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Positivity for a Strongly Coupled Elliptic System by
Green Function Estimates

By Guido Sweers

1. Examples
Consider the elliptic system

—Au=f—-—eq.Vv inQ,
u=v=0 on 382,

where €2 is a bounded domain in R” and with sufficient regularity for f, g, and 2. We are interested
in the question, )

When does f > 0 imply u > 0?
Suppose 2 allows a Green function G (-, -) for —A. Then, with the notations
GN@ = [ G My d DY) = gV F ),
the differential equations can be replaced by the following integral equation for u:
ux) =G(f)x) — (G DG w)(x).

After solving for u we get v by v(x) = G(u)(x).

By exchanging the order of integration one finds

G D G)u)(x) = fg ( [ 662996y dz) u(y) dy.
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Then, at least formally, we can write

u= (1 +Z(—egvg)")gf.
k=1

If one can show that there is M € R, such that, uniformly for x # y in Q, both

fG(x,z)G(z, ydz < MG(x,y) .
Q

’ [ 66 2a@.9.66vdz| < MGGy @
Q

hold, then it follows for &¢ < M ~2 that the series converges pointwise. Moreover, from the positivity
of the Green function we find for £ < %M‘z that u > 0if f > 0,and even ¥ > O in Q if

0#f=0.

In a similar way, one may consider systems like

—Au=f-€eq.Vv inQ,
u=v=0 on 3%2, e

or

—Av=u in 2,

—Au=f—-¢cv inQ,
u=v=0 on 392.

The simplest system where estimates like (2) are necessary for positivity is the following:

—Av=f in €2,

—Au=f—€e(@Vv+v) inQ,
u=v=0 on 0€2.

Onefindsu = (G—e GDG—¢e G*) f.Forevery f > 0the function u is positive if ¢ € (—&, &)
withgg = sM ™"

Remark. Notice that ¢ does not depend on f. It is straightforward from the strong maximum
principle that there is positive £; (depending on f) such that u is positive for that f > 0. It is not
clear whether one can use a compactness argument to obtain a uniform .
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2. Introduction

We will consider elliptic systems of the type

Liu=f—-—¢eg(,v,Vv) inQ
Lv=f in (3)
u=v=0 on 92

where L, and L, are two (possibly different) second-order elliptic operators. We suppose that for
some functions /4 (-) and k(-) the following estimate holds:

gx,v, p) <h(@)v+kx)|pl forall (x,v, p) € Q@ x RT x R". (4)

The aim of this paper is to show the existence of a positive constant &) such that u is positive whenever
f is positive and € € [0, &j).

For n > 3 we may use the functions 4 and k from appropriate Schechter-type spaces. For
n = 2 we will use related spaces. See Simon in [17] for 2 = R".

For the proof we need pointwise estimates for the Green functions. The main estimate forn > 2
is an almost direct consequence of known results. These results were obtained by several ‘authors
with several regularity assumptions. For equivalence of Green functions and two-sided estimates,
see the articles by Ancona [1], Hueber and Sieveking [14,15], Zhao [21], and Cranston, Fabes, and
Zhao [8]. See also [19]. For the estimate on the gradient of the Green function, see the papers by
Widman [20] and Cranston and Zhao [9].

Forn = 2, estimates are obtained in [1,22]. The estimates are not sufficient to give the full result
as for n > 2. We will derive the two-sided estimate we need for Green functions in two-dimensional
domains. This we will only prove for elliptic operators with constant coefficients in front of the
derivatives.

Second, by using the estimates for the Green functions, we will give elementary proofs of the
so-called 3G-Theorem both for n > 2 and n = 2. For n > 2 see Cranston e.a in [8]. The 3G-
Theorem gives bounds for G (x, z)G(z, y)/G(x, y). By elementary means we will also derive a
bound for G(x, z)VG(z, y)/ G(x, y). Estimates of this quotient can also be found in [9].

In Section 3 we consider dimensions > 3 and in Section 4 dimension 2. In Section 5 we show
some relations with probability theory.

Some systems like (1), but where g does not depend on Vv, so-called weakly coupled systems,
have been studied in [18, 2, 3, 4 and 19]. One cah use the result for (1) for more generally coupled

systems. This is done in [11, 19, 4] for some classes of weakly coupled noncooperative systems.
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Notations: @ A b = min(a, b), a V b = max(a, b),

the distance of x to 92: d, = inf{|x — y|; y € 82},
the diameter of 2: D% = sup{|x — y|; x,y € Q}.

By c¢; we denote constants that are independent of x, y, or z. If necessary we suppose x, y, and z do
not coincide.

3. In 3 and higher dimensions

3.1. Main result for n > 3. We start with the regularity assumptions.

(a) L is auniformly elliptic operator with Holder-continuous coefficients, that is,
& 9? “ a
L=-) a;()——+ ) b(-)— +c(), 5
;1 1O%man ; 105 0 (5)
with for some ¢, c; > 0,y € (0,1]: -

als <) ai;(x)EE < colE forallx € Q, E€R", .

ij=1

a;(-),bi(-),c(") € C*7(Q).

Moreover, assume that c(-) > 0.
(b) The domain €2 is an open, bounded, and connected subset of R” and 82 € C"'.
(¢) Define for ¢ € (0, n] the norm

1Allg = sup f It = Y[R ()] dy, ©)
xeQJIQ

and & € My if and only if ||h]ls; < 0o . The space My is related with the Schechter spaces,
which are defined on R”. See Definition A.15 of [17].

Ifpe(nv?, ool then L,(2) C M,,.

Theorem 3.1. Suppose L, L,, Q have the above regularity. Suppose that (4) holds with
heMyyandk € M ;.

~ Thenthere is g9 > 0, such that for all € € [0, &) and for all nonzero f > 0 one finds that the
solution u of (3) satisfies u(x) > 0in Q.
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Remark. The proof yields u(, > (1 — &/&o)u(,, and hence a strong minimum principle,
that is, —(3/3n)u > 0 at 3S2, with n the outward normal.

3.2. Known estimates for n > 3. By Hueber and Sieveking in [14,15] and Zhao in [21]
there are ¢, ¢; > 0 such that the Green function G, for an elliptic operator L as above, satisfies

d.d - ddy
k=P (14 gZ0) s e (1Ag ) @

forallx, y € Q.

By a theorem of Widman in [20] there are ¢;, ¢; > 0 such that

d, d
GL(x, y) < cilx — yP" (1 A A2 ) ®)
lx—yl |x—yl

and

| d
VGetx, )l < el =31 (14 =2 ) ©
lx — ¥l

for all x, y. € €2. Estimate (8) can also be obtained from the right-hand side of (7). .

3.3. 3G type theorems for n > 3. In [8] Cranston, Fabes, and Zhao show a bound for
G(x,2)G(z, y)/G(x, y) in what they call the 3G Theorem. Using the result of [14,15] we need
more regularity of the boundary, but we will also obtain a stronger estimate that might be interesting
in itself.

Lemma 3.2. Suppose G;(-,-),i = 1,2, or 3, satisfies (7) and (8). Then there is a constant
M, such that for 0 < T < n — 2 and disjoint x, y,z € Q:

G1(x,2)Ga(z, y)

<M (Ix — 27"+ |y — 27" ) |x — y[". 10
Gatry) 1 ( y ) lx — yl (10)

Corollary 3.3. With G, as above, one finds for h € My, with? € (0,2]ifn > 4, and
% €[1,2]ifn =3, that

z| < coMylhllsqalx — y>° forall x £y e Q. (11)

/ Gl(x,Z)h(Z)Gz(z,y)d
Q Gi(x,y)

Proof. Firstassumethatz € Q, := {z € Q; |x —z| < |y — z|}. Forz € @, we find
x =yl < lx—z|+1z—y|l <2|y —z|.
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Ifjx —y| > %(dx V d,) we get from (7) and (8) that for all z € Q

Gl(xs Z)GZ(Z’ )’)

dx - " z

< clx—z*™" (1 A ) lz—yI™" d: dy

G3(x9 }’) |x—z| |x—}’|_" dx dy
2d, -y
< clx—zF" I = )|
di +jx —z| |z — y|”

< 2lx — z|2‘"|—x_—y|— . (12)
|z —ylI"

Now assume that |x —y| < 1(d,Vd,)andfrom |d,—d,| < |x—y|itfollowsthat|x—y| < d,Ad,.
Using (7) and (8) we get the estimate

Gi(x, G2z, y) _
G3(x’ }’) ‘ -

2—n |x - yln_z
|z — yj»-2

clx —z| forall x,y,z € Q. 13)

We find (10) for0 < 7 <n —2and z € Q,, since

Ix — y|*? Pyl - y|mT k= yl’z,,_2_,
lz=y"2 " lz=ylF lz—y|"2" T |z —x|°

(14)
Similar estimates hold with x replaced by y, and we get (10) for z € 2\ £2;. O

Lemma 3.4. Suppose G (-, ") and Gs(-, ) satisfy (7) and (8), and G;(-, -) satisfies (9).
Then there is a constant My such thatfor0 <t <n—2andx,y,z € Q:

G,(x, 2)|V, ;
l(x z)| G2(z y)‘ < M2 (lx _ zll—n-—t + |y _ le—n—r) Ix — ylt- (15)

Gs(x, y) -

Estimates with T = 0 in Lemma 3.2 and 3.4 above can be found in [9].

Corollary 3.5. With G; as above one finds fork € My, with?® € (0,11ifn > 4, and
¥ =1ifn =3 that

f G1(x, 2)lk(D)IIVG2(z, y)
Q

dz < csM, ||k —y|"?  forall Q.
G, y) z < coMy|lkllsalx — Yyl orallx # y € (16)
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Proof. Using (8) and (9) one finds for |x — y| > 3(d; V d,) that

Gi(x, D)IV.Ga(z, ¥)|
G3(x’ )’)

lx —z|>™"|z — y|i" ( d, d.d, ) ( d, )
<c — A > 1A
|x — y|="d, d, lx—z| |x—z |z — ¥l

forall z € Q,and if |x — y| < 1(d, Vv d,) that

G1(x, D)IV.G2(z ) _ Clx —z|* "z — y|i
Gi(x,y) - jx — y|*

forall z € Q.

Define 2, as previously. For z € £2;(17) can be estimated for0 < 7 < n by

Ix—zP Mz =yl 1 1 lx —yI" <2 lx=yr

lx —yI=" x—zilz—y| = Ix—z[" Yz = y|" T |x —z|"! |x — 2|
Forz € 2; and 0 < 7 < n — 2 we get for (18)

|x — z|>")z — y|'=" |x — y|*=? lz =yl _ 22 lx = yI°
lx — y|>-n Tlx-z Yz -yt e —z] T x—z| T x —2zfF

Forz € Q\Q;,0 < 7 < n,andusingd, < d, + |z — y|, (17) is estimated by

127

17

(18)

19)

(20)

= 2Pz =y d, (1 ! )< e =yl 2d,

-— A
lx —yl" |x —zP \dy |z -yl
2n+1 |x _ ylr

ly —zi*' |y —z|*

Forz € Q\2,,0 < T < n — 2, (18) is estimated by:

lx —z|>™z — y|'™" < 22 |x -yl
Ix — y[>* Tly—z|* ]y —zI

3.4. The proof of Theorem 3.1. We can write the solution of (3) as

u(x) = fnGl(x,)’)f(y) dy —G.fnGl(x,Z)g(z, v(2), Vu(2)) dz.

|x —z|*lz = yI"'dy + |z — y|

@1

(22)

(23
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By condition (4) and using the positivity of f, G (-, ) and hence of v we find that

uw 2z [ G0y = [ Gitx DhiEE) +K@ITuE)) dz
> [ G nfo)dy
Q
~& [ 61,9 [((B@G1(z ) + KQIV.GaG NS 0) dy dz
Q Q
Gi(x,2) . -
> [Guey(1-e [ 2 3 (DGa(e, DIV Gate PDAz) £5) dy
> / Gi(x, ) —eM)f(y)dy > 0fore € [0, &), x € R, 24)
Q

and with M = ¢, Mi||h]lo1 + ¢1 Mok, 80 = M7

The last step follows from the assumptions on / and k and Corollaries 3.3 and and 3.4.

O
4. In 2 dimensions
4.1. Main result for n = 2. Again start with the regularity assumptions. '
(a) L is an elliptic operator with
2 82 2 P
L=-Ya;——+Y bi— +c(), 25
;ajax,-ax_,- 2 bige+e0 @9
1 12 )
Zl(aij) b|* < c(-) e C().
(b) The domain £2 is an open, bounded, and connected subset of R? and Q2 € C!7.,
(¢) Define for # € (0, 2] the norm
eD% _
Il = sup [ 1o Ix = Ik O) I dy, 26)
xeRJQ lx — yl

and h € Mj, if and only if |||, < oo . Compare with Definition A.15* of [17]. If p €
(2971, 00], then L,(Q) C M;, .

- Theorem 4.1. Suppose L\, L,, Q have the above regularity. Suppose that (4) holds with
heM;, andk € M.
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Then there is €y > 0, such that for all € € [0, &y) and for all nonzero f > 0 one finds that the
solution u of (3) satisfies u(x) > 0in Q.

Remark. In case that the function g in (3) satisfies
g(x,v,p) <cvforall (x,v, p) € R x R* x R?
we may combine the result of Ancona in [1] and the estimate of Zhao in [22] and find the result

of Theorem 4.1 for uniform elliptic operators with nonconstant coefficients as in dimensions larger
than 2.

4.2. Estimates of the Green function for —A when » = 2. From the explicit Green
function for — A on the unit ball B in R?, namely

1—|xP)A - |y?
Gate, ) = (@m) " tog 1+ LA )) , @
lx — yl
we find the following estimate (withc, = land ¢, = 4if Q = B):
d.d dd, '
(4m) "' log (1 + ¢ . 2) < Galx,y) < (4m) 'log (1 + Cz—y?) : (28)
lx =yl lx =yl .

Lemmad4.2. With Q adomaininR? as in (b), the Green function on 2 for — A satisfies (28).

Using this result for the Laplacian we will prove the estimate for L, with the assumptions above,
in Section 4.5.

Proof. (i) First assume that €2 is a simply connected domain. We will apply an idea that
Riemann used for the mapping theorem named after him. See [12, p. 399] or [5). Let xo € $2 and set
u(x) = 2w Ga(x, xo). Then u(-) is harmonic in Q\{xo} and the extension of u(-) + log | - —xg|
is harmonic in 2.

Moreover, Vu # 0 in Q\{xc} since €2 is simply connected. Indeed, if Vu(x*) = 0, then
either the set 2; = {x € Q; u(x) > u(x*)} orthe set Qy = {x € 2; u(x) < u(x*)} has at least
two components. The maximum principle shows that a component of €2; contains xg, and hence
that there is only one component. So €2, has at least two components, Since the boundary of every
component of §2, contains part of 0€2 and 32 is contained in 3€2,, €2 has at least two components.
Hence €2 cannot be simply connected: a contradiction. :

Since 3Q is C'*” one finds u € C l”'(ﬁ\{x'o}) (12, Th. 8.34]. The strong maximum principle
implies that g—: # 0 on 32, and hence Vu # 0 in Q2\{xo}. Fix yo € Q\{xo} and define v the



130 Guido Sweers

harmonic conjugate of # (defined by the Cauchy-Riemann equations) with v(yp) = 0; that is,
v = [ (uts, 0 ds +usts, 0 d),
r

where I' is a curve in Q\{x,} from yg to x; v is defined up to a multiple of 27r. After identifying
R? with C one finds that f(z) = e “®~*®@ is holomorphic in £ and maps 2 conformally on the
unit ball B. From the properties of u it follows that f’(z) is well defined, continuous, and nonzero
on Q. Moreover, there is ¢ > 0 such that -

cd(z,d) <d(f(z),dB) <c7'd(z,0Q) forz € Q,
clzy =22l < |f(21) — @) S c7Mz1 — 22| forzy,z; € Q.
Since Gg(x, y) = Gg(f(x), f(¥)), one finds that both sides of (28) hold for G, (-, -).
(ii) The estimate from abové for doubly connected domains.
We start with the annulus in R?, A = {1 < |x| < 2}.
Set A; = {x € A; |x| < %} and A, = {x € A; % < |x]|}.

Lindel6f’s principle shows that

Ga(x,y) < Gpe(x,y) = Gp(x|x| %, yly|™) = Gp(x, y) forx, y € A\A, (29)

/

1 1
Galx,y) < Gas(x,y) = Gy (5"’ iy) forx, y € A\A,. (30)

Since d(z, 3B) < 2d(z,8A) for z € A\A; and d(z,02B) < 2d(z,3A) forz € A\ A, the
estimate follows.

Forx € A and y € A, (and vice versa) we use that G 4(x, y) is a bounded harmonic function
on A, X A,. By the maximum principle

Galx,y) <ceo(x,y) for(x,y) € A x A, (31

where ¢(-, -) is the first eigenfunction on A x A. Notice that do(x, y) = ¢o(x)¢@o(y) with @o(-)
the first eigenfunction on A. The estimate follows since go(x) < cd(x, dA) and |x — y| > 1/3.
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For general doubly connected domains €2 one defines a conformal mapping f from €2 to A that
is C'on Q and f’ # 0on Q. Indeed, if I") and I", denote the two disjoint parts of the boundary, let
u be the harmonic function on €2 that satisfies # = O on I'; and # = log(2) on I';, and define f as
above. The upper estimate follows as in (i).

(iii) Let 2 be multiply connected. Since §2 is bounded and has a smooth boundary, there are
at most finitely many holes. Let Sy, . . ., S; denote the (closed) bounded components of £2°. Define
the positive constant § = min{d(S;, S;); 1 <i < j < k} and set

1 .
Q,-=[xe$2;d(x,S,-)<§6]. )

We have to distinguish two cases: (1) x € 2; and y € §; withi # j and (2) otherwise.

In the first case |x — y| > %8 and the result follows from a similar argument as the one that
used (31). Replace A; x A; by Q; x Q;.

In the second case there is an index i such that d(x, S;) > %8 and d(y, S;) > %8 for all
J # i.Define the doubly connected domain 2* = QU {S;; j # i}. Notice that there is ¢ > 0 such
that d(z, 9Q2*) < c d(z, 3Q) for z € Q with d(z, §;) > %8 for all j 5 i. Then by Lindeldf’s
principle the estimate follows from Go(x, ¥) < Gg:(x, y).

(iv) The lower estimate for multiply connected domains can be obtained as fqllows.

Notice that there are simply connected domains £, §2,, and €3 with C'* boundary

and such that Q = Q; U 2, = ©; U Q5 = Q, U ;. Moreover, we can take these subdomains
such that Q\ 2, Q\Q,, and 2\ 2; are seperated with a positive distance, say §. Then for every pair
x,y € Qthereisi € {1,2,3} such that x, y € Q;, d(x, Q\Q;) > %8, andd(y, Q\RQ)) > %8
for j # i. The estimate follows from Gq(x, y) > Gg,(x, y). O

‘We will end this section with a technical lemma.
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Lemma 4.3.

! (1 (1 + % )+1 (1 + d )) - d.d,
4 |x — yi |x — vl 41x — y?

dxdy
<log{l+ m

<2(10g(1+ % 4 d:d,
= g{1+ Alog|1l+ A =) (32)
lx — ¥l Ix—yl lx — ¥l ,

Notice that the last expression can be estimated from above by a constant times the first expression.

Proof. Letx* € 9Q such that [x — x*| = d,. Fromd, < |y —x*| <d, + |y — x| it
follows that .

X xdx - X 2
1+ didy <1+d( +1y xl)<(1+—d—).

lx—y2~ lx — y|? lx — yl

Hence

1 <1+ d.d, )<21 (1+ s ) '
0g = 0g .
lx — y]? lx — yl .-

One finds the second inequality of (32) by replacing x with y and from the inequality log(1 +
a) <afora > 0.

To prove the first inequality of (32) we have to distinguish two cases.

(i) |x — y| < 3(d, v d,) and hence |x — y| < d, A d,. It follows that

d.d, 1 d, d,

log<1+ 2) > log 1+—(1+ )(1+ )

lx — yl 4 lx — yl lx — yl
1 d, d,
—log(l+(1+ )(1+ ))
4 Ix =yl lx — yl
1 d, dy
—(log(1+ )+log 14 )
4 Ix =yl lx — ¥l
(ii) |x — y| > 3(d. Vv d,). Since log(1 + a) > 1a fora € [0, 4] one finds

d.d,
log (1 + ==
lx =yl

v

v

1 dd,
4|x —y*
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4.3. An estimate for the derivative of the Green function for —A when n = 2,

Lemma 4.4. With Q a domain in R? as above, the Green function on Q for — A satisfies

1 d
IV,Galx,y)| <c (1 A 2 ) forall x,y € Q. (33)
Ix =yl Ix =¥l

Proof. We skip the subscript Q. Since G (-, y) is harmonic in Q\{y}, the Poisson formula
shows when x € B(xy, R) C 2 that

Gx,y) =

R2 —_— — 2 G 9
____lﬂ/ GG 4y fory € Q\B(xo, R).
3

2r R Bxo.R) |2 — x[?

We obtain after differentiating and setting xo = x

‘R _
V,G(x,y) = _/ €% Gy do,
7 Ja.Ry 12 — x|*
1 .
= —R3 (z —x)G(z, y)do,. (34)
b/ 4 3B(x,R) :

First suppose thatd, < 2|x — y|. SetR = %dx. Let x* € 32 be such that d, = |x — x*|.
Thend, < [z — x*| < |z — x| + |x — x*| = 13d, for z € 3B(x, R). And it follows from
=yl <lx—zl+lz =yl = dd + 1z =yl < }x =y + |z — y| that [x — y| < 2|z — y|
forz € dB(x, R).

With (28) and Lemma 4.3 we get

§dx
Gz, y)<c d: (1 A d ) <c-2 (1 A 24, ) (35)
|z — yl |z —yl |x =yl |x — yl

and from (34)

1 10R 2d
|V.G(x,y)] < —R27nR Rc OA y)
n |x =yl |x — yl

sl =r)
< 40c 1A . (36)
lx =yl [x =yl
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Now suppose that d, > 2|x — y| and take R = %Ix — y|. Then %dx <d, < %d,. Since
f(z — x)do, = 0, one has

[ (z — 0)G(z, y)do, = [ @ —0G@ y) -G, Yydo,.  (37)
dB(x,R) 3B(x,R)

From (28) it follows that for z € dB(x, R)

l4+crd,|z -y, \ ~
< ¢, 38
14 c dilx — y|™2d, c3 (38)

G(z,y) — G(x,y) < (4m) ' log (
where ¢; = (4r) ' log(5¢y/c;). Similarly,

G(z,y) — G(x, y) = —(am) " log(cy/c1). (39)

Using (34) we find
1 .
IV,.G(x, y)| < ;R’32nR Rey=4dclx —y|™" (40)

Inequality (33) follows sincedy > d, — |x —y| > |x —y|. - O

4.4. 3G type estimates when n = 2. Define p(t) = (log(e D®t™ ")) land Q; = {z €
Q;|x —z| < |y —z|}.

14

0.8 1

06+

041

0.2y
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Lemma 4.5. fthe functions G;(-,),i = 1,2, 0r 3, satisfy (28), then there is M > 0 such
that for B(x,y,2) = G(x,2)Gy(z, y)/G3(x, y) the following estimates hold. If |[x — y| >
1
=(d, vd)),

2 y

_ 2
E(x,y,2) < M p(jz — x)"! ||x ;'2 forallz € Q. (41)
z —
Iflx —y| < 1(d, v d,),
d, - :
E(x,y,7) <M log (1 + ) PUX—3D o iz e q. (42)
lz—x|/ p(lz —yI)
Hence there is M™ such that for all x, y € §2:
S(x, y.2) < M*—PLE =YD forallz € Q. (43)

p(lz —xDp(lz — yb

The last estimate is optimal; for example, for fixed z and € < %dz, there is m > Q such that

p(x —yD
p(z —xDp(iz = yD

Ex,y,2)>m forallx,y € Qwith|x —z| <&
y ZL

and |y — z| < e. N C )

Since p(|z — x|)~2 is integrable and since it follows from (43) and the inequality |x — y| <
2(|x — z| Vv |y — z|) that

E(x,y,2) <2M*(p(lz=x)7"+p(jz—yD7") forallx,y,z€Q, (45)

we find:

Corollary 4.6. With G; as above one finds for h € L™ that

f Gi(x, 2)h(2)G1(z, y)
Q Gs(x,y)

dzl <cM'||hllwp(x —y]) forallix#yeQ, (46)

and for h € M | that

j‘ G1(x, 2)h(z)G1(z, y)
Q GS(x1 )’)

dz| <c*M*|hl}, forallx#y€Q. 47)
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Proof. Assume z € Q. First we consider the case [x — y| > %(dx V d,). If, moreover,
|z —x| <d,, thenwehaved, <d, + |x — z| < 2d,. Using Lemma 4.2 and Lemma 4.3 we may
estimate by

, d N\
E(x,y,z) < Clog(l+ d ) d.d, (ddy )

lx —z|/ |z = y]* \Ix — y|?
d _ vl2
< 2clog(1+ x )'X y|2
lx —z|/) |z — yl:
lx =y
< aplz—xy o2 48)
|z =yl
If |z — x| >d,, thend, <d, + |x —z| <2|x — z| and
d. dd dd, \
E(x,y,z2) < ¢ 2 ( 2 )
lx —z| |z = y|> \|x — y|?
c d; 2|x"zldy|x_)’|2
T o lx—z| |z—y* d.d,
— v|? _ vl2 . )
= < 2 p(1z —x1) "—’Q'; (49)
|z =yl lz=y> <~

Now assume |x — y| < 3(d, V d,), and hence that |x — y| < d, A d,. Since z € Qi, we
also have |x — y| < |x — z| + |z — y| < 2|z — y|. Using lemma 4.3 and the inequality

log(1 log(1
ES ol + va) < og(l + ) for0 <a <band0 < ¥ <1
b " logl+2b) ~ log(l1+b)

we find

log(1 + —=)
C

log(1 +

=) log(1 + |y ,,
=Sy + log(1 + —=

|x —z|

E(x,y,z) <

Ix ] lx ¥l

d, ) 2 log(1 + 2|y Z|)

< clog(1+ Tog(l +
2

|x — z|

2Clog(1 + — 2|y z| log (1 + d, )
log(1 + = y|) lx — z|

4cp—(lu|—)—log (1+ d ) (50)
p(lz —yl) lx ~ z|

Ix YI
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To show that the estimate is optimal, one finds by Lemma 4.3 that there is ¢ > 0 such that

D% - € P>
cllog|2 log{1+4 log{1+
lx — yl |x —z| ly —z|

c p(x —yl
‘oz —xDp(lz =y

v

E(x,y,2)

(51

Lemma 4.7. Suppose G1(-, -) and G(-, ) satisfy (28) and G,(-, +) satisfies (33). Then
there is a constant M, such that forall x, y, z € Q

Gi1(x, 2)IV,G,(z, y)|

Gs(x,y) <My(p(x —z)7 Mz =y + x — 2| ™). (52)

Since
p(x —zD)7z = yI™ + lx — yI' <2 max{p(ls —z])7'Is —z| ;s = x ors = y}

we find the following:

Corollary 4.8. With G; as above, one has for k € M’{l that

/Gl(x,Z)lk(Z)llVGz(z,y)l
Q

dz <cM;||k||;, forallx € Q. (53
G3(x,y) 2" "1,1 96 y )

Proof. Using (28) and (33) it is sufficient to find a bound for

log(1 + 2%
S = A PR (1 A ) (54)

log(1 + lxd_:?ﬁ |z -yl

Kx,y,z) =

Again we distinguish two cases.

() |x —y| < 3(d. v d,) and hence |x — y| < d, A d,. Then, with Lemma 4.3,

K(x,y,z) <2(log2)™! 1<'>g (1 + | & zl) |z —y|™% (55)
x —
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G jx-—y| = %(d,, V d,). Using lemma 4.3 again we find

lx — yi? d.d, 1 d,
K(x,y,z) < 4 lo (1+ ) (1/\ )
dd, \ Thx—z2)lz—y\ "=y
Y
5 4‘x }’| ( dx A dxdz ) 1 2dy
dd, \x—z| |x—z?)|z—yldy+|z—Y|
Y
< 8|x yI* d, d, (1/\ d, ) 1
dd, |x-—z||z—y| lx —z|/ dy + |z — y]
< 8|x—y||.x_2|+|z_y|(1/\ 4 ) !
lx —zl|z — y| lx —z|/ dy + |z —y|

IA

( 1 1 )( d, ) lx — ¥l

8 + 1A

lx—z| |z—yl Ix—z|/ dy+ 1z —y|

8( 11 )(lAdy+Iz—yI)lx—ZI+|z—y|
lx—zf |z -yl lx — 2| dy+ |z -yl

8( LN )dy+lz—yl |x — z| + lz -yl
lx—z| |z—yl lx—z| dy+lz—y| dy+Iz-y|

IA

IA

1 1 -
< ( + ) . (56)
=zl Jz -y _
It follows from (55) and (56) that there is ¢ € R* such that
41 1
K(x,y,2) <c{p(lx—zI) + . O (57
lz—yl |x—z|

4.5. Other elliptic operators with.n = 2. -

Lemma 4.9. With Q a domain in R? as above, the Green function for —A + C with
0 < C € C(R) satisfies (28) and (33).

Proof. Let G.(-, -) and G¢(-, -) denote the Green function for —A + C, respectively —A.
Let w = (—A + C)~! f be the solution of

—-Aw+Cw=f inQ,
w=0 on 2.
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Then by the maximum principle one finds for f > 0 that

>

) f 2 (A (f-Cw) = w. (58)

Hence Go(x, y) > G (x, y), which shows that G satisfies the right-hand side of (28).

Using an argument as for (31) there is a constant ¢° > 0 such that G.(x, y) > c® d.d, for
|x — y| = & > 0, and hence for these x, y the left-hand side of (28) follows. It remains to prove
the left-hand side of (28) for |x — y| small. For this we use '

w = (—A)(f-Cw)2 (A (f-C(=A)"f)
(=)' f = (=A)C(=A)" ). (59)

which shows that

Gc(x,y) = Gox, y) — /;Go(x, 2)C(2)Go(z, y)dz = Go(x, y)(1 — H(x, y)),  (60)

where

H(x,y)=(Go(x,y))‘l/;zGo(x,z)C(z)Go(z,y)dz. (e

We will prove for |x-— y| small, using (28) and (46) for Go(-; -) with that ¢, and c,, respectively
cM*, that

Golx, y)(1 — H(x, y)) = (4m) ' log (1 +6 deid;lz) ; (62)

forcy; = %cl exp(—2cM*||C|l so+/C,). The left-hand side of (28) for G (-, -) follows from (60)
and (62).

From (28) and (46) it follows that

d.d D%
cM*||C|lo log (1 4+ Y 2)/ log (2
lx =yl lx — yl

4m Go(x, y)H (x, y)

IA

IA

D% D%
2cM*|IClloo log | 1 + V/c, /logll+
lx =yl lx — I

2cM*||Clloov/C- (63)

IA
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Ford.dy|x — y|™ > ¢5 " we get

d.d
41 Go(x,y) — log (1 + ¢y 4 )

lx —yI?
d.d d.d
2bg(b+@y—q) ’2/(L+q ’2))
lx =yl lx —yl

1
> log (1 + (C] - C3) C;15>
> 2eM*|Clloov/Css ' - (64)

and inequality (62) follows.

Similarly for d,d,|x — y|™2 < c;' we have with (28)

d.d d.d
4 Go(x, y) — log (1 +c 2 2) > 2 = (65)
, Ix =yl Ix — ¥l
with ¢4 = 5" log(1 + (c; — ¢3)c3'3).
Now we use
d.d, D® '
4 Go(x, y)H(x,y) < Mi||ClloC2———;/ log | 2 — - (66)
lx — ¥l |x — yl .

and the fact that we may assume |x — y| < ¢, for some arbitrary small ¢ € R™, to obtain (62).

To show (33) for G.(-, -) one should notice that

G.(x,y) = Golx, y) —fGo(x,Z)C(Z)Gc(Z,y)dz (67)
and hence )
V.G .(x,y) = V,Go(x,y) — f V.Go(x, 2)C(2)G (2, y) dz. (68)
The estimate follows from (33) for V,Gy(x, y), and from (53) with (28) for the last term.
O
Finally consider elliptic operators L of the following type:
L i o +§:b >+ (c+ 1|T‘2b|2) (69)
=il G i "
=t 7 9x;0x; ax; 4

i=1

where T is the positive (symmetric) matrix such that T2 = (a; ),and0<CeC (). From the
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explicit formula
Gra(x,y) = G_psca-iyr-a(T "%, T y)etT 706 dey(T ). (70)

it follows that

d.d
(47 det(a;;)) " log (1 ter T ;|2) < Gralx,y)

IA

‘ d.d
(4 det(a;;)) " log (1 + Cz'| y|2) , (1)
X—=Yy

instead of (28). The Green function G (-, -) will also satisfy the assumptions of Lemmas 4.4, 4.5,
and 4.7.

4.6. Proof of Theorem 4.1. The proof copies the proof of Theorem 3.1 in Section 3.4,
Instead of Corollary 3.3 and 3.5 one uses Corollary 4.6 and 4.8.

5. An application to probability theory

Consider the Brownian motion killed on exiting €2, starting in x, that is conditiqnqd to convergé
to y. Let G(:, -) be the Green function corresponding with — A on £2. The expectation for the path
lifetime T, can be expressed by

Eer =

G(x,2)G(z,y)
; fﬂ — iz (72)

G(x,y)

(see [10] or [8]). Cranston and McConnell in [6] and [7] showed
Ejto <clQ] forQCR® (73)

and

E ; Tq < cq for bounded Lipschitz domains in R". (74)

From Corollaries 3.3 and 4.6 we find, for £2 satisfying the regularity assumptions, that

eD? \~
Eitg < cq|log forx,y € Q C R?, (75)
lx — yl
Ejtg < colx—y| forx €Q, y€dQwithQCR (76)

Eltg < colx—y| forx,y€ QCR"withn>3. an
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The estimate (75) is optimal. Furthermore, we find that for all € > 0

{1}

2]
31

{4]

(51
(6}

(7
[8]
91
[10]
{111
[12]

[13]
[14]

[15]
[16]
[17]
(18]
[19]
[20
[21]
[22]

[23]

E;‘rg < CCqlx — ylz’e forx,y € Q CR" withn > 4, (78)
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