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1. - Introduction and main result. 

(1) 

We consider the following nonlinear boundary value problem: 

{
-Au= f(x,u) 

u=g 
in .n, 
on a.n, 

where .n is a bounded domain of RN . 

For f we only assume 

(H 1) f: fi X R~R is continuous. 

We also assume that 

(H2) g:an~R is continuous. 

In this note we are interested in the existence of solutions of 

(1) lying between sub- and supersolutions defined in a rather weak 
sense. Due to the special form of the left hand side we can define 

DEFINITION 1 -A function u is called a sub (super) solution of (1) if 

i) u e C (fi ; R) 

ii) f (u(-Acp)- f(x, u)cp) dx ~ {;;::) 0 for every q> e ~+(!l) 
n 

iii) u ~ (';;!;) g on a.n 
are satisfied, where ~+ (!l) consist of all nonnegative functions 
in c;<nJ. 
DEFINITION 2 - A function u is called a solution of (1) if 

i) u e C (fi ; R) 

ii) f {u(-Acp) - f (x, u) cp) dx = 0 for every q> e c; (!l) 
n 

iii) u = g on a.n 
are satisfied. 

If f satisfies some additional assumption, like for example 
u ~ f (. , u) + WU is increasing for some w € R ' and if a.n satisfies 
some smoothness condition, then the following is known, see [2] 
[5] [6, Ch. 10] [3]. 

If !! is a subsolution, a is a supersolution such that ~ ~ a, then 

problem (1) possesses a minimal and a maximal solution in the 

order interval [!!,a] . These solutions are obtained by using the 

method of monotone iterations. 
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In [1] another method is used to prove the existence of a so­
lution lying between a sub- and a supersolution for a very general 
quasilinear elliptic problem. The goal of this note is to show the 
existence of a solution lying between a sub- and supersolution, as­
suming only the continuity of f and for a much larger class of sub­
and supersolutions. 

We shall use the Schauder fixed point theorem and a version of 
the strong maximum principle. 

Observe that if f = 0, then problem (1) possesses a solution for 
every g € C (an), if and only if all boundary points are regular, see 
[4, Th. 2.14]. Therefore we assume 
(H 3) n is a bounded domain of RN and every point of an is re­
gular. 

Then we have 

THEOREM - Assume (H 1), (H 2) and (H 3), and let !:!: respectively 

a be a sub-respectively a supersolution of problem (1), satisfying 

u ~a in fi. 

Then problem (1) possesses at least one solution u satisfying 

u~u~u in fi. 

2. · Proof. 

We shall proceed in four steps. 

STEP 1 - Reduction to homogeneous boundary condition. 

Let h denote the unique harmonic function on n , continuous 

on li, satisfying h = g on an . Set v = u - h . Then u is a solution of 

problem (1) if and only if v is a solution of 

(2) {
-.6.v = f(x, h(x) + v) 

v=O 
inn, 
on an. 

Observe that the modified right hand side again satisfies (H 1). 
Since both ~ - h and a - h are sub- respectively supersolution for 

the modified problem and are also ordered, we may assume without 
loss of generality that g = 0 . 

STEP 2 - Modification of f . 
Define 
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{

f(x,u(x)) 

f*(x, u) = f(x, u) 

f(x,u(x)) 

if u < ~(x), 

if ~ (x) ~ u ~ u(x), 

if u ( x) < u , and x € .fi . 

Then f* : fi x R ~ R is continuous and bounded. Note that, if u 
is a solution of 

(3) {
-au= f*(x, u) 

u=O 
inn, 
on an, 

and ~ ~ u ~ u in fi, then u is a solution of (1) with g = 0. In fact 

every solution of (3) satisfies ~ ~ u ~ u in fi. This is done in 

STEP 3 - Use of the maximum principle. 

Let u be a solution of (3) and set n+ = {x € n; u(x) < u(x)}. 
We want to prove that n+ is empty. Assume to the contrary that 
n+ is not empty. First, note that n+ is open, since u and u are con­
tinuous. Moreover we have 

f n+ (u - u) (-li.cp) dx ~ f n+ (f*(x, u(x))- f(x, u(x))) cpdx = 0 

for every q> € ~+ (fl+). 

Then u - u € C (!l+) is subharmonic and nonnegative in n+. Such 
functions achieve its maximum at the boundary, see [ 4] . 

Since u - u = 0 on an+ it follows that u = u in n+ . Hence n+ 
is empty, a contradiction. Similarly one proves that ~ ~ u in fi. 

STEP 4 - Application of Schauder fixed point theorem. 

It remains to show that problem (3) possesses a solution. Let 
us recall that problem (1) with f depending only on x and g = 0 has 

exactly one solution u € C (fi). Let K : C (fi) ~ C (fi) denote the solu­
tion operator, that is u = Kf. Then it is known that K is a linear 

compact operator in C (fi) equipped with the usual maximum norm 
II · II (see also Appendix). 

Let F : C (fi) ~ C (fi) denote the Niemytski operator associated 
with f*, that is 

F(u) (x) = f*(x, u(x)) for u € C (fi), x € fi. 

Then Fis continuous and there is M > 0 such that II F(u) II~ M. 
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Finally observe that u is a solution of problem (3) if and only if u 
satisfies 

u = KF(u). 

A straightforward application of the Schauder fixed point theo­
rem guarantees the existence of such solution. This completes the 
proof of the theorem. • 

REMARK - If u is a solution of (1), then it follows from standard 
regularity theory theorems that u € Wi.;: (n) for all p € [ 1 , oo), al­
though !:! and u do not need to possess such regularity. 

3. - Appendix. 

PROPOSITION - Let n satisfy (H 3) and f e C (fi), then there exists 

a unique u e C (fi) satisfying 

i) f (u(-Arp) + frp)dx = 0 
.n 

ii) u = 0 on an. 

for every rp e C; (n), 

Moreover the mapping f ~ u is compact in C (fi). 

Proof. The uniqueness is a direct consequence of the maximum 
principle for harmonic functions. For the existence we extend f by 0 

outside of ii and set 

w(x)= JRNr(x-y)f(y)dy, 

the Newtonian potential of f, see [4, p. SO]. 

Then we C1 (.fi), see [4, Lemma 4.1], and the mapping f~w 

from C (fi) in C1 (fi.) is continuous, where C (fi) and c1 (fi) are equipp­

ed with the usual norm. Since C1 (fi) is compactly imbedded in C (fi), 

the mapping f ~ w from C {fi) into C (fi.) is compact. 

Let h € C (fi) be the unique harmonic function satisfying h = w 
on an (here we use (H 3)). Then u = w - h is a solution of i), ii). 

Since the mapping w ~ h from C (fi) into C (fi.) is continuous we 

have that the mapping f ~ u from C (fi.) into C (0) is compact. • 
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