t)) — log (® (t1)) = / gES) ds < / L2 ds < (m +¢)log (t)
t1 8) t1 S
one finds m, = limsup,_, . % < mg’ +e. Similarly (37 < 0, u

Lemma C.6 Suppose ¢ is admissible.

i. mg < oo if and only if ® salisfies the ANg-condition for large numbers.

. 3 > 1if and only if ®* satisfies the Ng-condition for large numbers.

Proof. Lemma [C.3 states that ® satisfies the Ag-condition for large numbers if and only if
there is m < oo such that
to(t) <m®(t) for large t.

Moreover, if m$ < oo then there is R < oo such that t¢(t) < (m¥ +1) ®(t) for t > R.
Conversely, if t ¢ (t) <m® (¢) for large ¢, then mg” < m < co.

Similarly ¢Z° > 1 holds, which is equivalent to mzo,l < oo, if and only if ®* satisfies the Ao-
condition for large numbers. ]

S

Lemma C.7 Suppose that ® is an N-function with ® (s) = [°_ ¢ (o) do and with ¢ admissible

g
and that ®* is the complementary function. If for some £ > 1

D (s) < 59(5) for all s € R,

-/
then, with % + %* =1:
/be(u (x))dx < HuHiq) for allu € Le(Q) with [lul, <1; (C.9)
/QCID(U (x))dx > ||u|]iq) for all w € Lo(Q) with |lull, >1; (C.10)
/ch* (w(z))de > |ulf,. for all u€ Lo-(Q) with |lul,, . <1; (C.11)
/be* (u(z))dx < HuHZL;* for allw € Lo~ () with [jul, . > 1. (C.12)

Proof. Assuming that [lu; <1 we may take 3 € <||uHLq> , 1) and find that for any such 3 by
Lemma [C.3}ii respectively the definition of the Luxemburg-norm that

/g)@(u(x))dxgﬁf/ﬂéc(;))dxgﬂf.

The estimate in (C.9) follows letting 3 | [lul/,, -
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Assuming that [[ul|;, > 1 we may take 3 € (1, HUHL¢> and find that for any such § by
Lemma [C.3}iv respectively the definition of the Luxemburg-norm that

/g)(b(u(x))dxzﬁg/gfb(u(ﬁx)>dxzﬁz.

The estimate in (C.10) follows letting 3 1 ||ull,, -
For (C.11), assuming that [u|, . <1, we take 3 such that 8 1 [ull,,, - By Lemma iv

for any § <1
/ " (u(x)) dx > B° / o (u(m)) dx.
Q 0 g
Since fQ P %) dx > 1 for such 3 the estimate in (C.11)) follows.
For (C.12), assuming that [[uf,_, > 1, we again let 3 | [lu|[;_, in order to find by Lemma
11
/ * (u(x)) de < 6° / i <u(a:)> de < 7. ]
0 Q B

D Orlicz and LP-spaces

Let Q be a bounded domain in R™. The Boyd exponents for Lg(S2), defined in , have
the following property. If for any p € [1,qu>(Q)) and q € (QLCI)(Q),OO) a linear operator T :
LP(Q) + L9(Q2) — LP(Q2) + L9(2) is such that both T': LP(Q) — LP(Q2) and T": L9(2) — L9(N2)
are bounded, then so is T': Ly (2) — Lo (€2). See [] or [15, Th. 2.b.11].

Lemma D.1 Let ¢ be admissible, let {,, ép, my and my, be as in Deﬁmtion and suppose
that ) is bounded. Then

€3 <pry@) <Ly <My < qry) <mg -

Proof. Let m > m;". Then there is K,,, > 1 such that

wgmforalltZKm.
0
By Lemma [C.3] one finds
O (ht) < h"®(t) for all t > Ky, h > 1,

and hence

su (th) ma; su (th) su ¢ (th) <
pry X , <
h,tzpl@(t) hm hzll) O (t) hm h;f ® (t) hm
1<t<Kp, t>Fom
B (K, h) {@(K@ } B (Kom)
< max<{sup ————,1 » = max 1 = .
B {h;; ® (1) } ® (1) o (1)

By definition gz, (q) < m and since m > mg’ is arbitrary, it follows that

ALg(@) <My -
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Next we take ¢ > qr,(q)- Then there exists K, such that

O (th)

su < K
h,tzpl @ (tyhs — 1

and hence @ (t) < K, (1)t? for ¢t > 1, which implies that

log (® (1)) _ log (Ky® (1))
logt logt

+ q for t > 2.

It follows that
log (® (1)) _

— I

My = lim su
° T NPT logt

and, again since q > qr, (o) is arbitrary, my < qp, (o). For the other estimates one may proceed
similarly. [

Lemma D.2 Let ¢ be admissible and let ll, and my be as in Definition . Suppose that
w(Q) < oo. Then for any p € (1,@) and q € (Mmy,00) the following continuous imbeddings

exist:
L) C Le(2) C LP(2).

Remark D.2.1 This result implies that pr, (o) < lzo and my < qr,(Q) where pry @) and qr, o)
are the Boyd exponents for Ly (). Both inequalities can be strict (see [15, Prop. 2.b.3. and
Remark 3 page 134]).

Proof. By [1, Theorem 8.12] one finds that for || < oo the imbedding Lg, (2) C Lg,(§2) holds
if ®; dominates ®9 near infinity, that is, for some ¢,tg > 0

Dy (t) < Dy (ct) for all t > .

log(®(t)) _ 7

Tog » implies that for any € > 0 (take € = ll, — p) there is a number t. with

Since lim inf
t—o00

O (t) > the = for t > t.,
one finds LP(2) C Lg(2). A similar argument with reversed inequality signs yields L4(§2) C
L@(Q). |
Corollary D.3 Let ¢ and ¢ be admissible and let 1 < gw—l and my, < oo be as in Definition

. Suppose that Q2 has the cone property and pu() < co. If

1 1 1
BRI (D.1)
f¢—1 n my

then there exists p € (Mg, 00) and q € (1,@71) such that the following continuous imbedding
exists:

WY (Q) c WH(Q) € LP(Q) C Lo (Q). (D.2)

The one denoted by € is compact.
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Proof. Since the inequality is strict we may take p € (7, 00) and q € (1,%71) such that

1 1 1 1 1 1
— > > —— — > — — —. (D.3)
My p q n Ewl n

Since {2 is bounded Lemma implies the continuity of WH¥ () ¢ W14(Q) and of LP(Q) C

L3(2). By (D.3) it follows that
ng 1

1
n

n—q

and we find by Rellich-Kondrachov (see [I, Theorem 6.2]) that W14(Q) € LP(1). ]

Corollary D.4 Let ¢ and i be admissible and let 1 < gwfl and my, < 0o be as in Definition
2.8 Suppose that Q has the cone property and that () < co. If

1 2

1
g¢—1 n mcp

(D.4)

then there exists p € (Mg, 00) and q € (1,!@4) such that the following continuous imbedding

exists:
WY (Q) c W34(Q) € LP(Q) C La(Q). (D.5)

The one denoted by € is compact.

Proof. Similar as for the previous Corollary with p € (m,,,00) and ¢ € (1, @71) such that

1 1 1 2 1 2
— > > - — — > =— — —. (D.6)
my b q n gw—l n

The last two corollaries are sharp when considering general @ and . However, for some
specific N-functions ® and ¥ the imbeddings before could be compact even with an equality

sign in (D.1) or (D.4).
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