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Hopf’s Lemma and Two Dimensional
Domains with Corners

GUIDO SWEERS *)

SUMMARY. - Let Q C IR? be a bounded domain that is smooth except
for a finite number of corners. The aim of this paper is to obtain
conditions such that the solution of the Poisson problem —Au =
f>0inQ (f #0), with zero Dirichlet boundary condition,
behaves similarly at the boundary as does the first eigenfunction
¢q. That is: there exist c1,co > 0 such that

a9y (z) Su(z) < gy (2).

As a consequence we can improve some results for smooth do-
mains to domains with corners, such as: the maximum princi-
ple for an equation with a potential which is unbounded near the
boundary; the anti-mazimum of Clément and Peletier; a Green
function estimate of Zhao.

1. Introduction

If © is smooth enough and f > 0 sufficiently regular one finds point-
wise estimates for the solution u of

—Au=f in{,
(1)
u =0 on 0f),

by the maximum principle and Hopf’s boundary point lemma. In-
deed they imply the following. For a nonnegative nonzero right hand
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side f € C(f) there is a constant k& > 0 such that
kEd(x,Q) <wu(z) forallzeQ. (2)

For smooth Q regularity theory shows that there is another constant
k" € (0,00) such that

u(z) <k d(z,Q) forallzeQ, (3)
where the distance function d (-, ) is defined by

d(z,Q) = inf{|z —y|;y ¢ Q} . (4)

If there can be no doubt we write d (z) = d (x, Q).
The standard boundary point lemma of E. Hopf for the Laplacian
is as follows. See Theorem 2.7. in [22].

e Hopf’s Boundary Point Lemma'. Let u satisfy Au > 0 in
D and uw < M in D, u(P) = M for some P € 0D. Assume that P
lies on the boundary of a ball B C D. If u is continuous on D U P

. o .0 .
and if the outward directional derivative 8_u exists at P, then u = M
n
or

ou
on
If © is not smooth the estimates (2) and (3) are no longer true
in general. Roughly speaking the estimate in (2) goes wrong for do-
mains with corners pointing outside and (3) goes wrong for domains
with inside pointing corners.
Instead of comparing with d(x) in (2) and (3), one could try to
compare with ¢, (z), the first eigenfunction of

—Ap=Ap in(Q,
=0 on 01},

(P) > 0.

(5)

For smooth € there is not much difference since ¢ d (z) < ¢ (z) <
¢ d(z) for some ¢, > 0.

'For the Laplacian in two dimensional domains the result goes back to C.
Neumann in 1888. For general elliptic operators (in general dimensions) the
result was published in 1952 independently by E. Hopf and by Oleinik. See page
156 of [22] for references and more bibliographical details.
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For nonsmooth 2 the question is the following: do &, k' € (0, c0)
exist such that

k¢ (z) < u(x) forallze, (6)

and
u(z) <k ¢y (x) forallzeQ? (7)

We will show that for domains with finitely many corners that
satisfy a uniform interior cone condition with large angle the answer
is yes. If such a domain has a corner with a small angle the answer is
a conditional yes. The condition will be sharp. Related estimates for
plane domains with corners are obtained by Oddson in [19]. His esti-
mates are not sufficient for the results we are interested in. In several
other papers related estimates can be found. One should mention
Kondrat’ev [13], [14] and also [17], [18]. However, collecting the lit-
erature on elliptic boundary value problems on angular domains is
la mer a boire.

The domains that we consider will have a finite number of cor-
ners. It would be interesting to see if similar results hold for Lipschitz
domains. On such more general domains the conditions will depend
on the Lipschitz coefficient.

In order to simplify notations we use:

DEFINITION 1. Set u < v on A if and only if there exists k € (0, 00)
such that
u(z) <kwv(z) foral xz € A.

Set u A v on A if such a constant does not eist.

DEFINITION 2. Set u >~ v on A if and only if there exists k € (0, 00)
such that

Elv(z) <u(z) <kwv(z) foralz € A.

We will use results of Kadlec [12] and Grisvard [9]. For the point-
wise results we are interested in, we will compare the solutions with
appropriate sub- and supersolutions. In the last sections we will
show how the estimates can be used to extend the results mentioned
in the abstract. In the appendix one finds some of the results for
conformal mappings that we use.
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2. Some standard preliminaries

Let us recall some regularity results for solutions u of (1) on a
bounded domain 2 C R". The function u will denote a solution
of (1) in appropriate sense.

R1) If Q satisfies an exterior cone condition then (see Theorem 8.30
of [8]) f € L% () with ¢ > in implies u € Co(9).

R2) If 99 is CY! (see Theorem 9.15 of [8]) then f € L4 (Q), ¢ > 1
implies u € Wy () N W24 (Q).

R3) If Q is convex (see [12], [9]), then f € L?(f) implies u €
W, (Q) N W22 (Q).

The following imbedding results hold:
I1) On general  (Theorem 7.10 of [8]) u € Wy*? (), ¢ > n implies

u € C(Q).
I2) If 2 satisfies a uniform interior cone condition, then u€ W24((Q),
g > in implies u € C(Q) N L™®(Q).

I3) If 09 is C%', then (Corollary 7.11 of [8]) u € W>1(Q), ¢ > In
implies u € C(Q), (and ¢ > n implies u € C*(Q)).

Notice that conditions on the outside of the domain, an exterior
cone condition or convexity (which might be called exterior plane
condition), imply the regularity of the solution. Conditions on the
inside allow one to transfer integrability properties of first or second
order derivatives to continuity of the function itself.

3. Is the first eigenfunction the lowest positive
superharmonic function?

On smooth domains the results that we mentioned in the introduc-
tion imply that any positive superharmonic function, that is contin-
uous, lies above a positive constant times the first eigenfunction. A
proof of this result uses the smoothness of the boundary. However,
it is not clear if this regularity is necessary. Let us state this open
question as a conjecture.
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CONJECTURE 3. Let  CR" be a bounded domain and suppose that
there is a first eigenfunction ¢, € Cp () N C? () (we fix max ¢; =
1). Then for every u € I/Vlzo’f (Q), p > 3n, withu > 0,—Au > 0 in
Q, either uw = 0 or there exists ¢ > 0 such that u > c¢; in Q.

This estimate from below by the first eigenfunction could take
care of some of the results in this paper. But since there does not
seem to be a proof in the general case we will (only) show it under
some conditions on the boundary. By the way, the estimate from
above will not be true in general.

The eigenvalue problem in general domains has recently been
studied by Banuelos in [3].

4. Elementary domains

4.1 Notations

Since results related with the Riemann Mapping Theorem are more
easily stated using C instead of R? we will use boldface for the com-
plex alternative:

for =€ R? set x =ux1 +1x9 € C,
for ACR? set A= {z1+ize€Cuze A},
for h:R2 - R set h(x)=h(z)+ihe(x).

We will start by considering the following domains in R?
D (y) = {x € R?; lz| < 1,|argz| < %@b}

The angle of the domain D (1)) at zero (we will always measure from
inside) equals ). Related are
D (@);]a] =1},

the circular boundary: I'y = {
the conical boundary: Sy = { D (v); x| < 1} ,
T

the related growth rate: (3, = e

Notice that 0D () = I'y, U Sy. We will also use

%D@p) ={z€eR*2z€D)}.
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4.2 Cones that are convex near 0

We start with domains 2 = D (/) when ¢ < 7 and will be interested
in the behavior near (0,0). Note that the corner at (0,0) is convex
and hence there is no regularity problem (see Grisvard [9], [10]).

D(4) for some 3 € (0, 7).

We will compare the solutions of

—Av=0 in D (¢),
v=20 on Sy, (8)
v=cosfByp onTly,

{ —A¢y = ¢y in D (¢),

¢1 =0 on 9D (1/)) )
with A; the first eigenvalue (take ¢; > 0), and for o > —1

{ —Auy =1¢ in D (), (10)
u=0 on 0D (1) .

Note that (1) has a solution u € Cy(Q2) if f € L7 (Q2) with ¢ > 1
if  (C R?) satisfies an exterior cone condition at every boundary
point.

LEMMA 4. Let D (1) ,v,¢; be as above. Then for all 4 € (0, )

vy on 5D ().

Proof. We can write both functions explicitly. We have v (r,p) =
rP% cos (,6¢<p) and by using a Bessel function of order (3, namely

oy (ryp) = ng ('0/3¢,1T) coS (ﬁwp) with corresponding eigenvalue
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2
A = (pﬂ¢71) (¢, is unique up to multiplication by a constant)

where
(=)™ (3s)7
Jale) =2 F(ﬁ%rr)rl—l)

m=0

and pg ; the first positive zero of Jg ().

Since ¥ < Jz (pgar) = P on [0, 3] the estimate in i) holds.

Remember that Jg (s) solves s2J" + sJ' + (s — g*) J = 0. O

THEOREM 5. Suppose a > —1 and fiz 1 € (0,7). Let D (), ¢, and
Uy be as above. Then

i. fora+2> (B, we have Ug =~ Py on %D (1),
i. for a+2 < By we have uq ~ ret2=By ¢ on %D (1),

ii. for a+2 =3, we have wuo >~ (—Inr) ¢; on =D ().
Remark 1: From ii) and iii) it follows that for o +2 < 3, one has
ua £ ¢y on 3D ().

Remark 2: The relation between the opening angle ¢ € (0, 7) and
the critical growth a € (—1,00) is o = 7 — 2 or reversed ¢ = ;.
For the semilinear problem —Awu = f (u) with f(0) < 0 the angle
%7( is critical for the existence of a positive solution, see [24].

alpha
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Proof. In all of the parts we will use the maximum principle as fol-
lows. If u,v € C%(Q) N C(Q) satisfy

—Au < —Av in %D (),
u<v on 8(%D (1/))) ,

then
u<w in 1D (¢).

Note that
¢ 2ug < ¢ on 3Ty (=9(3D () N D ().

We will compare u, with several w;. All functions w; satisty w; =0
on Sw.

i) above. We set f = min (a + 2, 2ﬂ¢). Then it follows that a+2 >
B > B, and hence that rot2 < B < pPu for r € [0,1]. Now we
compare with

w1 = k %% cos fyp — 1 (cos (Bp) — cos (/B 4n)), (1)

where we take k large enough such that wy > 0 on 3D (3).
Then, using the fact that cos (ﬁ/ﬂw %77) < 0, we find

—Aw; = =32 P2 cos (ﬁ/ﬁw %W) =52 on %D ()
and w; < v cos Byp on D (3). Since

r < —Aw, on 3D (),
0=uq 2w ond(3D(4)),

the previous lemma and the maximum principle imply
Uqg 2 w; X ¢ on %D(@b)
i) below. We compare with

wy = 1P (1 — 7“‘”2*%) cos B p. (12)
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It follows that

—Awy = ((a + 2)2 — ﬁ?p) r®cosByp X1  on D (1),
0 = wy = ug, on 9D (¢),

and hence by the previous lemma and the maximum principle

we find

ii) above. Set

wy = ro+? (cos (e +2) ) — cos (O‘—” %)) . (13)

By
2
One finds —Awz = r® (a + 2)° cos (% %71’) and hence
(4
r* < —Aws on D (v),
Uy = W3 on 0 (%D (1/))) ,

from which it follows that
U < ws <72 Pug on 1D (vh).

ii) below. Taking
wy = r**? cos Bye (14)
we obtain
—Awy = (ﬁ?p —(a+ 2)2) 7% cos Byp 2 ¢ on D(¢),
0 < wy < ug on 9 (3D(1)),
and hence

r“+2_’6¢¢1 < w4 < u, on %D (¢) .

iii) For a+2 = B, we compare with

ws = v <(k —1Inr) cos (Bye) + @sin (B,p) — %) (15)
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with & large enough such that ws > 0 on D (). Since —Aws =
By By =2 5 we can use this function for both sides of the esti-
mate. From

—Awg < 7% < —Aws in D (),
w5 = Ug X W5 on 0 (%D (1/))) )
it follows that

Since
ws < —rP% Inr cos (ﬁwgo) <ws in $D ()

the previous lemma implies the last estimate of the theorem. O

COROLLARY 6. Fiz ¢ € (0,7) and let u be a solution of

~Au=f inD(¥),
u =0 on Sy,
u=g on L'y,

with 0 < g € C(I'y) and 0 < f € C (D (v)), such that for some 6
and M one has

0 # f(z1,25) < Mlay|”  forzeD(y).
If 9 > %—2, then
u=~ ¢ on 3D (1h).

Remark 3: Note that if we do not assume a fixed sign for f or g we
find that there is £ > 0 such that

lu(z)| < M ¢, (z) for all z € 3D ().

Remark 4: The conditions on f imply that f € L? (D (¢)). For
a > 0 one has f € L* (D (1)). For —1 < a < 0 one finds in fact
that f € LP (D (¢)) forall 1 < p < %a and hence f € L? (D (v)) :

1 cTr1
2cMP
[iras<ar [ [ at deadn = 225
i) pa+ 2

r1=0x2=—cx1
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Hence there is a solution u € WO1 2 (D (1)). Regularity results, see
[8], show that u € W22 (') for any Q' C D (¢)) with Q' not contain-
ing the corner points. In fact, since D (¢) is convex it follows from
[12] that u € W22 (D (1)); see Theorem 3.2.1.2 of [9].

4.3 Cones that are concave near 0

In this section we recall some results for domains with an entrant
corner. We will use D (¢) that have a corner at (0,0) with angle
P € (m,2m).

D () for ¢ € (m,27).

From results of Grisvard [11], see also Lemma 4.4.3.1 and The-
orem 4.4.3.7 in [9], one has for f € LP (D (v)), with p > 2 and

2
—17/: N, % + % = 1, that there exists a solution u € Wy (D (¢))
and it satisfies
Top,y
U = af + Z Cm, f ,r.mﬂw Xm ((10)
m=1
where
Uy € WP (Q),

Cm,f € R,
Xom (@) = sin (mB,, (¢ — 54)),

2 2
Np o = [_¢] , the entier of —q’b
qm qm

2 —

Taking p = 2 + ¢ in the above, with 0 < e < , one finds

u=1uUs+cyf v cos (ﬁwgo)
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with @, € W22+ (D (1)). Since W22+ (D (1)) C C* (D (¢)) holds
in a two dimensional domain with Lipschitz boundary we find that
|ty (x)] = d(z,080) = v cos (ﬁ,ptp) on D (¢). Hence |u(z)| =
rPv cos (,6¢<p) on D (). Note that the solution of (8) is given by

v = 1P cos (Bye). Next we will show that the solutions of (8), (9)
and (10) with @ > —1, have the same behavior near 0.

LEMMA 7. Let v and ¢, be the solutions of respectively (8) and (9)
on D (1) with concave corner. Then

v P on %D(@b).

Proof. See Lemma 4. a

COROLLARY 8. Let D () and ¢, be as above. Let f € LP (D (1)) N
C (D (v)) with p > 2 such that 0 # f >0, and let 0 < g € C (I'y).
Then the solution u of

u = 0 on Sy,
u = g only,
satisfies
u=~¢; on 3D (1)). (16)

Remark 5: Note that f (r) =%, with —1 < a <0, is in LP(D (v))
with p € (2, -2 o !). If u, is the solution of (10) then u, satisfies

$1 S ua 2 ¢y on 3D ().
Remark 6: Again, if we skip the sign condition for f and g, we find
that for some k£ > 0

lu(z)| <k ¢, (z) forallz € 1D (¢).

Proof. By the results of Grisvard we find

u=rPv cos (ﬁwgo) on D ().
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By the explicit formula for ¢, we obtain

rPv cos (ﬁw‘ﬂ) = ¢ on %D (),

which shows the estimate from above. The estimate from below
follows by

~Av=0=<-Au  in3D(y),
v =u Ona(%D(Qﬁ))a

the maximum principle and the previous lemma. O

5. The basic result in general domains with corners

The domains that we will consider satisfy the following assumptions.

CONDITION 9. The domain € is an open bounded subset of R? such
that:

i. Q is the inside of a (closed) Jordan curve L', say
I'={y(e");p€0,2n]};

k+m

1. 7y is Dini smooth except in finitely many points {eitf }jzl ;

ii. at every point yU) = fy(eitf) the boundary 02 has a Dini
smooth corner;

w. the corresponding angles,

by =t (579,109

which are measured from inside, lie in (0,2m).

We will assume that ¢; € (0,7) for 1 < j <k, and 1, € (m,2m) for
k+1<j<k+m.
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Remark 1: I' is called a Jordan curve if I' = v (90B; (0)) with
v : 0B (0) — I' continuous and one-one.

A function is called Dini smooth if the derivative exists and is
Dini continuous. A (part of the) boundary is called Dini smooth if
there exists a Dini smooth parameterization y with v # 0.

The curve I' has a Dini smooth corner at ( Ztﬂ) if

L={v (")t e (t;—e )]}, i ={y (e");t € [tj,tj+e)}
are Dini smooth arcs for some small € > 0.

Remark 2: The condition implies that €2 is simply connected. This
is not necessary. Most results in this paper have an obvious extension
to bounded domains which boundary consists of finitely many non
intersecting Jordan curves, all of which satisfy the items ii), iii) and
vi) in Condition 9.

THEOREM 10. Suppose Q satisfies Condition 9 and that f € LP ()N
C(Q) withp>2and 0# f>0. Letu € I/VOI’2 (Q) OWZQO’f (Q) be the

solution of

—Au=f inQ,
u=0 on 0N).
Then
u> ¢, on S (17)

If moreover, f is such that for every i € {1,...,k} there exist 9; >
T _ 2 and g;, M; > 0 with

(&

9

flz) < —y®

on By, (y(i)) neQ, (18)

then
u~d¢, on . (19)

Proof. On Q\ Uk+m Bs (y¥) the estimates in (17) and (19) follow
by the strong maximum principle. Hence it remains to show (17) and
(19) on Qﬂuk+m Bs (y (i)). By Corollary A.5 there is an appropriate
holomorphic mapping h; from €2 to C, such that ‘h" is bounded away
from 0 and oo, and for some ¢ > 0

LD (y;) C h (BE (y(i)) N Q) Ce D).
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By Corollaries 6 and 8 we find that the solution wuj of

—Auy, (z) = f (A" (z)) for z € h(Q),
up =0 on 0h (),

satisfies, respectively without and with condition (18)

> _
up, >~ ¢1,c L1D(v;) on %cilD () - (20)

Uh = ¢170_1D(wi)

Since (20) also holds when wy, is replaced by ¢, 5(q), we find respec-
tively that

Up, >~
h = P1n) nle D ().
up = $1 p(a)
Lemma A.1 shows for some &' > 0 that
- )
u = ¢ q on Bu (y(z)> .
U~ q
O
6. A semilinear equation
Consider the equation
—Au =u? in Q,
{ u=0 on 052, (21)

with p € (—1,0).

THEOREM 11. Let Q be a bounded domain in R? that satisfies Con-
dition 9. Let 1y be the angle of the smallest corner of 0. If
u € W24 (Q) N Wol’q (Q), with q > 2, is a solution of (21), then

2¢

Proof. We find —Au € L?(2) and hence, if 1 denotes the angle of
the boundary at 0, we find that there is ¢ > 0 such that near 0 we
have

e 2P d(z) S ulz) < |z]vThd(2).

Then w? € L7 (22N B (0)) for small ¢, if and only if pgj; +1 > —1.
a
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7. A generalized maximum principle

The classical maximum principle for the Dirichlet problem not only
holds with a positive potential but also with a potential V' with
V > —Ay, where A1 is the first eigenvalue.

e A version of the classical maximum principle. Let € be
a bounded domain in R" with a C? boundary. Suppose that V €
L>® (Q) with V > =\, and that u € C (Q) N C?(Q) satisfies

{ —Au+Vu>0 in ), (22)

u=0 on 0L2,

then u > 0.

If © is a C%!-domain one is able, by using the Hardy inequality

/Q ('Zg;')zdx < cH/Q |V ()| de for all w € Wy (), (23)

(see [15] or [7]) to generalize the result above to potentials V' that
are unbounded near the boundary 0€2. Although the result seems to

be standard we have not been able to locate a reference?.

THEOREM 12. Let Q be a bounded domain in R* with a C%'-bound-
ary. Let cg denote the best constant in (23). Suppose V€ C () is
such that —c;;' < —c <V d ()2 IfueC (Q) NC? () satisfies (22)
and u € VVOl’2 (Q) then u > 0.

Proof. Set Vi =1 (|V|£V) and uy = 5 (Ju| £ u). Set

1
2
O ={z € Qu(z) <0}
and suppose that * is nonempty. For z € * we have —Au—V_u >

—Viu > —Viuy = 0 which implies for all ¢ € C§° (2*) with ¢ > 0
that

/(Vu-ng—Vugb)deO.
Q

?Added in proof: [30]
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Since u_ € Wy () we find with (23) that

OS/(VU-VU—Vuu)dwg (—1+£>/|Vu|2d$§0.
Q CH/ Ja

Hence u_ = 0. O

THEOREM 13. Let Q be a bounded domain in R? that satisfies Con-
dition 9. Suppose that V- € C () is such that there are £,0, K > 0
for which the following holds.

i) —6<d@)?V(z) forxze,
W) —K <d(z)*° V(z) forze.

If 6 < cpg then a function u € C () N C*(Q) N W, (Q) that
satisfies (22) is positive and moreover either u =0 or there is ¢ > 0
with

u(z) >c ¢y (z) for z € Q.

where ¢, is the first eigenfunction of —A.

For smooth domains and V' bounded, optimal results in compar-
ing v and ¢, are found in [27].

Proof. By Theorem 12 it follows that for § small the function u
satisfies v > 0. Then we have —Au + Viu = V_u > 0 in . By
the standard strong maximum principle one finds u = 0 or v > 0 for
every domain €' with € C Q and hence in Q. It remains to show
the boundary behavior. With similar arguments as we used in the
proof of Theorem 10, which are the results stated in the appendix,
it is sufficient to show the boundary behavior in a neighborhood of
0 for Q = D (¢) with the appropriate 1. First we consider the case
where 1 = w. We may assume that ¢ < 1 and we fix v = %6.
i) ¢ = m. We use the function

we (21, 72) = 71 (1 + 2] — 221) —2:17%. (24)
Then one has on the set where wg > 0 holds that

—Awg + Vi wg < —Awg + K:JU?Z we <
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<al™ (=y(r+ 1) + 8017+ 2Ka] )

which is negative for z; € (0, p) with

(L Ly 1)
p.—m1n<2, 3K 18 |
Set S = {z € D(r);23 < x1 < p}. Then wg < 0 on the part of 95
where 3 = z1. Fix § in (\/ﬁ,\/l—pfz). Since u > 0 in D (m) the

number
T:max{w;|$2|§5} (25)
U(p, (I;Z)

is well defined and positive. Now we are able to compare u and
Twg —t on S.

For large t > 0 we have u > Twg — t in S and for every ¢t > 0 we
find u > Twg — t on 9S. So either u — Twg > 0 in S or there is a
smallest ¢* > 0 such that for some z* € §

u > Twg—t" inS,

u(z®) = Twe (") —t".

Suppose that the second possibility holds. Since v > 0 on S and
hence Twg (z*) —t = u (z*) > 0 there exists S*, with S* C S and
0S* smooth, such that Twg — ¢ > 0 on S*. Then we find on S, and
hence on S* that

(A +V4) (u— (Tws —17)) 2
Z Vu—r1 (—A + V+) We + V+t* Z 0.
It follows by the strong maximum principle that u > Twg —t* on S*
and hence a contradiction. That is

u —Twg > 0 in S.

By another application of the sweeping principle of McNabb
([16]), now a shift of u—(Twe — t) of at most §—,/p in the z5-direction
and repeating the argument above, we find that u(z; + s,z2) >
Twe (¢1,%2) in S when |s| <0 — /p. Hence we have

u(z1,22) > Twe (21,0) for 0 < 1 < p, |22] <6 —/p.
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The estimate in the theorem follows since wg (x1,0) > cx; for some
c¢>0andall z; € (0, %)
ii) ¢ # m. With similar arguments as before we use

wy (r, ) = P (147 — 2r) cos (Bye) - (26)
Then
—Awr + Viwr <
< rﬂ¢2+7< - ((ﬁw +)" - ﬁ?p) +

+2 ((ﬂw + 1)2 - ﬁ?p) 7,1—7) cos (,6¢<,0) +
+ K rPu=2% (1 447 — 2r) cos (Byep) <

<09 (= (24, +97) + 2 (26 + 5,) 1+ 2K17) o (B,)

L. . L 2784 +72
which is negative on D (¢) for 0 < r < ry := ’”74%%%%1(' We

replace S by § = ryD () and 7 with

~ w?(r()u(p)‘ 1
T_ma‘x{ 'U/(')"O,(p) 7|<)0| S 21/)}

The result of part i) shows that the quotient remains bounded when
p — :i:%l/) from inside. Finishing the argument as before we find
that u > 7wy, implying the estimate of the theorem.

8. The anti-maximum principle

Clément and Peletier showed in [6] a result that reads for the Lapla-
cian with zero Dirichlet boundary conditions as follows.

o Let Q be a bounded domain in R* with a C? boundary. Suppose
f€LP(Q), p>n, such that 0 # f > 0, and suppose u) satisfies the
equation

—Au—Adu=f in 2,
{ u=20 on O0f). (27)

Then there exists § > 0, depending on f, such that if \qy < A < A1+6,
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i. up(x) <0 forallz €9,

. Ouy
.= Q
i - () >0 for all z € 09,

where n 1s the outward normal.

Birindelli recently ([4]) extended the anti-maximum principle to
general domains but only for right hand sides f which have its sup-
port outside of the non smooth boundary. We allow less general
domains and more general f. Our estimate will be optimal.

THEOREM 14. Let Q be a bounded domain in R? that satisfies Con-
dition 9. Suppose f € LP (Q)NC (), with p > 2 and such that 0 # f
> 0.

. T

We assume that for all i € {1,...,k} there exists 9; > v 2 and
€ > 0 with '

NS
1 @] <M o -y

for all x € B, (y(i)> neQ, (28)

Suppose uy satisfies the equation in (27). Then there exists 6 > 0,
depending on f, such that for \; < X < A\; +0, there ezists c¢1,co > 0
with

—e1y (2) 2 up () > —cay (z)  for all z € Q.

Remark 1: Without loss of generality we may suppose that

Vi —

The result is also optimal in the following sense.

p<2+ forallie {k+1,...,k+m}. (29)

PROPOSITION 15. Let Q = D (1)) for some ¢ € (0,7) and take ¥ €
(—1, % — 2> with ¥ < 0. For f = r¥ we find that for all X € (A1, \2)
the solution uy of (27) changes sign.

Remark 2: Note that f = r¥ € LP (Q) for some p > 2. For ¢ < %77
one may take f = 1.
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The proof basically follows [6]. First we suppose that {2 not only
satisfies Condition 9 but even that 9Q is C*® smooth except for
C?® smooth corners. It means that the boundary consists of finitely
many curves I'; = «, ([0,1]) with v, € C%*[0,1] and v, # 0. For
such a domain one can solve (1) for f € LP (), with2 <p <2+4¢
and ¢ small, in the following way.

LEMMA 16. Let Q be as above. Then there is € > 0 and there exist
{Cz}fi];il such that

i. A€ C?*(Q)
i1. support (¢;) C Be (y(i)) N Q;

iii. —¢1 (2) < & (2) < 1 (2) for = € By, (y®) N

w. for all f € L?>¢ the solution u € VVOI’2 (Q) of (1) satisfies
k+m
u=1u-+ Z ¢ i,
i=k+1
with @ € W22+ (Q) and ¢; € R.
Proof. By the remark following Corollary A.5 one finds holomorphic
mappings h; that maps a neighborhood of (¥ in Q onto ¢D (1;) and

moreover h; € C%® (). This implies that z — u (z) € WP (Q) is
equivalent with z — u (R (z)) € WP (h; (22)) and even

||u||W2,p(Q) ~ Hu o hg"”HWzy},(h(Q)) for u € W%P (Q).

Since we assume (29) we find by [9] for alli € {k+1,...,k+m} a
neighborhood of 0 (= h; (y*))) with

u (h"™ (z)) = @i () + ¢; & (2)

where 4; € W2P (cD (v,)) and &, (z) = rfli cos (%tpz> n; (x). The

function 7; is chosen such that it localizes &;, that is n; € C*° (R2)+
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and for some 0 < §; < d < c one has 7; =1 on By, (0) and n; =0
on R?\ By, (0). For u we find that

k+m
=u-+ Z ci & oh; onf,
i=k+1

with @ € W?2P (Q). Direct calculus shows A¢;, € C® (h(Q)). The
estimate in 3) follows from Corollary 8. O

We will replace the function e that is used in [6] by

e(x) = ¢ (x) +d(x).
Remember that one has
o1 (x z) A ¢1 (x) for z near a ‘convex’ corner,
¢y (x z) % ¢, (z) for z near a ‘concave’ corner.

The following Banach space (even a Banach lattice) will be used:

Co={ue Gy (2)iful = ¢}

||u||e=sup{‘% ;xeg}.

Since e (-) = d (-) we find that C' (Q)NCp (Q) is continuously imbed-
ded in C,. Since e(-) = ¢; (-) we find (; € C.. Denote Y = L (Q)
(p as above) with its standard norm and

with norm

X = {ﬁ c Wwp (Q);a=0o0n 89} @ [[Czﬂfi,ﬁl

with norm
k+m

lully = Nallyen@) + D leil,
i=k+1
where u = u + Zfi/?L ¢i(;. Since the set {{;} is independent and
¢; ¢ WP (Q) this norm is well defined. Theorem 4.3.2.4 of [9] shows
that

ooy < ¢ (I8 o0 + lalo(e) - (30)
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Since W2P (Q) is compactly imbedded in L? (2) we find from Theo-
rem 6.2 of [23] that the operator

A:{ue WP (Q);u=0on 002} — LP(Q)

is a semi-Fredholm operator; that is, it has a closed range and a
finite dimensional null space. Since A(; € LP (§2) we also find that

A=A X—=Y

is a semi-Fredholm operator. Theorem 4.4.3.7 of [9] implies that
A e L(X;Y) has an inverse (and hence A is a Fredholm operator of
index 0). We will denote this inverse by 7. Being the inverse of a
bounded linear operator on Banach spaces (see Theorem 4.1 of [23])
it is bounded. Hence we find

ITfllx = Wflly  for feLP(2).

By Theorem 7.26 of [8] it follows that the imbedding W?2? (Q) —
C' (Q) is compact. Hence the imbedding X — C' (Q) @ [[Czﬂfi,;ﬁ_l
is compact. Since ¢; € C, and since C* (Q) N Coy (Q) is continuously
imbedded in C, we find that the operator T, :=1T : C, — C¢ is well
defined and compact. We summarize.

LEMMA 17. The following imbedding results hold.

i X = (CHQ)NC(Q) @ [[Czﬂfiﬁl is compact.

i. (CH(Q)NC(Q)) e [[Czﬂfiﬁl — C, is continuous.
1. C, =Y is continuous.
Since T € L(Y; X) the operator T, € L (Ce; Ce) is compact.

Up to now we used that the boundary of € consists of piecewise
C?“-curves. We may replace C>® by Dini smoothness using a trans-
formation h as in Corollary A.6. The function A is a diffeomorphism
from €2 to a piecewise smooth domain A (€2) which has the same cor-

ners as Q and with 0 < ¢ < |Vh| < ¢! for some ¢ > 0. Instead of
(27) one considers

{ —Aup = XN|Vh| 2up =|Vh| 2 f),  inh(Q),

up =0 on Oh (Q). (31)
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By the strong maximum principle one finds that 7, is positive
and irreducible. Since the operator T, is compact, positive and irre-
ducible we may use the Krein-Rutman Theorem with the De Pagter
Theorem ([20], see also [25]) and find an analogy of Lemma 2 in
[6]. The last statement of the next lemma follows from Theorem 10.
Indeed, pu — Teu = g is solved by

o0

w=p (= p7'T) g =Y (') g,
k=0

and u > p~*Tog = ;.

LEMMA 18. We have:
i. The spectral radius v (T,) is positive (and r (T,) = A\[).

ii. v (Te) is a simple eigenvalue of T, with eigenvector ¢, and ¢,
s the only eigenvector with fized sign.

iti. r(Te) is a simple eigenvalue of Ty with eigenvector ¢7, defined
by

87 (u) = /Q b1 (2)u (x) d.

. For every g € Ce, with 0 < g # 0 and pu > r(T¢), there exists
exactly one solution u of pu — Teu = g and it satisfies u > ¢,.

Remark 3: Note that in contrary to Lemma 2 of [6] we do not
find T.f = e for f € C, with 0 < f # 0. This implies that we do
not obtain strong positivity of T¢ in the sense of [1]. The operator

T. would be strongly positive if T¢ (P.\ {0}) CP. where P, is the
positive cone in C.

Similarly as in [6] one has the decomposition as in their Lemmata
2 and 3.
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LEMMA 19. The space Y satisfies Y = [¢,] ® R(A — M\ ).
For every f € Y there exists f1 € R(A — M\ 1) such that

f=ad, + f1 (32)
with a = A\ ' 67 (Tf) [$7 (1)

Let u € X. Since X C Y there is a unique decomposition

u = [¢; +u (33)

with u1 € X N R(A — M\ I). If u is a solution of (27) with f as in
(32) we find
-«
p= A=\
Au1 — )\ul = fl. (35)

Note that A— A : XNR(A—MI)C X - R(A—\I)CYisan
isomorphism for |A — A{| small. Hence there are constants ¢, My,
not depending on A, such that

(34)

||u1||X <]Wf1 for all \ € [)\1—(5,>\1+(5]. (36)

We shall need an additional result for the inverse of this restriction
of A— Al

LEMMA 20. Suppose that f1 € R(A — X\ I) satisfies (28). Then
there is M;H such that for |]XA — 1| < 0 the solution uy of (35) satisfies

uy (z)] < My, ¢ (z)  for z € Q. (37)

Proof. First note that for all f € Y which satisfy the conditions of
Theorem 14, there exists M, such that for all A € [0,\; — v], with
v > 0, the solution u of (27) satisfies

|u(z)] < My ¢y (). (38)

Indeed, denoting by u* the solution for \, we find

(=8 =) (=) =2 < (n =)’ <0,



408 G. SWEERS

and hence by the maximum principle we have, uniformly for A €
[0, A1 — v], that there are ¢, M, such that

W <ul+ecgy <M, ¢, inQ. (39)
From (36) it follows that
lup ()] < e My e(z) in S (40)

Since the first eigenvalue A g« on Q* = B, (y(i)) N € can be chosen
large for € small, we may solve

{ (—A+XNuy=f1  inQF,

U = Uy on 00,

for A < A; 4+ ¢ and use (38) and the bound (28) for f; near ¥ on
* to find

| < M drg- <cdy in By, (y0)ne. (41)

’ 2
Together (40) and (41) show the estimate. O
Proof of Theorem 14. Let u € X be decomposed as in (33) with

B and u; as in (34-35). If f satisfies (28) then f; satisfies (28). For
A € (A, A\ + ) we find by Lemma 20 that

— ’
US ()\—)\1+Mfl> le

The result follows for 0 < A — A1 small. O

Proof of Proposition 15. Fix A € (A1, A2). The function u) solves
—Auy = duy +7?. First we show that there is ¢ > 0 and ¢ > 0 such
that

uy > —cp, for r < rg. (42

Since uy € Cy (D (7,&)) there is 7o > 0 such that Auy +r? > 1r?

for r < rg. By the standard Hopf’s boundary point Lemma there is
¢ > 0 such that uy +c¢p; >0 on D (¢p) N {r =rp}. Hence we find

—A (uy +cdy) = My +r7 +ehigy >0 inrgD (¢),
uy +cp; >0 on d(roD (v)),
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which implies that uy + c¢; > 0 on roD (¢).
Now let v solve

—Av=MAuy in D (¢),
v=0 on 0D (v) .

Due to (42) it follows that —Av > —'¢; in D (¢)). By the maximum
principle and Theorem 5 we find that v > —c*¢; and that there is

c1 > 0 such that uy —v > clrﬂﬂ’%qsl, Hence, since ¢ + 2 — % <0
and

uy, > (Cl’l"ﬂ+27$ - C*) ¢1

we find that u) is positive near 0. O

9. Green function estimate and 3G-Theorem

Zhao in [29] obtained a two sided estimate for the Green function
for —A on a 2-dimensional domain. His result is the following.

o There exist C > 0 such that for oll z,y € )

d(z)d(y)

C_IG(w,y)gln(l—i— p— >§CG(w,y). (43)

See also [26]. This result is not true for Lipschitz domains. Zhao’s
proof needs Dini smooth boundary ([5]).

THEOREM 21. Let § be a bounded domain in R? that satisfies Con-
dition 9. Let € > 0 be such that min ‘y(z) — ym‘ = 2¢ and let w be

defined by
(. dz) \? [ dw) \?
mm((mm) ’<w1§’y>> )
for (z,y) € (BE (y(i)) N Q)Z with 1 <i <k,

w(z,y) = { max <<;1(2))2 ’ (sjl(ély )2)
x

for (z,y) € (B- (y®) NQ) with k+1<i<k+m,

=

=

L1 elsewhere.
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Then there exist C > 0 such that for all z,y € Q

C7' G (z,y) <In (1+w(x,y)%> <CG(x,y). (44)

Remark 1: The properties of w are such that one can define a
function w € C*° (QZ) with

w=w=<w on 02
Remark 2: Theorem 7.4 in [18] gives an asymptotic expansion of
the Green function near a conical boundary point.

Proof. By Koebe’s distortion Theorem, see Corollary 1.4 of [21], one
finds the following. Let h map Q conformally to D = {z € C;|z| <
1}. Then one has

i (1 - |h(x)|2) <d(z) | (z)| < (1 - Ih(:v)l2)

Since
Ga(z,y) = G, o) (h(z),h(y))
it follows that
d(z)d(y) [h' (2)| |F (y)]
b (z) = h (y)|”
Stretching a corner, say in 0, with angle 1) € (0,27) one uses h :  —
C defined by h (z) = 2 with a = % One finds for some ¢; > 0 that

%GQ (z,y) <In (1 +

Zl(ZI(EI;x)) Scfl |$|Oé—1 S ‘hl(w)‘ Scl |:L,|O€—1 <62¢;1((:;I;).

To find estimates for |h (z) — h (y)| we distinguish three cases.

i. Both # and y are near a convex corner y9) (1 < j < k). That
isa= % > 1. Then by Lemma A.3

- pr@) )
ooyl < (S8 el |h($)_h(y)|§63|$_(ig
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and

d :
() — oo  when z — y9) (corner).
¥1 (37) nontangentially

Hence one finds

P (@) By (y) . dz) \? [ dw) \?
Cﬁlﬁmﬁl((m) ,((plély)> S

¢1 (2) d1 (y

<t 20 ()" ()

ii. Both 2 and y are near a concave corner y(?) (k+1<j<k+m).
That is a = g < 1. Then by Lemma A.3

1 d(z)  d(y) o) — o5 |z —
it ool (22 + 2 o) - h)l < 26)

and

d .
() — 0 when z — y@ (corner).
P1 (fL') nontangentially

g AW () ()7 <

|z — y|

e 1P @) A W) [ aw) | dw) )

sa " G e <

Sd(w)d(y)\h' w)HZ’ \S
Ih h(y)|

<e ¢1 <
Ix—yl

(#))
iii. z is near ¥ and y is near y¥) # y(»). Then

b (@) () _ d@)dW) R @) Hh' | 91 @) b )

Toe -yt T |h<> Rl T Jr—yf
O

Hence
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A. Auxiliary results related with the Riemann
Mapping

Remember that one may use a holomorphic mapping to transform
one domain to another domain with possibly little change in the
estimates we are interested in. We will start by stating such result.
Next we will recall the relation between smoothness of the boundary
and smoothness of related conformal mappings. A excellent reference
for results in the last direction is the book ([21]) by Ch. Pommerenke.

A.1 Conformal transformation with bounded derivative

A mapping z — h (2) that is conformal on £ and continuous on €2,
changes problem (1) in

{—A(u (B (2))) = [B' (R™ ()| f (K™ (z))  for = € h(Q),

u (™ (z)) =0 on 0h ().
(47)
If ‘h" is bounded away from 0 and co we can compare solutions of
(1) and
—Auy (z) = f (K" (z)) for z € h(Q), (18)
up =0 on Oh ().

in a uniform way. Similarly we may compare the eigenvalue prob-
lems. Let us denote by ¢; 4, A1 4 the first eigenfunction respectively
eigenvalue on A. Since

2
A (brige) (B (=) = Aney [P @) drage (b (@) forz e
we have:
LEMMA A.1. Let h: Q — C be conformal and satisfying
0<e < inf‘h'(w)‘ Ssup‘h'(a:)‘ < ¢ < 00. (49)
Sy zEN
Let u respectively uy, be the solutions of (1) and (48) for some f €
LP () withp > 2 and f > 0. Then
Gup (z) < u (™ (2)) < Bup () for x € h () (50)
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and

$ra) (2) = ¢ro (K7 (2))  for z € h(Q), (51)

2 2
C” A S Ap) <6 Ao

A.2 Holomorpic mappings on domains with corners

We will use conformal mappings h from D = {z € C;|z| < 1} onto
2. The smoothness of such a conformal mapping h is directly re-
lated with the smoothness of 9€2. We refer to a theorem of Kellogg-
Warschawski, Theorem 3.6 on page 49 of [21]. Moreover, if 09
is Dini-smooth, then h' has a continuous extension to D which is
nowhere equal to 0 on D. See Theorem 3.5 in [21]. In that case the
inverse of h has the same regularity as h. Remember that Holder
continuity implies Dini continuity.

For the domains that we are interested in we use a Theorem by
Lindelof and an extension by Warschawski. Both results are also
found in [21], see Theorem 3.9. The domain €2 satisfies the assump-
tions of Condition 9.

For h : @ — C without uniformly bounded derivative the follow-
ing consequence of Koebe’s distortion Theorem holds.

LEMMA A.2. Suppose Q satisfies Condition 9. Let h : @ — C be
conformal with h (02) = 0h (). Then it follows that

1d(z,09Q) |0 (z)| < d(h(z),0n(Q) < 4d(z,00)|h' (x)|. (52)

Proof. Corollary 1.4 of [21] states that for conformal f: D — C

L= 1P) £ ()] < d(F (20,08 @) < (1= 1) |£ ()] (53)

By Condition 9.1 and the Riemann Mapping Theorem there exists
a conformal mapping f : D — C with f (D) = Q and f (0D) = 0.
The claim follows by using (53) for f and ho f. O

In order to handle the cones we need an estimate for h: D — C
defined by h (z) = z“ with a € (0, 1).
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LEMMA A.3. Fiz § > 0. For a € (0,1) there exist ¢ > 0 such that
for allz,y € D(2(m —9)) :

¢ o=yl < (lol" "+ g ) 2~y <z —yl.

For a € (1,00) there exist ¢ > 0 such that for all x,y € D (M) :

«
a—1 a—1 -1 « a -1
clo—yl < (o™ T+t Y) 2t -y <ot eyl

Proof. The result for a > 1 is a direct consequence of the result for
a € (0,1). Hence we assume « € (0,1). For z € D (2m) the function
z + 2% is well defined by (re’?)” = r®e®¥ with |p| < m. Assume
without loss of generality that |z| < |y|. We set w = = y~! and
weo = 2 (y*)~". Notice that w® is not well defined in general and
if well defined it not necessarily equals w,. However, in a small
neighborhood of 1 it behaves properly. Indeed, for w € K with
K ={weClargw| < 4,5 < |w| <3} we find |arg (z y )| < 20
and hence w® = x® (y*) . Since w — w® is conformal on a
neighborhood of K there is ¢; > 0 such that for w € K :

e w—1 < Jwy — 1] < et w —1]. (54)

If w € D\K then both |w — 1] and |w, — 1| are bounded away from
0 and bounded from above. Hence (54) is satisfied for some (other)
c1. Using again 0 < a < 1 we finish by

(1o + Iyl =) |2 — y°] < 2yl [wa — 1] < 26, Jy| w1
and

(la' =+ 1yl )l = 47| > [yl lwa = 1] > eyl jw ~ 1.

LEMMA A.4. Let f map D conformally onto @ and assume that €
satisfies Condition 9. Set min;; ‘y(i) — y(j)‘ = 2¢. Define a; = 1/)1

i
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Then
( . —1
(lo = @™ + ly =@ ™) Jz—y
for (z,y) (B (1) nQ)’
with 1 <1 <k,

aif

azl
+ly =y e -y

for (z,y) (B (y ) )
withk+1<i1<k+m,

|z —y| elsewhere,

and

o =y

‘(fi””)'(m)‘w for x € B, (y(i))ﬂQ with 1 < i <k+m,
1  elsewhere.

Remark 1: Power series type expansions at a corner are established
by Wigley in [28].

Proof. We start with the first estimate. For
(2.9) ¢ U (B (uO)") n 02

one finds either x € B1 -y (i)) and y ¢ B. ( ) for some 7 (or vice
versa), or z,y € 2\ (Uk+mB1 (y ('))). In the first case the esti-

mates hold since ‘ fimo(z) — fimv (y ‘ and |z — y| are bounded away
from 0. In the second case the estimates follow since u — ‘ il (u)‘ is
uniformly bounded away from 0 and oo on

finv( \<Uk+mB1 (y ())))

The last result follows from an adaptation of Theorem 3.5 in [21].
It remains to show the estimate when both z and y belong to
B, (y(l)) N€2. Suppose that B, (y(l)) NQ C y D+ D (¢) after a possible
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rotation. Then we may define g : ) — R?, with g holomorphic on
Qbyg(x)=(x— y(l))az. By a theorem of Warschawski (Theorem
3.9 in [21]) one finds that

lgo f(u) —go f(v)]=|u—0v] for u,v € f™ (Bg (y(i)> DQ) .

Hence and by using Lemma A.3 we find if o > 1 that for z,y €
B. (y(z)) neQ

| f0 () = f7 (y)| = g (2) —g ()| ~
~ (e —y)" ~ ly—y)" |~
~ (\x_yu) ‘”*1) 1z —y|.

Similarly the result for «; € (0,1) can be shown.
The second statement of Theorem 3.9 in [21] shows that

oy —

C g -y

‘(g of) ('u,)‘ ~1 for u € K™ (Bg (y(i)> N Q)

and since «; > 0 hence

a;—1

(2)

o= = Ll @l =1 )] =) @)

a

COROLLARY A.5. Let @ satisfy Condition 9. For every i € {1,..,,
k +m} there is a continuous mapping h; : Q@ — B2 such that

i. h; : Q@ — C is conformal;

ii. h; (02) = Oh; (Q);
iii. h; (y@) =0;
iv. i (2) N By (0) = D (1);

v. h} can be extended continuously to O;

vi. 0< ‘h” < oo on Q.
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Remark 2: Assuming that I' C 002 is C™® with 0 < o < 1 implies
that h; € C™® on I'. See Theorem 3.6 of [21].

Proof. Since Fjg and I';_ are Dini smooth arcs ' is uniformly bound-
ed near the corner. Hence there exists a domain Q* that satisfies
00" O I, UL 90 2 C QF # Qand 007\ {y™} is Dini smooth. By
the Riemann Mapping Theorem there exist a holomorphic mapping
f from D onto Q* with f((—1,0)) = y® and f((1,0)) € 9Q*\oQ.
Set

-1
g (2) = z+ . for z with |arg z| < %77 7
g:(2) = 2% for z with larg z| < 1);.

For sufficiently large constant ¢ > 0 the function h; defined by
hi = c g 0 gi™ o FiY
satisfies the assumptions above. O
In a similar way one shows:

COROLLARY A.6. Let Q satisfy Condition 9. Then there is a con-
tinuous mapping h : Q — R? such that

i. h:Q — C is conformal;

it. h(0Q) = Oh (Q);
iii. h' can be extended continuously to OS;

w. 0< ‘h" < 00 on

v. Oh( )\ {h(yD);1<i<k+m}eC>;
vi. Oh(Q) at b (yW), with 1 < i <k +m, has a corner with the

same angle as O at y®.
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