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1 Introduction

Elliptic and parabolic differential equations which include an integral term of the form

/gzg(x7y7u(y))dy7

where € is the bounded spatial domain and u(y) = u(y, t) in the parabolic case, have appeared
in applications for quite a long time — see, for instance, [14| and the references in [7].

However, it has only been recently that more attention has been paid to these equations, and
that it has become clear that the behaviour one can expect from such problems is in fact more
complicated than that of standard elliptic and parabolic equations. In particular, it is known
that, for the time—dependent problem, w-limit sets can now have an arbitrarily high dimension,
and that even in the case where there is no explicit dependence on the space variable it is possible
to have stable periodic orbits [6, 9, 17]. Still in this last case, the type of stationary solutions
that may now be stable is more varied than in the local case, and it has been shown that these
will now include sign—changing and nonconstant solutions in the Dirichlet and Neumann cases,
respectively [8, 10].

This more complex behaviour is due to the fact that, because of the introduction of the
integral term, these equations will no longer satisfy a form of maximum or comparison principle
in general, and, in the case of the time—dependent problem, there is no longer a general Lyapunov
functional.

It has also been shown that, provided the nonlocal term satisfies some sort of monotonicity
condition, then the asymptotic behaviour of solutions of the time dependent problem is in some
sense similar to that of the standard parabolic problem, as again a maximum principle can be
applied [10].

The purpose of this paper is to give conditions which ensure that the monotonicity is pre-
served. This monotonicity however does not follow immediately from standard maximum prin-
ciples but uses estimates of the kernels involved. Such type of estimates are related with the
Green function estimates of Ancona ([1]), Hueber and Sieveking ([13]), and the 3G-estimates of
Zhao ([19]) and Cranston, Fabes and Zhao ([4]).

We consider a linear inhomogeneous nonlocal elliptic equation of the form

Lu—eKu=f in €,
(1)

u=20 on 95,

where Q is a bounded domain in R with n > 3 and boundary 8Q € C%*@ for some a > 0
and where ¢ is a real parameter. Here, the operator £ is the uniformly elliptic second order
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differential operator

with

alé? = ) ay ()& = et g
! (2)

Qij, bi,c € CO,a(ﬁ)
for some a > 0 and a;;, b; and c are such that £ has a positive principal eigenvalue. The class
of operators K that we consider contains integral operators of the form

(Ku) () = / K (2,9)u(y) dy, 3)

which includes the case of a separable kernel K (x,y) = f (x) g (y) considered by Allegretto and
Barabanova ([2]).

In the absence of the integral operator K, it is well-known that if f is a nonnegative function
in L7(2), not identically zero and p > %n, then there is one and only one solution in Cp(92) to
equation (1) ([11], Theorem 8.30), which is strictly positive in Q. Moreover, if p > n then ([11],
Theorem 9.15) u € WP () which is compactly imbedded in C1(€2). It is easy to see through
an example that positivity will no longer hold for arbitrary /.

Example Let £ = —A, and denote by A;, 7 = 0,1,---, the corresponding eigenvalues, with
0 < Ao <At <---. Denote by v4, 7 =0,1,---, the associated eigenfunctions, which are
assumed to be normalised and orthogonal. The principal eigenfunction vy is assumed to
be positive. Consider the problem

—Au + evo/ vi(y)uly)dy = vo + bvy, (4)
Q

where ¢ and 6 are real constants (in the case where the second eigenvalue \; is not simple,
vy is assumed to be one of the associated eigenfunctions). This problem has one and only
one solution, which is given by

1 1 b —I-(S
U= — —— Jvo+ —vi.
Mo A Ve

It is clear that it is possible to choose ¢ sufficiently small and e sufficiently large, such
that the function on the right-hand side of (4) is positive, while u changes sign — for
sufficiently large, u will actually become negative. Furthermore, from the results in [10] it
follows that the spectrum of the operator £ — K is the same as that of the operator £ for
all values of the parameter ¢, and that the all v;’s are also eigenfunctions for the nonlocal
problem, with the exception of v1. In particular, the eigenfunction corresponding to the
the first (positive) eigenvalue is still positive and equal to vg. The second eigenvalue will
now have an eigenfunction which is a linear combination of vy and v1,

(3] vo + V1,

- E
M=o

and which will also be positive for large enough .
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One simple condition that ensures that a positivity result of the type mentioned is still
applicable to (1), is when K is a positive operator, K € L (C(Q); L1 (Q)) with ¢ > %n, and ¢ is
small.

Definition 1 Let X be a subspace of L' (2). An operator K € L (X; I (Q)) is called positive

iff
f > 0idimplies Kf > 0;

and strictly positive iff
0 £ f >0 implies 0 £ Kf > 0.

However, the result is still true for more general K. We will show that it is possible for
the class of (not necessarily positive) operators K that we consider to give a bound for ¢ such
that (£ —eK) ' e L (C(Q); Co()) is a positive operator. Needless to say that these results are
uniform in f. Note that if K is bounded, then it easily follows that for every function f there
exists e for which the result holds.

This generalises the results in (|2]), where the kernel considered was taken to be separable.
In particular, our results allow for K to be a Green’s function associated with second order
uniformly elliptic operators, and thus include the case of linear elliptic systems.

These results are based on pointwise estimates for the Green’s function associated to the
local operator L.

2 The class of operators and the main result

We assume that K is the difference of two positive operators K, : L' () — L' (Q), that is
K=K, —K_.If Kis an integral operator we may define K, _ by the following kernels

(K (z,y) +|K (z,9)]),

K+($,y) =
K*<x7y) =

N[ N[

Assumption A K, K_ €L (Co(ﬁ); 11 (Q)) for some q > n.

Let W : 52 X 52 — R denote the function

n—2 2
U (2,y;2,0) = ] - (1+—’x vl )

o — 2" fw —y|" 2 |z — 2| Jw—y|

We define a norm for K in a subclass of L (QQ) by

|K]l, == sup / / |K (z,w)| ¥ (z,y; z,w) dwdz. (5)
T,yef)
zeQwe
One might call an integral operator K with its kernel K satisfying || K|, < co to be of a double

Kato-class type.
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Assumption B K., K_ satisfy ||[K4 ||, < oo and |[K_||, < oo, where

el = sup [ K (¥ i) ) e ©)

z,yeN
Z2€N

Let us shortly discuss the influence of K and of K_ by means of increasing € in (£ — ek ), !
and in (L —eK_), 1, respectively. Here and in what follows, the index zero refers to the fact

that we are considering homogeneous Dirichlet boundary conditions.

e The positive part.
Since for ¢ > in the operator £, € L (L7 (2);Cp(Q)) is compact we find that £y 'Ky €
L (Co(ﬁ); Co(ﬁ)) is a compact positive operator. Hence the spectral radius v ([,6 1/C+) is
well defined. Let ¢¢ denote the first eigenfunction of

Lo = Ao inQ
{ ¢ = 0 on 9. (7)

Since the strong maximum principle for the operator £ implies that for any v € L7 ()
with ¢ > n, and hence for u = K.¢o, either £61K+¢0 = 0, or £61K+¢0 > cgg, one
finds that either Ky = 0 on Cop(Q) or v (L£y'K}) > 0. In the last case it follows by the

Krein-Rutman Theorem that Aox, = v ([,6 1/C+)71 is an eigenvalue for

Lo = Ay ¢ in
{ ¢ 0 on 951, (8)

with ¢ox. € Co(2) a positive eigenfunction. The first eigenfunction ¢, is assumed to
be normalized by max ¢g i, = 1. By the Krein-Rutman Theorem all other eigenvalues of
(8) satisfy ’/\i,;@’ < Ao, -

The effect of increasing e (starting from 0) is that (£ — K, )," becomes ‘more’ positive
until it becomes singular for e = Mg, , that is, £ — ¢k has a zero eigenvalue. The
corresponding eigenfunction is the eigenfunction ¢g i, of (8).

e The negative part.
The effect of increasing e (starting from 0) is that (£ +eK_),"' becomes ‘less’ positive
until positivity breaks down at some A, x_. It means that for larger ¢ there are right hand
sides that are positive but the corresponding solution is not. This number is in general
not an eigenvalue. Note that for a local operator K_, that is (K_u) (z) = a(x) u (x) with
a € L7(Q) and assuming ¢ > n and a > 0, one has A\, x_ = oo.

To state the main result we shall also need the notion of a strongly positive operator. Gen-
erally an operator A : C(£2) — Cp(f2) is called strongly positive if

f € C(Q) with 0 < f # 0 implies Af (x) > 0 for all z € Q.

We will even show, assuming some more regularity, that the operators we are interested in
behave near the boundary as in Hopf’s boundary point lemma and will use strongly* positive
in the following corresponding sense.
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Definition 2 We call an operator A : C(Q) — Co(Q) strongly* positive if for every f € C(8)
with 0 < f # 0 there exists ¢y > 0 such that

Af (z) > croo () for all z € Q,

where ¢g is the first eigenfunction of (7).

We will say u € Co(§2) satisfies
u>"0

if there exists a constant ¢ > 0 such that u(x) > cdo () for all x € Q.

In order to be able to use strongly® positive we assume Kiu € L9(Q2) with ¢ > n for

u € C()(Q)

Theorem 3 Let €2 and L be as above. Then there exists co . > 0 such that the following holds.
IfK=K, —K_, with I, and K_ positive operators satisfying Assumptions A and B, and

14l + K-, < cac, (9)
then (L —K)y': C(Q) — Co(Q) is strongly* positive.
Remark: The formulation of this theorem uses a bound for the nonlocal term by a uniform
estimate, that is, an estimate that is just depending on the ||-||,-norm of X} and K_. For fixed

K, and K_ in general much sharper estimates can be found. The more appropriate formulation
is given as a corollary.

Corollary 4 Let 2, £, K| and K_ be as above. Then there exists cacx, >0andcarr. >0
such that if

t S
_I_
(E oW N o Wol ol

then (£ —tKCy +sK_)y" : C(Q) — Co(Q) is strongly* positive.

<1,

Remark: If £, and K_ are local (multiplication) operators, then cq rx, is the principal
eigenvalue of (8) and cq £ = o0.

3 On the norm |||,

First we will explain why this norm appears.

Lemma 5 There exists a constant \. such that if K is a positive operator satisfying Assumptions
A and B, then
g1 ~1
Ly KLy < ANl Lo (10)

meaning that for all f € C(Q) one finds
f >0 implies (Lo'KLGTf) < XK, (Lo f) -

Moreover, the spectral radius v of Ly 'K satisfies v < M. || K], .
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Proof. Let Gq , (x,y) denote the Green function for £ ! and suppose that K is an integral
operator. The operator Op = L, llC[,a ! equals an integral operator with kernel

Kop(o)= [ [ Goelw2) K (50) G (wey) deds,
ze S

In order to prove (10) it is sufficient that for all z,y € Q one has
Kop (x,y) < Ac | K|, Gac (z,y) -

We use the following two-sided estimate for a Green function on a bounded smooth domain in
R™ with n > 3. See Zhao ([19]) for £ = —A, Ancona ([1]) and Hueber-Sieveking ([13]) for the
equivalence of ‘arbitrary’ Green functions (assuming some regularity conditions on £), or [18§].
There exist c¢1, ca > 0 such that

c <

GQ,L (xv y)
d(z)d(y)

2—n __»
oo " min (1, L

< c9, (11)
)

where d denotes the distance to the boundary 92 :

d(x) = inf {|lz —y|;y ¢ 2} (12)
Now it is sufficient to prove that there exists a constant ¢ such that for all x,y €

29 0 )
/ / Y 2K (z,w) dzdw <
- ! *w—y|"

2eQweR

< c||K|. |z — > " min <L%>. (13)

The last estimate is equivalent with showing that
\sz:fy\n72 mm(l %) mm(l %)
sup / / PR L LK (z,w) dzdw < ¢|| K|, .

d(z)d
z,yeQ mm( —‘(z)y(‘y)>
2EQWEN

Using d(z) < d(x) + |z — z| and a similar estimate for d (w) one finds

mm(l J‘EM‘%)J mm(l ﬁ%) ’ — y’Q
(1 2Eg) =T A=y

and hence (13) follows with ¢ = 1. The estimate in the Lemma follows with A\, = c%cfl.

The last statement we prove by contradiction. Assume that v > \. || K|, . Then the Krein-
Rutman Theorem, since Ly K is positive, compact and has a positive spectral radius, implies
that v is the principal eigenvalue of £y LK. The corresponding eigenfunction ¢o ik is positive and

hence
v Lo Koo = Lo KLy Kok <A | K|, Lo Kok,

a contradiction. O
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4 Proof of the main result

4.1 A formal asymptotic expansion

We set ¢ = 1 and we proceed formally first. Using the inverse operator of £ with Dirichlet
boundary condition we find that (1) is equivalent to

w= Ly Ku+ Ly f or uw=(T—Ly'K) " Ly'f.

If the series converges we have
[o0)

S (e'0)" £ty

k=0

U

If K is a positive operator then a well defined series would imply that (£ — K), Lisa positive
operator. If K_ # 0 then the series might still be well defined but positivity is not obvious.

Note that even the even powers ([,6 llC)k do not have to be positive.

Remark: For £; = 0 and K_ # 0 the first two terms in the series >/~ ([,a llC)k7 namely
T—-Ly 1K are not positive for any nonzero K_. Indeed, for f € C(Q) with 0 # f > 0 and
support (f) # €2 one finds by the strong maximum principle for £, ! that (I — Ly llC,) f(zx)<o0
for = € Q\ support (f) .

For a sign-changing or negative K we have to separate positive and negative part. Again
assuming that the series converges it can be done as follows :

(£-K)y' = (T+(£- /c+)51/c,)71 (L-Kp)y' =

(~(e—Kk0 k) (K=

o

o
Il

0

- (i (<£—fc+>01/c)2’“> (T (K K ) (LK) (14)

k=0
In order to show positivity for the solution operator (£ — )y 11t is hence sufficient to show that
e the series Y o ([,6 1/C+)k converges;
) - 1 2%k
o the series ) 7 <(£ —Ki)o /C,> converges;

e the operator <I —(L—=K )" /C,> (L—Ky)," is positive.

4.2 The series for the positive part
Lemma 6 Let A\, be as in Lemma 5. If A\, |K4]|, <1, then

1o (LK) <1 and (£—Ky)gt =30 (£ K1) £4%

2. (L— /C+)61 is strongly* positive and compact.
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Proof. We may suppose that K, # 0. The series Y ([,6 1/C+)k converges if the spectral
radius satisfies v ([,6 1/C+) < 1. Since the conditions imply that £y 1/C+ is positive and compact
and has a positive spectral radius, the spectral radius equals the inverse of the first eigenvalue
for (8). The assumption A, ||K||, < 1 guarantees v (£ 'K, ) < 1. Hence

o0

(L—Ki)o' =3 (Lot ot
k=0

is well defined and £, ! being strongly* positive implies that Yo ([,a 1/C+)k Ly 1 is strongly*
positive. O

4.3 The series with the negative part
Lemma 7 Let A, be as in Lemma 5. If

A+ AR, <1,

2k
then v <(£ —Ky)! /C,> < 1 and hence >}~ <(£ —Ki)o! /C,> is well defined and strictly

positive.

Proof. We may assume that X_ # 0 and have to distinguish two cases.

If i = 0 then the series converges if the spectral radius satisfies v ([,6 llC,) < 1. By
Lemma 5 we find that v (£y'K_) < A ||K_||, and we are done.

If K4 #0and A, ||Ky|, <1 we use that

(L— K)o Ko =3 (oK) Lok
k=0

Set v* = v <(£ —/C+)61 /C,>. Both £61K+ and L',al/C, are positive operators. Moreover,

Ly 1K _ is compact and since we have that for any positive function w either Ly YK_u>*0or
[,allC,u = 0 we find that there is a ¢ > 0 such that [,alle ¢o > cpp and hence that v* > 0. By
the Krein-Rutman Theorem v* is an eigenvalue with a, even the only, positive eigenfunction.
Let ¢* denote the corresponding principal eigenfunction. Since ¢* > 0 and since ¢* = L L
withu="> 7, (/C+£61)k K_¢* € L7(Q) and u > 0, we have that

[o0)

VOt = (LK) K Lotu= Y (Lo Ky)" LK Lotu <
k=0

[e%e} . /\ IC? * *
<3 el A e, gt = e Rl g

P Ae I
Hence
e o AelE]l,
L= Ky
The series in the lemma converges if
Ae I,
T, <!

which is equivalent with
A I+ A IR [l < 1.
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4.4 The operator is positive
Lemma 8 Let A, be as in Lemma 5. If

A I+ A IE-l, <1 (15)
then (L — /C)al is a strongly* positive operator.
Proof. Using the expression in (14) and the previous two lemmas it is sufficient to show that
(T- (=K' K ) (£=K1)y'

is a stongly* positive operator. In other words, we have to show under the condition (15) that

for all u € C(Q)
w> 0 implies (£—K4)g u> (£— K)o Ko (£—Ki)g ' u.

Strong* positivity will follow from the strict inequality in (15). Since

(=K' =3 (6K ) 45
k=0

we findwith Lemma 5 that

(L—Ky)g K- (L—Kp)g' =D > (£ oK) £y (g Ky) " gt <

k=0 m=0
<A || K-, ZZ Lo ) eI 1L)™ 24" =
k=0 m—0
Ac | K| 1
= 2Bl (p ke
T L 7
One concludes by using (15). O
5 Some examples
We start by considering local operators
Ku (@) = p (@) u(z). (16)

Lemma 9 Let p > n. For K as in (16) we find that there is a constant czgz such that for all
pelr(Q):
1L, < lesllio-

Proof. Since for ¢ < "5 one has

— L < ¢4 independently of y, we find straight-
=yl L(Q) ’

forwardly by using

2=yl |z tz-y]
ey < el = el T
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1 1 _
thatfor;—l—a—l

Il = sup [ i () W (o2 2) d =

z,yeN
Z€Q

_ z—y["? lz—y|™ )

= su pr (2 < — — + — — 1 dz <

:c,yepQ / (2) 2= P z—y[" 7 z—a" T a—y T
z2eQ)

<c¢ su z < L+ L4 ‘mfi‘, + ‘ng‘, )dz <
= m,yfg/%() N P PR A
zeQ

< g e o

O
Let ¢ € LP () for some p > n. Using the lemma above one recovers Hopf’s boundary point
Lemma for
—Au—pu = f in{,
u = 0 on 0€,
where ||¢| Lr(q) 18 small, but ¢ not necessarily bounded above pointwisely.
An important family of operators that are allowed are the following. By results of Griiter and

Widman ([12]) one finds that a second order uniformly elliptic operator with Dirichlet boundary
conditions and with quite general coeflicients has a Green function satisfying

0<G(x,y) <kle—y>". (17)

Also other homogeneous boundary conditions such as Neuman (a—iu = 0) or Robin, assuming
that the spectrum lies in the right half plane, have a Green function satisfying a similar estimate.
Such an estimate can be proven similarly as in Theorem 4.6.11 of [5]. See also the remark on
page 89 of [5].

Lemma 10 If K is a integral operator with kernel such that for some ¢ > 0

K(z,y)=|z—y|" " M (z,y)
1
and M € [P (QQ) with £ > max {1, —} , then for some constant ngzﬁ
n 3

1Kl < e 1M1l o2y -

Proof. We will distinguish four areas:
L zweQsuchthat |z—2|<flz—y| and |w—y| < 5lz—yl;
I z,weQsuchthat |z—2|<flz—y| and |w—y|>%|z—yl;
II: z,weQsuchthat |z—2| >3]z —y| and |w—y| < 5lz—yl;
IV: z,weQsuchthat |z—2| >3]z —y| and |w—y|>3%|z—y|,

and in each of these four cases we will first estimate the explicite part of the integrand:

e—n lz—yl -2 1 z—y|? —
|2 = wl e—2lw—y] + w1 ) = ()
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ad I. Using |z — w| > 3 |z — y| and ]x—y]QE%]z—wa—y] we find:

—9
<*) gn—e ’x B y’6 ’x B y’6
B o= 2" Plw—y|"? Jp—2"  w -y
n—e 10’% _y’6
— n—1 n—1
|z — 2" Jw —y|
ad IL. Using |w —y| > 2 |z — y| we find:
%) < 3n72 1 + 3n71 ’x - y’
( ) — n—e n—2 n—e n—1"
|z — w| |z — 2| |z — w| |z — 2|
ad ITI. Using |z — x| > 3 |z — y| we find:
n—2 1 n—1 ’x _y’
(x) <3 — +3

n—e n—e n—1"
|z = w|" " Jw -y |2 —w|™ " Jw -y

ad IV. Using |w —y| > % |x — y| and |z — 2| > 3 |z — y| we find:

10
’Z o w’nfs ’x o Z’n72 .
Since for ¢ satisfying ¢ (¢ —n) > —n and ¢ (1 — n) > —n, that is

n n
q<min{ ,—},
n—ecn—1

we find that there exists ¢, .0 > 0 such that

dwdz <
n—e n—1 —
|z — w| |z — |

2eQwWeR

<*) < 3n72

zeQ) wWe L

independently of x,y € €. Similarly all other terms can be estimated and one finds by Holder
that

|K]|, = sup / / |z —w|* " M (2,w)] ¥ (x,y; 2, w) dwdz < C/q’E’Q HMHLP(QQ)

z,yeN
2€QWEN

for p such that % + % = 1. The restriction on g implies that p > max {1, 5’1} n. O

Example 2 Consider the system

—Au+av = f in€,
v = 0 on 09,
(-A+1v = u inQ,
E%v = 0 on o€

Let p > n. Then the following result holds.
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If HaHLp(Q) is sufficiently small then 0 £ f > 0 implies u >* 0.

Note that there is no sign condition for a. This result follows by using v = Gy (u) , where
Gn (u) is the Green operator (—A + 1)L, . . This operator has a kernel G (z,y) sat-
isfying

Gn (z,y) = g(z,y) |z — y[>"
with g € L™ (Q?).

Example 3 Consider the biharmonic boundary value problem

(A)Qu—l—g(-,u,Du,Au,DAu) = f in€,
u = Au 0 on 09,

' O

g(-,0,0,0,0) = 0. Suppose that v € C* (Q) is a solution. Then the following holds.

where Du = <%ai,... 0 ) . Assume that g € C! (Q X RXR" xR x R”) and that
1 0x2

If m is sufficiently small and |¢'|,, < m then 0 # f >0 implies u >* 0.

It is shown as follows. Defining v = —Awu we obtain

v 0 on £},

{ —Av+ H(x) - (Gv,DGv,v,Dv) = f inQ,

where G = (—A), ! , the Green function for the Poisson problem,
1
H(z) = / Dyg (z,su(x),sDu(x),sAu(z),sDAu(x)) ds
0

and D, denotes differentiation with respect to the last 4 components. The bound on ¢
implies that H is small and hence that f > 0 implies v > 0. The classical maximum
principle implies that v = Gv > 0.

In the next example we fix = By (0) = {z € R";|z| < 1} and consider

Ko (z) = u(y) do, (18)
where ]é is the average:
| u(|z|0)deo
6]=1
doy = —————.
wly)doy T 1do
|y =|a| lo|=1

The operator K is artificial but it shows an operator that cannot be written by means of a kernel
K (z,y) on Q2. Before we state the result for this example we need the next lemma.

Lemma 11 Let K be as in (18). Then |K||, is bounded.
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Proof. Let us denote w,, = f\e\:l 1df. We have

K1 = sup [ K@ (g2 ) (@) do

x,yefd
Z2€N
w, ! sup / / (z,y; 2,|2]0) dbdz =
z,y€ef2
z€Q2|0|=1
=w, ! sup < \Sﬂgy\n*2 o+ \ﬂi*y\n 1) d0dy —
" ayen e—a* 2|zo—y" 2 T Je—al" zlo—y"
2e92 |0]=1
=1 |z— y\” ? o \m y\
x,yefd ‘9 ;‘L‘ ‘
zeQd |6|=1 o/=1
We first estimate the two inner integrals:
: 2
d0 snf
T g =€ — ds = (I;)

o~

10]=1

de n—2
| == T ds=(IL)
|6]=1 ’0_

2]

2]

Writing R = ’1 %’ we obtain

1
B e 0(1) for R € (0,1],
Yo (t?+1) 2 O (R* ™) for RE€[1,00);

) B e i O (logR™Y) for Re (0,4],
i) = ¢ | ———Fdi=
2 (12 + 1) @ (Rl’") for R € [%, oo) .

o

Hence the first part of (19) is estimated as follows

wgl sup / eyt y‘ /
z,YeN 2" ‘97

Z€Q 6)=1

'n.f? dZ S

n—2 n—2
<c sup / 7‘:5‘;3{‘2‘2‘“,2 <1 + BD dz < c sup / (Jz— Z‘HzH‘yD)n zdz <

lz—a 2" (2| +y]

z,yeN z,yeN
z2eQ) z€Q
< su < + 1,>dz<oo.
= e o e
zeQ)

The second part of (19) we split in two:

2€0Q 6)=1
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<csu L+ L lo 1—M71dz
= p ‘Z‘n71 713‘77.71 g ‘Z‘

x,yefd [z
) zeQ)
slyl<lz|<2]y]

and by Cauchy-Schwarz with p = %Z:% and ¢ = 2n — 1 we find that the integral is bounded

uniformly in x,y. Finally we find that the remaining integral in

_ 1 lz—y|"™ de
(ITy) = w,, " sup / PR ot dz <
z,yeN ‘*—

Z‘E‘Q o|=1 E
Y 1
Z3

n 1-n n—1
< lz—y| vl < (z—z[+|z|+]y])
= e / et (L El) dzse s [ oEEe T 4
2€Q 2€Q2

is bounded uniformly in x, y. O

Example 4 Consider
—Au+¢eKu = f in B1(0),
u = 0 ondB;(0),

with K as in (18). From the last lemma we find:
if ngHLO@(Bl (0)) i sufficiently small then 0 # f >0 implies u >* 0.

Let p > n. The result even holds if [|¢|| 1»(p, (g)) 18 sufliciently small.

6 The associated eigenvalue problem

We now consider the special case where K is a bounded integral operator with a separable kernel
of the form
(Ku)(a) = a(e) | b)uty)ay,
Q

and study the spectrum of the corresponding operator Lu — Ku — here £ will be assumed to be
self-adjoint, so that the results from [10] can be applied directly. Note that K is not required
to be self-adjoint, and so the resulting operator will not, in general, be self-adjoint either.
Although this is a very particular case, it is quite important as it is the type of linear operator
that will arise naturally when considering the linearized eigenvalue problem associated with a
nonlocal reaction—diffusion equation of the type

ug + Lu = f(u,u),

where
u:/g(x,u(x,t))dx.
Q

The function a(x)b(y) clearly falls into the class of kernels considered if, for instance, a and b
are assumed to be continuous in . We shall now consider the associated eigenvalue problem
and give conditions for the existence of a positive eigenfunction associated with the smallest
real eigenvalue. Existence of such an eigenfunction is ensured by the Krein—Rutman Theorem,
provided that the operator has a compact inverse which is strongly positive. Thus Theorem 3 au-
tomatically implies that if the integral term has a sufficiently small norm then the first eigenvalue
will have an associated positive eigenfunction. We shall now give a result which is independent
of the norm of the nonlocal term, and which applies even when the operator is no longer positive.



Freitas and Sweers 15

Proposition 12 Assume that the operator L is self-adjoint and consider the operator A defined
by

Au = Lu — a(x) /Q b(y)u(y)dy.

Let vy denote the first (positive) eigenfunction of (7). Then, if a is positive and

/Qb(y)vo(y)dy > 0,

there will exist an odd number of real eigenvalues of A which are smaller than \g. Furthermore,
the eigenfunctions associated with these eigenvalues can be chosen to be positive. In particular,
there exists a first (not necessarilly simple) eigenvalue which is smaller than Ao and which will
have associated with it a positive eigenfunction.

Proof. From the hypothesis we have that

aghy = /Q a()vo () da /Q b(w)vo(z)dz > 0.

It now follows from the results in [10] that the operator A will have an odd number of real
eigenvalues A4 ; < Ag. Let A be one of these eigenvalues and ug the corresponding eigenfunction.
Then the operator (£ — \I), L will be positive, and as

/Q b(y)uo(y)dy # 0

(for otherwise A would have to be an eigenvalue of the local operator £), it follows that ug can
be chosen in order that the integral term is positive. This, together with the fact that a(z) is
positive, implies that ug > 0 in €. O

Remark: Clearly the argument is able to show that the eigenfunction can be chosen to be
positive does not depend on the special form of the nonlocal term and can be applied once it is
known that there exists in fact a real eigenvalue to the right of Ag.

In the case where K = K, that is, the perturbing operator is positive, then the results in [16]
imply the existence of a principal dominant eigenvalue g, that is, a real simple eigenvalue whose
eigenfunction is in the cone of positive functions, it is the only such eigenfunction, and all other
eigenvalues will be to the right of A\g. Here, because K is not necessarilly positive, there will not,
in general, exist such an eigenvalue as the following example shows.

Example Consider the eigenvalue problem

' — ekil ay sin(kmx) . kil by, sin(kmy)u(y)dy = Au (20)
w(0) =u(1l) =0

Due to the form of the nonlocal term, all but the first three eigenvalues will remain
constant for all real values of the parameter €. To determine the dependence of these three
eigenvalues on ¢, we note that it is possible to reduce (20) to a finite-dimensional problem
of the form

(D —elM)v = Av,
where
7 0 0 arby aiby aibs
D= 0 4’71'2 0 and I'= a2b1 a2b2 a2b3
0 0 9’71'2 as b1 as b2 as b3
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The pole-assignment Lemma (see [6], for the use of this result from control theory to
this case), ensures that it is possible to place the eigenvalues of the matrix D — eI’ in
the complex plane as desired (not counting multiplicities), by choosing the rank-1 matrix
I' appropriately. However, this result does not guarantee that it is possible to do so
while keeping the function @ in Proposition 12 positive. We now show that this is indeed
possible and that as £ increases we go from one situation where there exists only one
positive eigenfunction to the case where there are three eigenvalues to the left of the first
eigenvalue of the local operator, and thus to a situation where there are three positive

eigenfunctions.
Let (a1, a9, a3) = (2,1,1) and (b1, be, b3) = (1,—10,10). Then
2 =20 20
=1 —-10 10
1 =10 10

and, as ¢ is increased from zero, the first three eigenvalues will start moving in the following
way: Ao (¢) and Ag (¢) will decrease while A (¢) increases. If we continue increasing e, at
some point A; (¢) and A2 (¢) will collide and become complex. If € is increased further, then
this pair of eigenvalues will become real again, but will now appear below Ag (¢) which is
smaller than Ao (0). As the function a(x) is positive for this choice of (a1, az, as), it follows
from the Remark after Proposition 12 that the three corresponding eigenfunctions will be

positive. 120
\19&
80
60
40
4
-5 5 10 15 20

The functions € — Re); (¢), 7 = 1,2, 3.

200

-200

-400
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The same but for a larger range of .
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Figure 1: The functions \; : R — C of the last example.
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