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1 Introduction

In this paper we consider the following system of semilinear elliptic equations

—Au = f(u)—w in RY,

~Av = §(u—) in RY, )
u(x) — 0, if |z| — oo,

v(z) — O, if |z| — oo,

where 6,7 >0 and f (u) = —u(u—1) (v —a) with 0 < a < 1/2.

Klaasen and Troy, [12] investigated this system when N = 1. Using a
shooting argument they proved under certain conditions on the parameters
the existence of a nontrivial solution. They also proved the existence an
infinite number of periodic solutions to the equations in (1). On smooth
bounded domains, Klaasen and Mitidieri, [11] studied the corresponding sys-
tem, subjected to homogeneous Dirichlet boundary conditions. Their results
show that both the domain and the parameters play a role in the existence
and nonexistence of solutions. Results about the positivity of these solutions
were obtained by De Figueiredo and Mitidieri, [6].
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2 A FitzHugh-Nagumo elliptc system

With a suitable rescaling, solutions on a bounded domain, say €2, are seen
to be steady state solutions of the system

uy = DiAu u) — v in (0,00) x £,
{ + [ (u) (0,0) @

vy = DyAv+e(u—v) in (0,00) x €,

with Dy, Dy,e > 0. With Dy = 0, (2) is known as the FitzHugh-Nagumo
equations. These equations are used as a model for nerve conduction and
other chemical and biological systems, [7], [10].

>From here on we will mean by a solution a pair (u,v) € C®(RY) x
C>(RY) that solves system (1). In this paper solutions are constructed
by using solutions to the system corresponding to (1) on the ball Bg, and
letting R — oo. This method of constructing solutions on RY was also
used for example by Berestycki and Lions [3] and Ni [15] in the scalar case,
i.e. 6 = 0. Klaasen and Mitidieri [11] proved the existence of solutions on
bounded domains using variational methods. In order to do so they used an
a priori bound for the maxima of the solutions. We have a different approach
of finding solutions on the ball Bi. Using a transformation similar to the
one used by Mancini and Mitidieri in [13], and a modification of f, we obtain
a quasimonotone system. This approach imposes the first condition on the
parameters. Solutions of this system, in an appropriate range, can be used
to obtain solutions to the original system. The existence of solutions to
the quasimonotone system follows from the existence of pairs of super- and
subsolutions and a multiplicity result due to Amann, [2].

We remark that the conditions on v and 6 which we assume are stronger
than those imposed [11] and [6] for both the existence and positivity of solu-
tions on the ball. However by using the quasimonotone method we obtain a
sharper uniform upper bound as well as a uniform lower bound for the max-
ima. Also, by a result of Troy, [17], we have that the solutions are radially
symmetric and decreasing. The combination of these properties will enable
us to show that the solution on R¥ is nontrivial and tends to zero as R — oo.

In Section 2 we state our conditions on the parameters as well as the
main result. In Section 3 we prove some auxiliary results for quasimonotone
systems. The main result is proven in Section 4.
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2 Main result

Before we state our conditions on the parameters 6 and v we give some known
results for certain ranges of these parameters. For the problem

—Au = f(u)—w in Bg,
—Av = 6(u—yv) in Bp, (3)
u = v =10 on 0Bg,

the following holds.

o If v < 4/ (1 — a)? then (3) has only the trivial solution, Klaasen and
Mitidieri, [11].

e If v > 9/(2a%> — 5a +2) and R > 0 is large enough then (3) has two
nontrivial solutions, Klaasen and Mitidieri, [11].

e If 1/y < a < &y — 2V/6 then all solutions to (3) are positive, De
Figueiredo and Mitidieri [6].

For (1) with N = 1 the following holds, Klaasen and Troy [17].

o If v > max {9/ (2a% — 5a +2) ,2/V6 + (1 — a) /6} then there exists a
nonconstant solution with «'(0) = v'(0) = 0 and u(x),v (z) — 0 if
|z| — oo as well as an infinite number of periodic solutions.

o If max {4/ (1-a)’,2/V6+(1-a)/6} < v < 9/(2a* — 5a + 2) then
there exists a nonconstant solution with «'(0) = ¢'(0) = 0 and
(u(z),v(z)) — (04,0,/7) if || — o0, (see figure 1), as well as an
infinite number of periodic solutions.

Our first condition is
Condition 1 6y —2V6>1—a.

We will use this condition to construct a quasimonotone system. As is
known, quasimonotone systems share many properties with the scalar case.
In particular, using sub- and supersolutions we can find solutions to the
quasimonotone system and use these solutions to get solutions to the original
system.

In order to find a subsolution to the quasimonotone system, we impose
the following condition.
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9
2a2 — ba + 2’

By condition 1 one has that § € R. A direct calculation shows that
f(u) — %u = 0 has two nonzero roots, say 0 < 83 < o0, if and only if
B >4/ (a* —2a+1). Since 9/ (2a* — ba + 2) > 4/ (a* — 2a + 1), condition 2
implies that this holds. In fact, condition 2 is equivalent with

" (f (s) %s) ds > 0, @)

see [11]. If (4) holds then the single equation —Au = f (u) — %u inQ,u=0
on 02 has a nontrivial solution, [3] and [5]. This function will be used to
obtain a subsolution for the quasimonotone system.

Since v > (3 the equation f (u) — %u = 0 also has two nonzero roots, say
0<0,<o0,with0<0, <0z <0z <0y, and

I (f@)-%s) ds > 0.

Condition 2 ﬁ:=%(57—1—0,—1)4—%\/((%-1-&_1)2_45>

—u
1
—U
7
a 0y0g e |
f(u)
Figure 1

We remark that our conditions on the parameters are more restrictive
than conditions of Klaasen and Troy for the system with N = 1, as can be
seen by the fact that conditions 1 and 2 can be combined as follows:

v > max {2/V6 + (1 - a) /6,9/ (2a* — 5a + 2) + (2a* — 14a + 11) / (96) }

QOur main result is:
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Theorem 1 If conditions 1 and 2 hold then there exists a positive solution
(u,v) € C®(RY) x C®(RYN) to system (1). Moreover the functions u and v
are radially symmetric, decreasing and satisfy

1

0, < maxu () <o, and max v () < 507

3 Auxiliary results for quasimonotone systems.

First we introduce some notation. Let £ C RY be open and bounded with

C?3 boundary 0. By u = (uy,...,uy) we will denote elements of C (Q) M.

We consider the usual ordering of C <Q) M, ie.
u<v if u;(z) <w;(z) for i=1,...,M andall z € Q.

We also write
u<v if u<v and u#v,

and

u<v if u(z)<wv;(z) for i=1,...,M andall z € Q.
If u < v we denote by [u, v] the order interval [u,v] :={w;u<w < v} C
C (Q)M. The set of nonnegative functions in C§° (2) will be denoted by

Dt (Q) and we write DM (Q) for the product (Dt (€2))™.
In this section we will consider the system

—Au = F(u) in (5)
u =20 on 0f),
with F'(-) = (F1(+), ..., Fay(+)). We assume that F; differentiable and that
OF;
<K
3@ -

for some K > 0.

Definition 2 System (5) is called quastimonotone if

OF; S,
> .
axj_()fm‘z;é] on (6)
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Definition 3 We call u € C(Q)M a supersolution for system (5) if

/ u- (—Ayp) dz > / F(u)-@dx  for every p € DM (Q)
Q Q

and
u>0 on 0f).

A supersolution is strict if there exists a o € DM (Q) such that

Au-(—Agp) d:t:>/QF(u)-g0d:L’,

or if
u>0 on 0f).

Subsolutions are defined by reversing the inequality signs.

Remark: Recall, see [5, Lemma A.1.], that if w > 0 and u € C(Q) satisfies
u > 0 on 02, and

/ (u(—Ayp) +wup) de >0 for every p € D' (Q),
Q

then u > 0in 2. Moreover, if for at least one ¢ € DT (2) the inequality above
becomes strict, then there exists a > 0 such that u > a1) with 1 the principle
eigenfunction of —A with homogeneous Dirichlet boundary conditions, [4,
Corollary in Appendix|. The function 1) can also be replaced by any other
function v, € C* (Q) with ¢4 > 0 and % < 0 on 0.

We also recall some properties of the solution operators. For details we
refer to [9]. For every g € LP (), p > N/2, and w > 0, the Dirichlet problem,
(—A +w)u=ginQ, u=0ondQ has a unique solution u € Wz>? (Q)NC(Q)
which we shall denote by v = K,g. One has that K, maps C(Q) compactly
into CL*(Q) for @ € [0,1). Indeed, since for p > N it holds that W?2? (Q)
is compactly imbedded in C%*(Q) with 0 < a < (1 — N/p), we have that
K, : C(Q) c L?(Q) — CY%(Q) is a compact mapping. We shall also use
the notation F,; (u) = F; (u) + wu;, ¢ = 1,..., M. The mappings F,; is
continuous from C(Q)* to C(€). Consequently the operator T, : C(Q)M —

(CI’Q(Q))M defined by
T () 1= (Ko (Fa (W) . Ko (o (). ™)

is continuous and compact. We prove in the following lemma that T, is
increasing for w large enough.
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Lemma 4 Choose w > 0 such that

[

5 +w>0 on RM fori=1,..., M. (8)
U;

1. If u,v €C(OM and u > v then T, (u) > T, (v). Moreover, for i =
1. M,

T, (u),>1T,(v), or T,(u),=T,(v)

2. Ifu,v e C(OM and u>> v then T, (u) > T, (v).

Proof. 1) For ¢ € DT (2) we have that
| (@), = T (w),) (~A +w) pda
- A (Fy (v) + won — F) (0) — wu) o d
= /Q (Fl (V) + wvy — (Fl (Ul, V2, ... ,1)]\/1) —+ wul)) (pde’
+/Q(F1 (u1,v2, ..., vpr) — Fy (ug, ug,v3, ... ,vp)) pde
+ /Q (Fl (Ul,UQ, e ,U]\/[,LU]\/[) — Fl (u)) gOd.’L'
< 0.
By the strong maximum principle, [9, Theorem 9.6], we have either that
T, (u), > T, (v), or that T, (u), =T, (v),.

For some z € Q and i € {1,..., M} it holds that w; (z) > v; (). From
(8) it follows that there exists ¢y € DT (2) such that

/Q (F; (v) + wvy — F; (u) —wu,) podr < 0
and consequently
/Q (T (v), — Ty (0),) (—A + w) o dz < 0. 9)

Hence T, (u), > T,, (v), and T}, (u) > T,, (v).
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2) Leti € {1,..., M} be fixed. By the first part we have two possibilities:
T, (u), > T, (v), or T, (u), = T,, (v);. Since u; () > v; () for every z € Q
there exists functions ¢ € DT (), such that

/Q(Fi (V) + wvy — F; (u) —wu;) pdz > 0.

It follows that T, (u), > T, (v), must hold. Hence T,, (u) > T, (v). O

Lemma 5 Suppose that u is a supersolution for (5) and that w > 0 is such
that (8) holds. With T,, as defined in (7) we have that

1. T, (u) =u and u is a solution to (5) or

2. T,(u) <u and if T, (u);, < u; then T, (u), < u;. Moreover T, (u) is
again a supersolution for (5).

Similar results hold for subsolutions.

We remark that if the Jacobian matrix in u, F (u) = [0F; (u) /0z;] is
fully coupled, see [16] and [14], then a strong maximum principle holds, i.e.
in the lemma above either 7, (u) > u or 7}, (u) =u.

Proof. 1) A standard bootstrapping argument shows if 7, (u) = u with
u €C(Q)M then u € (C?*(Q))M. Also

(—A4w)u; = F (u) + wu; in

and u; = 0 on 02 so that u is a solution to (5).
2) Using the definitions of T, and a supersolution, we have for ¢ € D (Q)
that

(T )y =) (<A ) o

-

(F1(u) +wu) pde — /Qul (—A +w)pdx
- /Q(F1 (u))gpd:t:—/ﬂul (—Ay) dz <0,

)
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and hence T, (u), < ;. It even holds that T, (u), < u; or that T}, (u), = u;.
Suppose namely that 7, (u), < u;. Choose w’ > w. Similar as for w we find
that T, (u), < u;. Because T,, (u); < u; one has for all ¢ € D (Q2) that

(@), = T () (~A + ) pda
= [T (~A+w)pds — (@) [ (T (w),) pds
_/Q(Fl (u) + w'uy) pdx
— /Q(F1 (u)—l—wul)gﬁdﬂv—(w—w')/ﬂ(Tw (u),) pdx
—/Q(Fl (0) + w'uy) ¢ da
= (@=o) [ (m =T (w),)pdz <0,

with strict inequality for certain ¢ € D (Q). Since T, (u), € W2 N C(Q)
the strong maximum principle, [9, Theorem 9.6], implies that 7, (u), <
T, (u); < uy. In the same way for ¢ = 2,..., M, it holds that T}, (u), < u;
or T, (u), = u;. In particular, T}, (u) # u then T, (u) < u. If this is the case

then for ¢ € DM (Q) it holds that
[T (8¢)dr = [ (R () —ww) - pda
> [ (R (T (0) — T (w) - pda
= [ F(T(w)- pda.

with strict inequality for some . Also T, (u) = 0 on 02 and hence T, (u)
is a strict supersolution. 0]

We will use the following variation of a theorem due to H. Amann, see
2, Theorem 2.6, Corollary 2.7 and the remark after the proof of 2.7] as well
as [1, Theorem 14.2].

Theorem 6 (Amann) Let E be a ordered Banach space of which the posi-

tive cone P has a nonempty interior P°. Suppose there exist two pairs (i, Z),
(g,2) € E? with

y<z<z Y<y<3z, and zZ# 7, (10)
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and a compact increasing map f :|y,zZ] — E such that

y<f), &<z g<f@, [(E) <<z (11)
Then f has a mazimal fized point T € [y, z] and a minimal fized point T €
[09,2]. If z—Z € P° and & — g € P° then f has a third fized point x such
that x ﬁ zand x }_4 y. Moreover Ty, < T < Tpax where Ty, and Tya.x are
respectively the minimal and maximal fized points of f in [y, Z].

This theorem will be used in the following setting (see [1]). Let e €
CH(Q2) N C* () be the solution of

—Ae = 1 in ,
{ e = 0 on 0f2,
and let
C.(Q) := {u € C(9Q);|u| < Xe for some \ > 0} .
Equipped with the norm
|ul], :=inf {\ > 0; Ju| < e},

C.(Q) is a ordered Banach space and the positive cone has a nonempty

interior. In fact u € C.(£2) is in the interior of the positive cone if and only
if u > Ae for some A > 0. The following lemma holds.

Lemma 7 With w chosen as in (8), let S : Co()M — C.(Q)M be the re-
striction of T,, to Co(Q)M. Then S is continuous, compact and increasing.
Moreover, if u < v then Sv—Su >Xe for some A > 0, where e := (e, ..., e).

Proof. The operator K, defined earlier maps C(2) compactly into
C.(Q). To see this we note that K, maps C(Q) compactly into C3(Q) :=
{u € CH(Q);ujpn = 0} and that C(£2) is continuously imbedded in C,((2).
Consequently the mapping u — (K, F,; (u),...,K,FE,; (1)) of C(Q)™ into
C.(Q)M is compact and hence S is compact.

If u < v then for every i = 1,..., M and ¢ € DT ()

[ ((5%); = (5w),) (=5 + ) pds > 0

with strict inequality for some . By remark after Definition 3 the result
follows. OJ

We can now reformulate Theorem 6 as a result about the existence and
multiplicity of solutions to (5).
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Proposition 8 Suppose that v,V are two subsolutions of (5), with v strict
and that W, W are two supersolutions of (5) with W strict. If

V<W<W, V<v<w and W £V,
then (5) has two solutions @, with

W.

IN

v<ua<w and v<u
If a < W and @ > v then there exists a third solution u such that
Vonin< U < Wiax, u ﬁ W and u }_4 v

where Vi, and Wy are respectively the minimal and maximal solutions in
[V, W].

Figure 2

Proof. Since the sub- and supersolutions need not be in C,(§2) we cannot
apply Theorem 6 directly. Let w be chosen as in (8) and define T}, as in (7).
Let

y =1,v, z =1,w, y:=1T,v, z .=1T,w.

By Lemmas 4 and 5 it holds that
v)y<z<z (£w), and (V<)y<y<z (£w),

with ¥,y again subsolutions and Zz,z again supersolutions. Because w is a
supersolution and v is a subsolution we have that y > v and z < w. Hence
Z # § because Z > § implies W > ¥, a contradiction.

The restriction S : Co(Q)M — C.(Q)M of T, to C.(Q)M is compact and
increasing by Lemma 7. Also, by Lemma 5,

y<Sy, Sz<z, y<Sy, S(z)<z.



12 A FitzHugh-Nagumo elliptc system

By the theorem, S has fixed two points, say @,i € C,(2)™ such that ¥ < @ <
Zandy <u <z

If a < wand a > Vv we have by Lemma 7 that Sw—Su =z—ua and
S@i—SV = 1 — ¥ are in the interior of the positive cone of C.(2)™. The
existence of a third fixed point, say u € C.(Q)M with u £ Z and u # y
follows from the theorem. Moreover, u jﬁ w for if u < w then u = Su <
Sw = Z, a contradiction. In the same way u # V. Also by the theorem

Vinin < U < Wy, Since fixed points of S are solutions to (5), the corollary
follows. u

Finally we state the following proposition which was proved by Troy, [17,
Theorem 1] about positive solutions to a quasimonotone system. The results
of Troy generalize the results of Gidas, Ni and Nirenberg, [8], for the scalar
case.

Proposition 9 (Troy) Suppose that (5) is quasimonotone and that Q =
Bgr. If u>> 0 is a solution to this system with u; € C* <BR>, 1=1,..., M,
then u; is radially symmetric and Ou;/0r < 0 on (0, R) .

4 Proof of the main result

Our aim is to construct a solution to (1) by using solutions to (3) and letting
R — oo. To obtain the solutions on Br we shall construct a quasimonotone
system of which the solutions in an appropriate range can be used to obtain
solutions to (3). If z = u — (v, then

—Az = —Au+ pBAv
= f(u)—v—2~6Pu+ 6Byv
= fu)+(1—a)u+(a—1)(z+ fv) —v+6Byv — 66 (2 + Pv)
= f@ A+ —a)ut (=68 + @y +a—-1)B—1)v+(a—1-68)z

Taking § := 5 (6y +a—1) + 2—16\/(67 +a —1)* — 46, as in condition 2, one
has that

—Az=fu)+(1—a)u+(a—1-680)z.
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By the following modification of f we obtain a quasimonotone system.
We define f* by

—au if u < 0
fru) =9 f(u) if 0 <u<l
(a—1)u if u>1.
One has that f* € C' (R) with = f* (u) > (a — 1). The system
—Au = f* (u)—%u—i—%z in Bp,
—Az = frw+(l-aut(e-1-80)z  inBpg (12)
u = z=20 on 0Bgp.

is hence quasimonotone. By the choice of 3 it follows that if (u,z) is a

solution to (12) and 0 < u < 1 then (u, %(u — z)) is a solution to (3). We
now use the results of the previous section to prove the following proposition.

Proposition 10 Suppose that condition 1 and condition 2 hold.

1. There exists Ry > 0 such that for every R > Ry system (3) possesses
two nontrivial solutions (ugr,vg) and (g, vg) in C (BR) N C? (Bg).

2. For the solutions it holds that (0,0) < (ug,vr) < (Ugr, Ur) < (0, %O’ ).

3. The solutions are radially symmetric decreasing functions.

4. For every R > Ry it holds that
up (x) <og  for all |z| > Ry, (13)

and
ug (0) > 6,. (14)

Proof. We will first prove the proposition for a fixed Ry > 0 large enough,
and then show how the proposition follows for R > R.

In order to apply Corollary 8 we need appropriate sub- and supersolutions.
One has that

e =(0,0), W= (97, (1— g)e)y) and W — (% (1-— g)ay>
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are respectively, a subsolution and two strict supersolutions with v < w < w.
We still need a strict subsolution v such that v < v < w and v ﬁ w. Since

/OUB (f(s)—%) ds >0

there exists Ry > 0 such that the problem

—Ap = f(p) =50 in Bg,,
p =0 on 0Bp,,

possesses a nontrivial positive solution with

05 < aX (z) < o,

see [3] and [5]. If we set

V= (907 0)
then v is a suitable subsolution. By Corollary 8 there exist two solutions
Up, and Gp, with 0 < @z, < W and (¢,0) < Gz, < V. We will omit the
subscripts Ry while working in Bpg,.

We show that the condition for a third solution is satisfied. In Bp,, with
u = (u, z), we have that

R R T T D
(—A+5)(u—en = J@ - Ao @0
IS PR N
R
3 1
= f(u)—veyso.

By the strong maximum principle, @ () < 6, for all x € Bp,. Also, using
the definition of (3, we have that

asror-a)(z-a- D)

= f(a)Jr(l—a)a—(1—a+%>97

= @)= 20+ (=0 (= 0,) <0,
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Again by the strong maximum principle, z (z) < (1 — g)@v for all z € Bpg,.
Hence 1 € w. That v < @ = (4, 2) follows in the same way by considering
(—A +w) (@ — ¢) with w > 0 large enough and (—A + (1468 — a))Z.
Without loss of generality assume that @ = 0, the minimal solution in
[0, W] and that @ is the maximal solution in [0, W].
The existence of a third solutions 0 < u = (u, z) < @ such that

wg (6.0-20)  aa wk(eo

follows from Corollary 8. In particular, for some £g, € Bg,

u(gRo) > 077 (15)

because if u < 6., then,as above, z < (1 — g)@v which contradicts the fact
that u £ (97, (1-— 5)97). We also have the existence of (g, € Bpr, such that
u(Cr,) < (¢(Cry),0) and hence

U(CRO) < 0g. (16)

With v := %(u — z), we have that (u,v) is a solution to (3) with R = Ry.
In particular, the second equation of (3) implies that v > 0 and by the
maximum principle and the fact that u < ¢, we also have that v < o, /7.
An application of the strong maximum principle shows that u > 0. By
Proposition 9, u is radially symmetric and decreasing. Because u decreases,
(13) and (14) follows from (15) and (16). We also have that v is radially
symmetric and decreasing because (—A + 67) v = u in Bg,, v = 0 on 0Bg,.

On the balls By with R > Ry the proof is similar. As sub- and superso-
lutions we choose

w = (0,0), Vv =(pgr,0), W= (97, (1-— g)%) and v = (07, (1— é)ay) :
v v

Here ¢ the trivial extension to Bg of the function ¢ used in the first part.
Note that it is this choice of subsolution from which we get that ug ((g) < op
with (p € Bg,. From this and the fact that uy decreases, (13) follows. [

We now prove the main result.
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Proof. (Theorem 1) We will use the functions {ugr; R > Ry} and
{vr; R > Ry} obtained in the previous theorem, to construct a solution to
system (1). We extend these functions trivially to functions on R¥Y.

The proof is given in eight steps. The idea is as follows. We show {ug}
and {vg} are precompact in CZ (RY). Using this we obtain a solution on
RY. Properties (13) and (14) will then be used to show that the solution
obtained is nontrivial and goes to zero at infinity.

Step 1. Let Ry > Ry. The functions {ug; R > 2R;} and {vg; R > 2R}
satisfy

—AUR = f(uR)—vR on BgRl,
—Avg = 6(ur — YvR) on Bsg,,

and from Proposition 10 we have that

sl ooy < e 0l ey < (1/7) 6

and also
||f(UR)”L<>°(BQR1) <0;:= OSUP |/ (@)].

<z<1

Using interior elliptic estimates, [9, Theorem 9.11], Schauder interior esti-
mates, [9, Problem 6.1], and the fact that f is locally Lipschitz, we that find
{ur; R>2R;} and {vg; R > 2R,} are bounded in C*!(Bg,) and hence
precompact in C%(Bg,). Then there exist sequences {uRgn)} and {ngn)}

(R < R /ooifn — oo) which converge in C%(Bg, ). We set for € By,

up (z) = lim U () and vy (z)= lim v @ (x).

n—oo n—0o0o R

On Bpg, the functions u,,v; are solutions of the equations.

Step 2. Let Ry := Rgl) and repeat step 1 to obtain that {u ) } and {v o }

are bounded sequences in C*!(Bpg,). Again we can extract subsequences
{uRém} and {URén)} from {uRYL)} and {ngn)} respectively such that they

converge in C%(Bpg,). We extend the functions u; and v; to By, by defining
for x € Bpg,

u () = lim u o () and v (x) = lim Vg (x),

n—00 R n—oo

These functions satisfy the equations on Bp,.
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Step 3. By repeating this process we obtain for every k € N two sequences
{u R;m} and {v R;(c")} converging in C?( By, ) which are subsequences of {u R;(Ql}

and {vR(n) } and uy = lim,_ Upn)y V= iy, 00 Vo) satisfy the equations
k—1 k k

on Bp,.

Step 4. For the diagonal sequences {u ,m } and {v Rom } one has for every
x € Bp, that
up (z) = lm upe (x)  and  vg (2) = Lim ) (z).

m—0o0

Hence, if u = limy;, 0 U pm) and v = limy, 00 vom) then

—Au = f(u)—v on RV,
—Av = §(u—v) on RV,

Step 5. By Proposition 10

rEBR

ur (0) = max g () > (1 - 9) 0,

and hence

zeRN

u(0) = maxu (z) > (1 — é) 6, > 0.
Y
Consequently u,v # 0

Step 6. It remains to show that u (z),v(x) — 0 if |z| — oo. Since all
the functions uyr and vy are radially symmetric we will consider ug, v, u, v
as functions of one variable. In particular we have that v’ (r) <0, v’ (r) <0
for all » > 0 and v’ (0) = ' (0) = 0. Let

by = lim (r) = iggu (r) and by := lim v (r) = gg v(r). (17)
In step 7 we shall show that
l, €{0,0,,0,} and I, =1,/7. (18)
Then, by Proposition 10,

Ly <u(Ry) <op <oy
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so that [, # o,. To exclude the possibility [, = 6, we shall show in step 8
that

[ (r0-2) a=ray-ere=o (19)

which cannot hold for [, = 6,. Then the only remaining possibility is that
ly,=1,=0.

Step 7. We prove (18). Because of the radial symmetry we have that

—u — Ly = f (u) —w r >0,
—" = MLy = Sy — by r >0, (20)
u' (0) = 2'(0) = 0.

Let up := u(0) and vy := v (0). Multiplying the first equation with u’ and
the second with v' and integrating one finds that

%u/(R)u(N—1)/0R%dr:F(u0)—F(u(R))+/ORu/vdr,
and

1 R (

50 () 0

— _5(u(R)v (R)—uovo +5/ wodr+ (6v/2) (v (R)* — o)
Adding we find that
% <’LL/ (R)2 + 51 (R)Z) +
+ (N — 1)/R (W) +6 () dr — 2/0Ruvdr (21)

0 r

= F(up) — F (u(R)) — (u(R) v (R) — uovo) + % (0 (R)? = 4f).

and subtracting that

dr (22)

%(u/ (R)Z 5Ly (R)2> (N -1) /R (u/)2 — 61 (111)2

0 r

= F(u) — F (u(R)) = ugvy +u(R) v (R) = (7/2) (v (R)* — v5)
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Because v’ (R) , v’ (R) < 0 and u (R) ,v (R) stay bounded as R — oo we have
from (21) that

v (R)—0 and v'(R) -0 as R — oo.
Also, we see from (20) that
v (R)— f(l,) =1, and —v"(R)— 6l, —6vl, if R — oo,
so that f (l,) — I, = 0 and 6l, — 671, = 0 and hence (18) holds.
Step 8. Finally we prove (19). We note that
e (r)? = 6710y (r)? > 0. (23)

This follows from the fact that v/63 — 1 > 0. Indeed, with zg as in the proof
of Proposition 10,

Uy (r) = 8720 (r) =l (r) = (BV8) Ml (1) + (BV8) 2 ()

I
=
>

|
-
>

@

|
=
IS
=
=
_l’_
=
>
o8
=

IN
o

and hence
W (r)? = 8 W (1) = (ufy (r) = 6200 (1)) (e (r) + 87200, () > 0.

>From (22) we see by letting R — oo that

oy [T,

= F(uo) = F (L) = ugvo + 12/(29) + (v/2)13. (24)

On the other hand, for every solution (ug,vy) it holds that
1

(B = 5y () 4+ (v — 1) [0 ()

= F(ur(0)) — ug (0) v (0) + (v/2)vg (0)*.

Hence, for a fixed K > 0 and all R > K it holds that

o) [,

< F(ug (0)) — ug (0) vg (0) + (7/2)vr (0)?

dr
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so that

(N 1) /O M) SN L () — g + (120

r

Letting K — oo we find that

-1 [T S e < ) g + (/20 (25)

>From (24) and (25) we get that
F (ug) = F (L) — wovo + 3/ (2) + (v/2)vg < F (uo) — uovo + (v/2)vg,
which is precisely (19). O
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