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Hopf's Lemma and Two Dimensional

Domains with Corners

Guido Sweers
(�)

Summary. - Let 
 � IR2 be a bounded domain that is smooth except

for a �nite number of corners. The aim of this paper is to obtain

conditions such that the solution of the Poisson problem ��u =

f � 0 in 
 (f 6= 0), with zero Dirichlet boundary condition,

behaves similarly at the boundary as does the �rst eigenfunction

�1. That is: there exist c1; c2 > 0 such that

c1�1 (x) � u (x) � c2�1 (x) :

As a consequence we can improve some results for smooth do-

mains to domains with corners, such as: the maximum princi-

ple for an equation with a potential which is unbounded near the

boundary; the anti-maximum of Cl�ement and Peletier; a Green

function estimate of Zhao.

1. Introduction

If 
 is smooth enough and f � 0 su�ciently regular one �nds point-

wise estimates for the solution u of(
��u = f in 
;

u = 0 on @
;
(1)

by the maximum principle and Hopf's boundary point lemma. In-

deed they imply the following. For a nonnegative nonzero right hand
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side f 2 C(�
) there is a constant k > 0 such that

k d (x;
) � u (x) for all x 2 
: (2)

For smooth 
 regularity theory shows that there is another constant

k0 2 (0;1) such that

u (x) � k0 d (x;
) for all x 2 
; (3)

where the distance function d (�;
) is de�ned by

d (x;
) = inf fjx� yj ; y =2 
g : (4)

If there can be no doubt we write d (x) = d (x;
).

The standard boundary point lemma of E. Hopf for the Laplacian

is as follows. See Theorem 2.7. in [22].

� Hopf's Boundary Point Lemma1. Let u satisfy �u � 0 in

D and u � M in D, u (P ) = M for some P 2 @D. Assume that P

lies on the boundary of a ball B � D. If u is continuous on D [ P
and if the outward directional derivative

@u

@n
exists at P , then u �M

or
@u

@n
(P ) > 0:

If 
 is not smooth the estimates (2) and (3) are no longer true

in general. Roughly speaking the estimate in (2) goes wrong for do-

mains with corners pointing outside and (3) goes wrong for domains

with inside pointing corners.

Instead of comparing with d (x) in (2) and (3), one could try to

compare with �1 (x), the �rst eigenfunction of(
��� = �� in 
;

� = 0 on @
;
(5)

For smooth 
 there is not much di�erence since c d (x) � �1 (x) �
c0 d (x) for some c; c0 > 0.

1For the Laplacian in two dimensional domains the result goes back to C.

Neumann in 1888. For general elliptic operators (in general dimensions) the

result was published in 1952 independently by E. Hopf and by Oleinik. See page

156 of [22] for references and more bibliographical details.
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For nonsmooth 
 the question is the following: do k; k0 2 (0;1)

exist such that

k �1 (x) � u (x) for all x 2 
; (6)

and

u (x) � k0 �1 (x) for all x 2 
? (7)

We will show that for domains with �nitely many corners that

satisfy a uniform interior cone condition with large angle the answer

is yes. If such a domain has a corner with a small angle the answer is

a conditional yes. The condition will be sharp. Related estimates for

plane domains with corners are obtained by Oddson in [19]. His esti-

mates are not su�cient for the results we are interested in. In several

other papers related estimates can be found. One should mention

Kondrat'ev [13], [14] and also [17], [18]. However, collecting the lit-

erature on elliptic boundary value problems on angular domains is

la mer �a boire.

The domains that we consider will have a �nite number of cor-

ners. It would be interesting to see if similar results hold for Lipschitz

domains. On such more general domains the conditions will depend

on the Lipschitz coe�cient.

In order to simplify notations we use:

Definition 1. Set u � v on A if and only if there exists k 2 (0;1)

such that

u (x) � k v (x) for all x 2 A:
Set u � v on A if such a constant does not exist.

Definition 2. Set u ' v on A if and only if there exists k 2 (0;1)

such that

k�1v (x) � u (x) � k v (x) for all x 2 A:

We will use results of Kadlec [12] and Grisvard [9]. For the point-

wise results we are interested in, we will compare the solutions with

appropriate sub- and supersolutions. In the last sections we will

show how the estimates can be used to extend the results mentioned

in the abstract. In the appendix one �nds some of the results for

conformal mappings that we use.
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2. Some standard preliminaries

Let us recall some regularity results for solutions u of (1) on a

bounded domain 
 � Rn . The function u will denote a solution

of (1) in appropriate sense.

R1) If 
 satis�es an exterior cone condition then (see Theorem 8.30

of [8]) f 2 Lq (
) with q > 1
2n implies u 2 C0(�
).

R2) If @
 is C1;1 (see Theorem 9.15 of [8]) then f 2 Lq (
), q > 1

implies u 2W 1;q
0 (
) \W 2;q (
).

R3) If 
 is convex (see [12], [9]), then f 2 L2 (
) implies u 2
W

1;2
0 (
) \W 2;2 (
).

The following imbedding results hold:

I1) On general 
 (Theorem 7.10 of [8]) u 2W 1;q
0 (
) ; q > n implies

u 2 C(�
).

I2) If 
 satis�es a uniform interior cone condition, then u2W 2;q(
),

q > 1
2n implies u 2 C(
) \ L1(
).

I3) If @
 is C0;1, then (Corollary 7.11 of [8]) u 2 W 2;q(
), q > 1
2n

implies u 2 C(�
), (and q > n implies u 2 C1(�
)).

Notice that conditions on the outside of the domain, an exterior

cone condition or convexity (which might be called exterior plane

condition), imply the regularity of the solution. Conditions on the

inside allow one to transfer integrability properties of �rst or second

order derivatives to continuity of the function itself.

3. Is the �rst eigenfunction the lowest positive

superharmonic function?

On smooth domains the results that we mentioned in the introduc-

tion imply that any positive superharmonic function, that is contin-

uous, lies above a positive constant times the �rst eigenfunction. A

proof of this result uses the smoothness of the boundary. However,

it is not clear if this regularity is necessary. Let us state this open

question as a conjecture.
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Conjecture 3. Let 
 � Rn be a bounded domain and suppose that

there is a �rst eigenfunction �1 2 C0

�
�

�
\C2 (
) (we �x max�1 =

1). Then for every u 2 W
2;p
loc

(
), p > 1
2n, with u � 0;��u � 0 in


, either u � 0 or there exists c > 0 such that u � c�1 in 
.

This estimate from below by the �rst eigenfunction could take

care of some of the results in this paper. But since there does not

seem to be a proof in the general case we will (only) show it under

some conditions on the boundary. By the way, the estimate from

above will not be true in general.

The eigenvalue problem in general domains has recently been

studied by Ba~nuelos in [3].

4. Elementary domains

4.1 Notations

Since results related with the Riemann Mapping Theorem are more

easily stated using C instead of R2 we will use boldface for the com-

plex alternative:

for x 2 R2 set x = x1 + ix2 2 C ;
for A � R2 set A = fx1 + ix2 2 C ;x 2 Ag ;
for h : R2 ! R2 set h (x) = h1 (x) + ih2 (x) :

We will start by considering the following domains in R2

D ( ) =
�
x 2 R2 ; jxj < 1; jargxj < 1

2 
	
:

The angle of the domain D ( ) at zero (we will always measure from

inside) equals  . Related are

the circular boundary: � =
n
x 2 D ( ); jxj = 1

o
;

the conical boundary: S =
n
x 2 D ( ); jxj < 1

o
;

the related growth rate: � =
�

 
:

Notice that @D ( ) = � [ S . We will also use

1

2
D ( ) =

�
x 2 R2 ; 2x 2 D ( )

	
:
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4.2 Cones that are convex near 0

We start with domains 
 = D ( ) when  < � and will be interested

in the behavior near (0; 0). Note that the corner at (0; 0) is convex

and hence there is no regularity problem (see Grisvard [9], [10]).

D( ) for some  2 (0; �).

We will compare the solutions of8<
:
��v = 0 in D ( ) ;

v = 0 on S ;

v = cos � ' on � ;

(8)

(
���1 = �1�1 in D ( ) ;

�1 = 0 on @D ( ) ;
(9)

with �1 the �rst eigenvalue (take �1 > 0), and for � > �1(
��u� = r� in D ( ) ;

u = 0 on @D ( ) :
(10)

Note that (1) has a solution u 2 C0(�
) if f 2 Lq (
) with q > 1

if 
 (� R2 ) satis�es an exterior cone condition at every boundary

point.

Lemma 4. Let D ( ) ; v; �1 be as above. Then for all  2 (0; �)

v ' �1 on 1
2D ( ) :

Proof. We can write both functions explicitly. We have v (r; ') =

r� cos
�
� '

�
and by using a Bessel function of order � , namely

�1 (r; ') = J� 

�
�� ;1r

�
cos
�
� '

�
with corresponding eigenvalue
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�1 =
�
�� ;1

�2
(�1 is unique up to multiplication by a constant)

where

J� (s) =

1X
m=0

(�1)m
�
1
2s
��+2m

m! �(� +m+ 1)

and ��;1 the �rst positive zero of J� (�).
Since r� � J�

�
��;1r

�
� r� on

�
0; 12
�
the estimate in i) holds.

Remember that J� (s) solves s
2J 00 + sJ 0 +

�
s2 � �2

�
J = 0. 2

Theorem 5. Suppose � > �1 and �x  2 (0; �). Let D ( ) ; �1 and

u� be as above. Then

i. for �+ 2 > � we have u� ' �1 on 1
2D ( ),

ii. for �+ 2 < � we have u� ' r�+2�� �1 on 1
2D ( ),

iii. for �+ 2 = � we have u� ' (� ln r) �1 on 1
2D ( ).

Remark 1: From ii) and iii) it follows that for �+ 2 � � one has

u� � �1 on 1
2D ( ) :

Remark 2: The relation between the opening angle  2 (0; �) and

the critical growth � 2 (�1;1) is � = �

 
� 2 or reversed  = �

�+2 .

For the semilinear problem ��u = f (u) with f (0) < 0 the angle
1
2� is critical for the existence of a positive solution, see [24].

1

2

3

4

5

6

7

8

9

Pi1/2 Pi
psi

alpha

-1
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Proof. In all of the parts we will use the maximum principle as fol-

lows. If u; v 2 C2(
) \ C(�
) satisfy(
��u � ��v in 1

2D ( ) ;

u � v on @
�
1
2D ( )

�
;

then

u � v in 1
2D ( ) :

Note that

�1 � u� � �1 on 1
2� 

�
= @

�
1
2D ( )

�
\D ( )

�
:

We will compare u� with several wi. All functions wi satisfy wi = 0

on S :

i) above. We set � = min
�
�+ 2; 2� 

�
. Then it follows that �+2 �

� > � and hence that r�+2 � r� � r� for r 2 [0; 1]. Now we

compare with

w1 = k r� cos � '� r�
�
cos (�')� cos

�
�=� 

1
2�
��
; (11)

where we take k large enough such that w1 � 0 on 1
2D ( ).

Then, using the fact that cos
�
�=� 

1
2�
�
< 0, we �nd

��w1 = ��2 r��2 cos
�
�=� 

1
2�
�
� r��2 on 1

2D ( )

and w1 � r� cos � ' on 1
2D ( ). Since

(
r� � ��w1 on 1

2D ( ) ;

0 = u� � w1 on @
�
1
2D ( )

�
;

the previous lemma and the maximum principle imply

u� � w1 � �1 on 1
2D ( ) :

i) below. We compare with

w2 = r� 
�
1� r�+2�� 

�
cos� ': (12)
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It follows that8<
:
��w2 =

�
(�+ 2)2 � �2

 

�
r� cos � ' � r� on D ( ) ;

0 = w2 = u� on @D ( ) ;

and hence by the previous lemma and the maximum principle

we �nd

�1 � w2 � u� on 1
2D ( ) :

ii) above. Set

w3 = r�+2

�
cos ((�+ 2)')� cos

�
�+ 2

� 

1
2�

��
: (13)

One �nds ��w3 = r� (�+ 2)2 cos

�
�+ 2

� 

1
2�

�
and hence

(
r� � ��w3 on D ( ) ;

u� � w3 on @
�
1
2D ( )

�
;

from which it follows that

u� � w3 � r�+2�� �1 on 1
2D ( ) :

ii) below. Taking

w4 = r�+2 cos � ' (14)

we obtain8<
:
��w4 =

�
�2
 
� (�+ 2)2

�
r� cos � ' � r� on D( );

0 � w4 � u� on @
�
1
2D( )

�
;

and hence

r�+2�� �1 � w4 � u� on 1
2D ( ) :

iii) For �+ 2 = � we compare with

w5 = r� 

�
(k � ln r) cos

�
� '

�
+ ' sin

�
� '

�
� �

2� 

�
(15)



392 G. SWEERS

with k large enough such that w5 > 0 on D ( ). Since ��w5 =

� r
� �2 �

2 we can use this function for both sides of the esti-

mate. From(
��w5 � r� � ��w5 in D ( ) ;

w5 � u� � w5 on @
�
1
2D ( )

�
;

it follows that

w5 � u� � w5 in 1
2D ( ) :

Since

w5 � �r� ln r cos
�
� '

�
� w5 in 1

2D ( )

the previous lemma implies the last estimate of the theorem. 2

Corollary 6. Fix  2 (0; �) and let u be a solution of8<
:
��u = f in D ( ) ;

u = 0 on S ;

u = g on � ;

with 0 � g 2 C (� ) and 0 � f 2 C (D ( )), such that for some �

and M one has

0 6= f (x1; x2) �M jx1j# for x 2 D ( ) :

If # >
�

 
� 2, then

u ' �1 on 1
2D ( ) :

Remark 3: Note that if we do not assume a �xed sign for f or g we

�nd that there is k > 0 such that

ju (x)j �M �1 (x) for all x 2 1
2D ( ) :

Remark 4: The conditions on f imply that f 2 L2 (D ( )). For

� � 0 one has f 2 L1 (D ( )). For �1 < � < 0 one �nds in fact

that f 2 Lp (D ( )) for all 1 � p < 2
��

and hence f 2 L2 (D ( )) :

Z
D( )

jf jp dx �Mp

1Z
x1=0

cx1Z
x2=�cx1

x
p�

1 dx2dx1 =
2cMp

p�+ 2
:
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Hence there is a solution u 2 W
1;2
0 (D ( )). Regularity results, see

[8], show that u 2W 2;2 (
0) for any 
0 � D ( ) with �
0 not contain-

ing the corner points. In fact, since D ( ) is convex it follows from

[12] that u 2W 2;2 (D ( )); see Theorem 3.2.1.2 of [9].

4.3 Cones that are concave near 0

In this section we recall some results for domains with an entrant

corner. We will use D ( ) that have a corner at (0; 0) with angle

 2 (�; 2�).

D ( ) for  2 (�; 2�).

From results of Grisvard [11], see also Lemma 4.4.3.1 and The-

orem 4.4.3.7 in [9], one has for f 2 Lp (D ( )), with p � 2 and
2 

q�
=2 N, 1

p
+ 1

q
= 1, that there exists a solution u 2 W

1;2
0 (D ( ))

and it satis�es

u = �uf +

np; X
m=1

cm;f r
m� �m (')

where
�uf 2W 2;p (
) ;

cm;f 2 R;

�m (') = sin
�
m� 

�
'� 1

2 
��
;

np; =

�
2 

q�

�
; the entier of

2 

q�
:

Taking p = 2 + " in the above, with 0 < " <
2� �  

 � �
, one �nds

u = �uf + c1;f r
� cos

�
� '

�
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with �uf 2W 2;2+" (D ( )). SinceW 2;2+" (D ( )) � C1
�
D ( )

�
holds

in a two dimensional domain with Lipschitz boundary we �nd that

j�uf (x)j � d (x; @
) � r� cos
�
� '

�
on D ( ). Hence ju (x)j �

r� cos
�
� '

�
on D ( ). Note that the solution of (8) is given by

v = r� cos
�
� '

�
. Next we will show that the solutions of (8), (9)

and (10) with � > �1, have the same behavior near 0.

Lemma 7. Let v and �1 be the solutions of respectively (8) and (9)

on D ( ) with concave corner. Then

v ' �1 on 1
2D ( ) :

Proof. See Lemma 4. 2

Corollary 8. Let D ( ) and �1 be as above. Let f 2 Lp (D ( )) \
C (D ( )) with p > 2 such that 0 6= f � 0, and let 0 � g 2 C (� ).

Then the solution u of8<
:
��u = f in D ( ) ;

u = 0 on S ;

u = g on � ;

satis�es

u ' �1 on 1
2D ( ) : (16)

Remark 5: Note that f (r) = r�, with �1 < � < 0, is in Lp(D ( ))

with p 2
�
2;�2 ��1

�
. If u� is the solution of (10) then u� satis�es

�1 � u� � �1 on 1
2D ( ).

Remark 6: Again, if we skip the sign condition for f and g, we �nd

that for some k > 0

ju (x)j � k �1 (x) for all x 2 1
2D ( ) :

Proof. By the results of Grisvard we �nd

u � r� cos
�
� '

�
on D ( ) :
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By the explicit formula for �1 we obtain

r� cos
�
� '

�
� �1 on 1

2D ( ) ;

which shows the estimate from above. The estimate from below

follows by (
��v = 0 � ��u in 1

2D ( ) ;

v � u on @
�
1
2D ( )

�
;

the maximum principle and the previous lemma. 2

5. The basic result in general domains with corners

The domains that we will consider satisfy the following assumptions.

Condition 9. The domain 
 is an open bounded subset of R2 such

that:

i. 
 is the inside of a (closed) Jordan curve �, say

� =
�


�
ei'
�
;' 2 [0; 2�]

	
;

ii. 
 is Dini smooth except in �nitely many points
�
eitj
	k+m
j=1

;

iii. at every point y(j) = 

�
eitj
�
the boundary @
 has a Dini

smooth corner;

iv. the corresponding angles,

 j = lim
"#0
\

�

0(ei(tj�")); 
 0(ei(tj+"))

�

which are measured from inside, lie in (0; 2�).

We will assume that  j 2 (0; �) for 1 � j � k, and  j 2 (�; 2�) for

k + 1 � j � k +m.



396 G. SWEERS

Remark 1: � is called a Jordan curve if � = 
 (@B1 (0)) with


 : @B1 (0)! � continuous and one-one.

A function is called Dini smooth if the derivative exists and is

Dini continuous. A (part of the) boundary is called Dini smooth if

there exists a Dini smooth parameterization 
 with 
0 6= 0.

The curve � has a Dini smooth corner at 

�
eitj
�
if

��
j;"

=
�


�
eit
�
; t 2 (tj � "; tj ]

	
; �+

i;"
=
�


�
eit
�
; t 2 [tj; tj + ")

	
are Dini smooth arcs for some small " > 0.

Remark 2: The condition implies that 
 is simply connected. This

is not necessary. Most results in this paper have an obvious extension

to bounded domains which boundary consists of �nitely many non

intersecting Jordan curves, all of which satisfy the items ii), iii) and

vi) in Condition 9.

Theorem 10. Suppose 
 satis�es Condition 9 and that f 2 Lp (
)\
C (
) with p > 2 and 0 6= f � 0. Let u 2W 1;2

0 (
) \W 2;p
loc

(
) be the

solution of �
��u = f in 
;

u = 0 on @
:

Then

u � �1 on 
: (17)

If moreover, f is such that for every i 2 f1; : : : ; kg there exist #i >
�

 i
� 2 and "i;Mi > 0 with

f (x) �Mi

���x� y(i)
���#i on B"i

�
y(i)
�
\
; (18)

then

u ' �1 on 
: (19)

Proof. On 
nSk+m
i=1 B�

�
y(i)
�
the estimates in (17) and (19) follow

by the strong maximum principle. Hence it remains to show (17) and

(19) on 
\
S
k+m
i=1 B�

�
y(i)
�
. By Corollary A.5 there is an appropriate

holomorphic mapping hi from
 to C , such that
��h0�� is bounded away

from 0 and 1, and for some c > 0

c�1D ( i) � h
�
B"

�
y(i)
�
\


�
� c D ( i) :
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By Corollaries 6 and 8 we �nd that the solution uh of(
��uh (x) = f

�
hinv (x)

�
for x 2 h (
) ;

uh = 0 on @h (
) ;

satis�es, respectively without and with condition (18)"
uh � �1;c�1D( i)

uh ' �1;c�1D( i)

on 1
2c
�1D ( i) : (20)

Since (20) also holds when uh is replaced by �1;h(
), we �nd respec-

tively that "
uh � �1;h(
)

uh ' �1;h(
)
on 1

2c
�1D ( i) :

Lemma A.1 shows for some "0 > 0 that"
u � �1;


u ' �1;

on B"0

�
y(i)
�
\ 
:

2

6. A semilinear equation

Consider the equation�
��u = up in 
;

u = 0 on @
;
(21)

with p 2 (�1; 0).
Theorem 11. Let 
 be a bounded domain in R2 that satis�es Con-

dition 9. Let  0 be the angle of the smallest corner of @
. If

u 2 W 2;q (
) \ W 1;q
0 (
), with q > 2, is a solution of (21), then

p > �2 0
q�

.

Proof. We �nd ��u 2 Lq (
) and hence, if  denotes the angle of

the boundary at 0, we �nd that there is c > 0 such that near 0 we

have

c1 jxj
�
 
�1
d (x) � u (x) � c2 jxj

�
 
�1
d (x) :

Then up 2 Lq (
 \B" (0)) for small ", if and only if pq �
 
+ 1 > �1.

2
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7. A generalized maximum principle

The classical maximum principle for the Dirichlet problem not only

holds with a positive potential but also with a potential V with

V > ��1, where �1 is the �rst eigenvalue.

� A version of the classical maximum principle. Let 
 be

a bounded domain in Rn with a C2 boundary. Suppose that V 2
L1

�
�

�
with V > ��1, and that u 2 C

�
�

�
\C2 (
) satis�es�

��u+ V u � 0 in 
;

u = 0 on @
;
(22)

then u � 0.

If 
 is a C0;1-domain one is able, by using the Hardy inequalityZ



� ju (x)j
d (x)

�2

dx � cH

Z


jru (x)j2 dx for all u 2W 1;2

0 (
) ; (23)

(see [15] or [7]) to generalize the result above to potentials V that

are unbounded near the boundary @
. Although the result seems to

be standard we have not been able to locate a reference2.

Theorem 12. Let 
 be a bounded domain in Rn with a C0;1-bound-

ary. Let cH denote the best constant in (23). Suppose V 2 C (
) is

such that �c�1
H

< �c � V d (�)2. If u 2 C
�
�

�
\C2 (
) satis�es (22)

and u 2W 1;2
0 (
) then u � 0:

Proof. Set V� = 1
2 (jV j � V ) and u� = 1

2 (juj � u). Set


� = fx 2 
;u (x) < 0g

and suppose that 
� is nonempty. For x 2 
� we have ��u�V� u �
�V+u � �V+u+ = 0 which implies for all � 2 C1

0 (
�) with � � 0

that Z


(ru � r�� V� u�) dx � 0:

2Added in proof: [30]
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Since u� 2W 1;2
0 (
) we �nd with (23) that

0 �
Z


(ru � ru� � V� uu�) dx �

�
�1 + c

cH

�Z


jru�j2 dx � 0:

Hence u� = 0. 2

Theorem 13. Let 
 be a bounded domain in R2 that satis�es Con-

dition 9. Suppose that V 2 C (
) is such that there are "; �;K > 0

for which the following holds.

i) �� � d (x)2 V (x) for x 2 
;

ii) �K � d (x)2�" V (x) for x 2 
:

If � < cH then a function u 2 C
�
�

�
\ C2 (
) \W 1;2

0 (
) that

satis�es (22) is positive and moreover either u � 0 or there is c > 0

with

u (x) � c �1 (x) for x 2 
:

where �1 is the �rst eigenfunction of ��:

For smooth domains and V bounded, optimal results in compar-

ing u and �1 are found in [27].

Proof. By Theorem 12 it follows that for � small the function u

satis�es u � 0. Then we have ��u + V+u = V�u � 0 in 
. By

the standard strong maximum principle one �nds u � 0 or u > 0 for

every domain 
0 with 
0 � 
 and hence in 
. It remains to show

the boundary behavior. With similar arguments as we used in the

proof of Theorem 10, which are the results stated in the appendix,

it is su�cient to show the boundary behavior in a neighborhood of

0 for 
 = D ( ) with the appropriate  . First we consider the case

where  = �. We may assume that " � 1 and we �x 
 = 1
2".

i)  = �. We use the function

w6 (x1; x2) = x1 (1 + x



1 � 2x1)� 2x22: (24)

Then one has on the set where w6 > 0 holds that

��w6 + V+ w6 � ��w6 +Kx"�2
1 w6 �
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� x

�1
1

�
�
 (
 + 1) + 8x

1�

1 + 2Kx

"�


1

�
which is negative for x1 2 (0; �) with

� := min

 
1

2
;



r

 (
 + 1)

2K + 8

!
:

Set S =
�
x 2 D (�) ;x22 < x1 < �

	
. Then w6 � 0 on the part of @S

where x22 = x1. Fix � in
�p

�;
p
1� �2

�
. Since u > 0 in D (�) the

number

� = max

�
w6 (�; x2)

u (�; x2)
; jx2j � �

�
(25)

is well de�ned and positive. Now we are able to compare u and

�w6 � t on S.

For large t > 0 we have u > �w6 � t in �S and for every t > 0 we

�nd u > �w6 � t on @S. So either u � �w6 � 0 in S or there is a

smallest t� > 0 such that for some x� 2 S

u � �w6 � t� in S;

u (x�) = �w6 (x
�)� t�:

Suppose that the second possibility holds. Since u > 0 on S and

hence �w6 (x
�) � t = u (x�) > 0 there exists S�, with S� � S and

@S� smooth, such that �w6 � t � 0 on S�. Then we �nd on S, and

hence on S� that

(��+ V+) (u� (�w6 � t�)) �

� V�u� � (��+ V+)w6 + V+t
� � 0:

It follows by the strong maximum principle that u > �w6� t� on S�
and hence a contradiction. That is

u� �w6 � 0 in S:

By another application of the sweeping principle of McNabb

([16]), now a shift of u�(�w6 � t) of at most ��p� in the x2-direction
and repeating the argument above, we �nd that u (x1 + s; x2) �
�w6 (x1; x2) in S when jsj � � �p�. Hence we have

u (x1; x2) � �w6 (x1; 0) for 0 < x1 < �; jx2j < � �p�:
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The estimate in the theorem follows since w6 (x1; 0) � c x1 for some

c > 0 and all x1 2
�
0; 12
�

ii)  6= �. With similar arguments as before we use

w7 (r; ') = r� (1 + r
 � 2r) cos
�
� '

�
: (26)

Then

��w7 + V+w7 �

� r� �2+


�
�
��
� + 


�2 � �2
 

�
+

+ 2
��
� + 1

�2 � �2
 

�
r1�


�
cos
�
� '

�
+

+K r� �2+" (1 + r
 � 2r) cos
�
� '

�
�

� r� �2+

�
�
�
2
� + 
2

�
+ 2

�
2�2

 
+ � 

�
r1�
 + 2Kr


�
cos
�
� '

�

which is negative on D ( ) for 0 < r < r0 := 


r
2
� +


2

4�2 +2� +2K
. We

replace S by ~S = r0D ( ) and � with

~� = max

�
w7 (r0; ')

u (r0; ')
; j'j � 1

2 

�
:

The result of part i) shows that the quotient remains bounded when

' ! �1
2 from inside. Finishing the argument as before we �nd

that u � ~�w7, implying the estimate of the theorem.

8. The anti-maximum principle

Cl�ement and Peletier showed in [6] a result that reads for the Lapla-

cian with zero Dirichlet boundary conditions as follows.

� Let 
 be a bounded domain in Rn with a C2 boundary. Suppose

f 2 Lp (
), p > n, such that 0 6= f � 0, and suppose u� satis�es the

equation �
��u� �u = f in 
;

u = 0 on @
:
(27)

Then there exists � > 0, depending on f , such that if �1 < � < �1+�,
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i. u� (x) < 0 for all x 2 
,

ii.
@u�

@n
(x) > 0 for all x 2 @
,

where n is the outward normal.

Birindelli recently ([4]) extended the anti-maximum principle to

general domains but only for right hand sides f which have its sup-

port outside of the non smooth boundary. We allow less general

domains and more general f . Our estimate will be optimal.

Theorem 14. Let 
 be a bounded domain in R2 that satis�es Con-

dition 9. Suppose f 2 Lp (
)\C (
), with p > 2 and such that 0 6= f

� 0.

We assume that for all i 2 f1; : : : ; kg there exists #i >
�

 i
� 2 and

� > 0 with

jf (x)j �M
���x� y(i)

���#i for all x 2 B�
�
y(i)
�
\ 
, (28)

Suppose u� satis�es the equation in (27). Then there exists � > 0,

depending on f , such that for �1 < � < �1+�, there exists c1; c2 > 0

with

�c1�1 (x) � u� (x) � �c2�1 (x) for all x 2 
:

Remark 1: Without loss of generality we may suppose that

p < 2 +
2� �  i
 i � �

for all i 2 fk + 1; : : : ; k +mg . (29)

The result is also optimal in the following sense.

Proposition 15. Let 
 = D ( ) for some  2 (0; �) and take # 2�
�1; �

 
� 2

�
with # � 0. For f = r# we �nd that for all � 2 (�1; �2)

the solution u� of (27) changes sign.

Remark 2: Note that f = r# 2 Lp (
) for some p > 2. For  < 1
2�

one may take f = 1.
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The proof basically follows [6]. First we suppose that 
 not only

satis�es Condition 9 but even that @
 is C2;� smooth except for

C2;� smooth corners. It means that the boundary consists of �nitely

many curves �i = 
i ([0; 1]) with 
i 2 C2;� [0; 1] and 
0
i
6= 0. For

such a domain one can solve (1) for f 2 Lp (
), with 2 < p � 2 + "

and " small, in the following way.

Lemma 16. Let 
 be as above. Then there is " > 0 and there exist

f�igk+mi=k+1 such that

i. ��i 2 C2
�
�

�

ii. support (�i) � B"
�
y(i)
�
\ �
;

iii. ��1 (x) � �i (x) � �1 (x) for x 2 B 1
2
"

�
y(i)
�
\ �
;

iv. for all f 2 L2+" the solution u 2W 1;2
0 (
) of (1) satis�es

u = �u+

k+mX
i=k+1

ci �i;

with �u 2W 2;2+" (
) and ci 2 R.

Proof. By the remark following Corollary A.5 one �nds holomorphic

mappings hi that maps a neighborhood of y(i) in 
 onto cD ( i) and

moreover hi 2 C2;�
�
�

�
. This implies that x 7! u (x) 2 W 2;p (
) is

equivalent with x 7! u
�
hinv
i

(x)
�
2W 2;p (hi (
)) and even

kuk
W 2;p(
) '



u � hinvi 


W 2;p(h(
))

for u 2W 2;p (
) :

Since we assume (29) we �nd by [9] for all i 2 fk + 1; : : : ; k +mg a
neighborhood of 0 (= hi

�
y(i)
�
) with

u
�
hinvi (x)

�
= ~ui (x) + ci �i (x)

where ~ui 2 W 2;p (cD ( i)) and �i (x) = r
�
 i

i
cos

�
�

 i
'i

�
�i (x). The

function �i is chosen such that it localizes �i, that is �i 2 C1
�
R2
�+
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and for some 0 < �1 < �2 < c one has �i � 1 on B�1 (0) and �i � 0

on R2nB�2 (0). For u we �nd that

u = �u+

k+mX
i=k+1

ci �i � hi on 
;

with �u 2 W 2;p (
). Direct calculus shows ��i 2 C1 (h (
)). The

estimate in 3) follows from Corollary 8. 2

We will replace the function e that is used in [6] by

e (x) = �1 (x) + d (x) :

Remember that one has

�1 (x) � d (x) � �1 (x) for x near a `convex' corner,

�1 (x) � d (x) � �1 (x) for x near a `concave' corner.

The following Banach space (even a Banach lattice) will be used:

Ce =
�
u 2 C0

�
�

�
; juj � e

	
with norm

kuk
e
= sup

�����u (x)e (x)

���� ;x 2 


�
:

Since e (�) � d (�) we �nd that C1
�
�

�
\C0

�
�

�
is continuously imbed-

ded in Ce. Since e (�) � �1 (�) we �nd �i 2 Ce. Denote Y = Lp (
)

(p as above) with its standard norm and

X =
�
�u 2W 2;p (
) ; �u = 0 on @


	
� [[�i]]

k+m
i=k+1

with norm

kuk
X
= k�uk

W 2;p(
) +

k+mX
i=k+1

jcij ;

where u = �u +
P

k+m
i=k+1 ci�i. Since the set f�ig is independent and

�i =2W 2;p (
) this norm is well de�ned. Theorem 4.3.2.4 of [9] shows

that

k�uk
W 2;p(
) � c

�
k��uk

Lp(
) + k�uk
Lp(
)

�
: (30)
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Since W 2;p (
) is compactly imbedded in Lp (
) we �nd from Theo-

rem 6.2 of [23] that the operator

� :
�
�u 2W 2;p (
) ; �u = 0 on @


	
! Lp (
)

is a semi-Fredholm operator; that is, it has a closed range and a

�nite dimensional null space. Since ��i 2 Lp (
) we also �nd that

A = � : X ! Y

is a semi-Fredholm operator. Theorem 4.4.3.7 of [9] implies that

A 2 L (X;Y ) has an inverse (and hence A is a Fredholm operator of

index 0). We will denote this inverse by T . Being the inverse of a

bounded linear operator on Banach spaces (see Theorem 4.1 of [23])

it is bounded. Hence we �nd

kTfk
X
' kfk

Y
for f 2 Lp (
) :

By Theorem 7.26 of [8] it follows that the imbedding W 2;p (
) !
C1
�
�

�
is compact. Hence the imbedding X ! C1

�
�

�
� [[�i]]

k+m
i=k+1

is compact. Since �i 2 Ce and since C1
�
�

�
\C0

�
�

�
is continuously

imbedded in Ce we �nd that the operator Te := T : Ce ! Ce is well

de�ned and compact. We summarize.

Lemma 17. The following imbedding results hold.

i. X !
�
C1
�
�

�
\ C0

�
�

��
� [[�i]]

k+m
i=k+1 is compact.

ii.
�
C1
�
�

�
\C0

�
�

��
� [[�i]]

k+m
i=k+1 ! Ce is continuous.

iii. Ce ! Y is continuous.

Since T 2 L (Y ;X) the operator Te 2 L (Ce;Ce) is compact.

Up to now we used that the boundary of 
 consists of piecewise

C2;�-curves. We may replace C2;� by Dini smoothness using a trans-

formation h as in Corollary A.6. The function h is a di�eomorphism

from 
 to a piecewise smooth domain h (
) which has the same cor-

ners as 
 and with 0 < c � jrhj � c�1 for some c > 0. Instead of

(27) one considers(
��uh � � jrhj�2 uh = jrhj�2 fh in h (
) ;

uh = 0 on @h (
) :
(31)
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By the strong maximum principle one �nds that Te is positive

and irreducible. Since the operator Te is compact, positive and irre-

ducible we may use the Krein-Rutman Theorem with the De Pagter

Theorem ([20], see also [25]) and �nd an analogy of Lemma 2 in

[6]. The last statement of the next lemma follows from Theorem 10.

Indeed, �u� Teu = g is solved by

u = ��1
�
I � ��1Te

��1
g = ��1

1X
k=0

�
��1Te

�k
g;

and u � ��2Teg � �1.

Lemma 18. We have:

i. The spectral radius r (Te) is positive (and r (Te) = ��1
1 ).

ii. r (Te) is a simple eigenvalue of Te with eigenvector �1, and �1
is the only eigenvector with �xed sign.

iii. r (Te) is a simple eigenvalue of T �e with eigenvector ��1, de�ned

by

��1 (u) =

Z


�1 (x) u (x) dx:

iv. For every g 2 Ce, with 0 � g 6= 0 and � > r (Te), there exists

exactly one solution u of �u� Teu = g and it satis�es u � �1.

Remark 3: Note that in contrary to Lemma 2 of [6] we do not

�nd Tef � e for f 2 Ce with 0 � f 6= 0. This implies that we do

not obtain strong positivity of Te in the sense of [1]. The operator

Te would be strongly positive if Te (Pen f0g) �
�

Pe where Pe is the

positive cone in Ce.

Similarly as in [6] one has the decomposition as in their Lemmata

2 and 3.
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Lemma 19. The space Y satis�es Y = [[�1]]�R (A� �1I).

For every f 2 Y there exists f1 2 R (A� �1I) such that

f = ��1 + f1 (32)

with � = ��1
1 ��1 (Tf) =�

�

1 (�1).

Let u 2 X. Since X � Y there is a unique decomposition

u = ��1 + u1 (33)

with u1 2 X \ R (A� �1I). If u is a solution of (27) with f as in

(32) we �nd

� =
��

�� �1
(34)

Au1 � �u1 = f1: (35)

Note that A � �I : X \R (A� �1I) � X ! R (A� �1I) � Y is an

isomorphism for j�� �1j small. Hence there are constants �;Mf1 ,

not depending on �, such that

ku1kX < Mf1 for all � 2 [�1 � �; �1 + �] : (36)

We shall need an additional result for the inverse of this restriction

of A� �I.

Lemma 20. Suppose that f1 2 R (A� �1I) satis�es (28). Then

there isM
0

f1
such that for j�� �1j < � the solution u1 of (35) satis�es

ju1 (x)j �M
0

f1
�1 (x) for x 2 
: (37)

Proof. First note that for all f 2 Y which satisfy the conditions of

Theorem 14, there exists M� such that for all � 2 [0; �1 � �], with

� > 0, the solution u of (27) satis�es

ju (x)j �M� �1 (x) : (38)

Indeed, denoting by u� the solution for �, we �nd

(��� �)
�
u� � u0

�
= �u0 � (�1 � �) u0 � �1
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and hence by the maximum principle we have, uniformly for � 2
[0; �1 � �], that there are c;M� such that

u� � u0 + c �1 �M� �1 in 
: (39)

From (36) it follows that

ju1 (x)j � c M1 e (x) in 
: (40)

Since the �rst eigenvalue �1;
� on 
� = B"
�
y(i)
�
\ 
 can be chosen

large for " small, we may solve(
(��+ �)u1 = f1 in 
�;

u1 = u1 on @
�;

for � < �1 + � and use (38) and the bound (28) for f1 near y(i) on


� to �nd

ju1j �M�

� �1;
� � c �1 in B 1
2
"

�
y(i)
�
\ 
: (41)

Together (40) and (41) show the estimate. 2

Proof of Theorem 14. Let u 2 X be decomposed as in (33) with

� and u1 as in (34-35). If f satis�es (28) then f1 satis�es (28). For

� 2 (�1; �1 + �) we �nd by Lemma 20 that

u �
� ��
�� �1

+M
0

f1

�
�1

The result follows for 0 < �� �1 small. 2

Proof of Proposition 15. Fix � 2 (�1; �2). The function u� solves

��u� = �u�+r
#. First we show that there is c > 0 and r0 > 0 such

that

u� � �c�1 for r < r0: (42)

Since u� 2 C0

�
D ( )

�
there is r0 > 0 such that �u� + r# > 1

2r
#

for r < r0. By the standard Hopf's boundary point Lemma there is

c > 0 such that u� + c�1 > 0 on D ( ) \ fr = r0g. Hence we �nd�
��(u� + c�1) = �u� + r# + c�1�1 � 0 in r0D ( ) ;

u� + c�1 � 0 on @ (r0D ( )) ;
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which implies that u� + c�1 > 0 on r0D ( ).

Now let v solve�
��v = �u� in D ( ) ;

v = 0 on @D ( ) :

Due to (42) it follows that ��v � �c0�1 in D ( ). By the maximum

principle and Theorem 5 we �nd that v � �c��1 and that there is

c1 > 0 such that u� � v � c1r
#+2� �

 �1. Hence, since #+ 2� �

 
< 0

and

u� �
�
c1r

#+2� �
 � c�

�
�1

we �nd that u� is positive near 0. 2

9. Green function estimate and 3G-Theorem

Zhao in [29] obtained a two sided estimate for the Green function

for �� on a 2-dimensional domain. His result is the following.

� There exist C > 0 such that for all x; y 2 


C�1 G (x; y) � ln

�
1 +

d (x) d (y)

jx� yj2
�
� C G (x; y) : (43)

See also [26]. This result is not true for Lipschitz domains. Zhao's

proof needs Dini smooth boundary ([5]).

Theorem 21. Let 
 be a bounded domain in R2 that satis�es Con-

dition 9. Let " > 0 be such that min
��y(i) � y(j)

�� = 2" and let w be

de�ned by

w (x; y) =

8>>>>>>>>>>><
>>>>>>>>>>>:

min

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
for (x; y) 2

�
B"
�
y(i)
�
\ 


�2
with 1 � i � k,

max

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
for (x; y) 2

�
B"
�
y(i)
�
\ 


�2
with k + 1 � i � k +m,

1 elsewhere.
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Then there exist C > 0 such that for all x; y 2 


C�1 G (x; y) � ln

�
1 + w (x; y)

�1 (x)�1 (y)

jx� yj2
�
� C G (x; y) : (44)

Remark 1: The properties of w are such that one can de�ne a

function ~w 2 C1
�

2
�
with

w � ~w � w on 
2:

Remark 2: Theorem 7.4 in [18] gives an asymptotic expansion of

the Green function near a conical boundary point.

Proof. By Koebe's distortion Theorem, see Corollary 1.4 of [21], one

�nds the following. Let h map 
 conformally to D = fz 2 C ; jzj <
1g. Then one has

1

4

�
1� jh (x)j2

�
� d (x)

��h0 (x)�� � �1� jh (x)j2�
Since

G
 (x; y) = GB1(0) (h (x) ; h (y))

it follows that

1

C
G
 (x; y) � ln

 
1 +

d (x) d (y)
��h0 (x)�� ��h0 (y)��

jh (x)� h (y)j2

!
� C G
 (x; y)

Stretching a corner, say in 0, with angle  2 (0; 2�) one uses h : 
!
C de�ned by h (z) = z� with � =

�

 
. One �nds for some ci > 0 that

c�1
2

�1 (x)

d (x)
� c�1

1 jxj�� 1 �
��h0 (x)�� � c1 jxj�� 1 � c2

�1 (x)

d (x)
:

To �nd estimates for jh (x)� h (y)j we distinguish three cases.

i. Both x and y are near a convex corner y(j) (1 � j � k). That

is � =
�

 
> 1. Then by Lemma A.3

c�1
3 jx� yj �

�
'1 (x)

d (x)
+
'1 (y)

d (y)

��1

jh (x)� h (y)j � c3 jx� yj :
(45)
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and

d (x)

'1 (x)
!1 when x �!

nontangentially
y(j) (corner).

Hence one �nds

c�1
6

�1 (x)�1 (y)

jx� yj2
min

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
�

� d (x) d (y)
��h0 (x)�� ��h0 (y)��

jh (x)� h (y)j2
�

� c6
�1 (x)�1 (y)

jx� yj2
min

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
;

ii. Both x and y are near a concave corner y(i) (k+1 � j � k+m).

That is � =
�

 
< 1. Then by Lemma A.3

c�1
3 jx� yj �

�
d (x)

'1 (x)
+

d (y)

'1 (y)

�
jh (x)� h (y)j � c3 jx� yj :

(46)

and

d (x)

'1 (x)
! 0 when x �!

nontangentially
y(i) (corner).

Hence

c�1
4

�1 (x)�1 (y)

jx� yj2
max

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
�

� c�1
3

�1 (x)�1 (y)

jx� yj2
�
d(x)
'1(x)

+
d(y)
'1(y)

�2
�

� d (x) d (y)
��h0 (x)�� ��h0 (y)��

jh (x)� h (y)j2
�

� c4
�1 (x)�1 (y)

jx� yj2
max

��
d(x)
'1(x)

�2
;
�
d(y)
'1(y)

�2�
:

iii. x is near y(i) and y is near y(j) 6= y(i). Then

c�1
7

�1 (x)�1 (y)

jx� yj2
� d (x) d (y)

��h0 (x)�� ��h0 (y)��
jh (x)� h (y)j2

� c7
�1 (x)�1 (y)

jx� yj2
:

2
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A. Auxiliary results related with the Riemann

Mapping

Remember that one may use a holomorphic mapping to transform

one domain to another domain with possibly little change in the

estimates we are interested in. We will start by stating such result.

Next we will recall the relation between smoothness of the boundary

and smoothness of related conformal mappings. A excellent reference

for results in the last direction is the book ([21]) by Ch. Pommerenke.

A.1 Conformal transformation with bounded derivative

A mapping z 7�! h (z) that is conformal on 
 and continuous on 
,

changes problem (1) in(
��(u

�
hinv (x)

�
) =

��h0 �hinv (x)����2
f
�
hinv (x)

�
for x 2 h (
) ;

u
�
hinv (x)

�
= 0 on @h (
) :

(47)

If
��h0�� is bounded away from 0 and 1 we can compare solutions of

(1) and (
��uh (x) = f

�
hinv (x)

�
for x 2 h (
) ;

uh = 0 on @h (
) :
(48)

in a uniform way. Similarly we may compare the eigenvalue prob-

lems. Let us denote by �1;A, �1;A the �rst eigenfunction respectively

eigenvalue on A. Since

��
�
�1;h(
) (h (x))

�
= �1;h(
)

��h0 (x)��2 �1;h(
) (h (x)) for x 2 


we have:

Lemma A.1. Let h : 
! C be conformal and satisfying

0 < c1 � inf
x2


��h0 (x)�� � sup
x2


��h0 (x)�� � c2 <1: (49)

Let u respectively uh be the solutions of (1) and (48) for some f 2
Lp (
) with p > 2 and f � 0. Then

c21uh (x) � u
�
hinv (x)

�
� c22uh (x) for x 2 h (
) (50)
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and

�1;h(
) (x) ' �1;

�
hinv (x)

�
for x 2 h (
) ; (51)

c�2
2 �1;
 � �1;h(
) � c�2

1 �1;


A.2 Holomorpic mappings on domains with corners

We will use conformal mappings h from D = fz 2 C ; jzj < 1g onto


. The smoothness of such a conformal mapping h is directly re-

lated with the smoothness of @
. We refer to a theorem of Kellogg-

Warschawski, Theorem 3.6 on page 49 of [21]. Moreover, if @


is Dini-smooth, then h
0 has a continuous extension to D which is

nowhere equal to 0 on D . See Theorem 3.5 in [21]. In that case the

inverse of h has the same regularity as h. Remember that H�older

continuity implies Dini continuity.

For the domains that we are interested in we use a Theorem by

Lindel�of and an extension by Warschawski. Both results are also

found in [21], see Theorem 3.9. The domain 
 satis�es the assump-

tions of Condition 9.

For h : 
! C without uniformly bounded derivative the follow-

ing consequence of Koebe's distortion Theorem holds.

Lemma A.2. Suppose 
 satis�es Condition 9. Let h : 
 ! C be

conformal with h (@
) = @h (
). Then it follows that

1
4d (x; @
)

��h0 (x)�� � d (h (x) ; @h (
)) � 4d (x; @
)
��h0 (x)�� : (52)

Proof. Corollary 1.4 of [21] states that for conformal f : D ! C

1
4

�
1� jzj2

� ��f 0 (z)�� � d (f (z) ; @f (D )) �
�
1� jzj2

� ��f 0 (z)�� : (53)

By Condition 9.1 and the Riemann Mapping Theorem there exists

a conformal mapping f : D ! C with f (D ) = 
 and f (@D ) = @
.

The claim follows by using (53) for f and h � f . 2

In order to handle the cones we need an estimate for h : D ! C
de�ned by h (z) = z

� with � 2 (0; 1).
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Lemma A.3. Fix � > 0. For � 2 (0; 1) there exist c > 0 such that

for all x; y 2 D (2 (� � �)) :

c jx� yj �
�
jxj1�� + jyj1��

�
jx� � y�j � c�1 jx� yj :

For � 2 (1;1) there exist c > 0 such that for all x; y 2 D
�
2(���)
�

�
:

c jx� yj �
�
jxj��1 + jyj��1

�
�1
jx� � y�j � c�1 jx� yj :

Proof. The result for � > 1 is a direct consequence of the result for

� 2 (0; 1). Hence we assume � 2 (0; 1). For z 2 D (2�) the function

z 7! z
� is well de�ned by

�
rei'

��
= r�ei�' with j'j < �. Assume

without loss of generality that jxj � jyj. We set w = x y
�1 and

w� = x
� (y�)�1. Notice that w� is not well de�ned in general and

if well de�ned it not necessarily equals w�. However, in a small

neighborhood of 1 it behaves properly. Indeed, for w 2 K with

K =
�
w 2 C ; jargwj � �; 12 � jwj � 3

2

	
we �nd

��arg �x y�1
��� < 2�

and hence w� = x
� (y�)�1. Since w 7! w

� is conformal on a

neighborhood of K there is c1 > 0 such that for w 2 K :

c1 jw � 1j � jw� � 1j � c�1
1 jw � 1j : (54)

If w 2 D nK then both jw � 1j and jw� � 1j are bounded away from

0 and bounded from above. Hence (54) is satis�ed for some (other)

c1. Using again 0 < � < 1 we �nish by�
jxj1�� + jyj1��

�
jx� � y�j � 2 jyj jw� � 1j � 2c�1

1 jyj jw � 1j

and �
jxj1�� + jyj1��

�
jx� � y�j � jyj jw� � 1j � c1 jyj jw � 1j :

2

Lemma A.4. Let f map D conformally onto 
 and assume that 


satis�es Condition 9. Set mini6=j
��y(i) � y(j)

�� = 2". De�ne �i =
�

 i
.
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Then

��f inv (x)� f inv (y)
�� '

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

���x� y(i)
��1��i + ��y � y(i)

��1��i��1
jx� yj

for (x; y) 2
�
B"
�
y(i)
�
\ 


�2
with 1 � i � k;

���x� y(i)
���i�1

+
��y � y(i)

���i�1
�
jx� yj

for (x; y) 2
�
B"
�
y(i)
�
\ 


�2
with k + 1 � i � k +m;

jx� yj elsewhere,

and

����f inv�0 (x)��� '
8>>><
>>>:

��x� y(i)
���i�1

for x 2 B"
�
y(i)
�
\ 
 with 1 � i � k +m;

1 elsewhere.

Remark 1: Power series type expansions at a corner are established

by Wigley in [28].

Proof. We start with the �rst estimate. For

(x; y) =2 Sk+m
i=1

�
B"
�
y(i)
�2� \ 
2

one �nds either x 2 B 1
2
"

�
y(i)
�
and y =2 B"

�
y(i)
�
for some i (or vice

versa), or x; y 2 
n
�S

k+m
i=1 B 1

2
"

�
y(i)
��
. In the �rst case the esti-

mates hold since
��f inv (x)� f inv (y)

�� and jx� yj are bounded away

from 0. In the second case the estimates follow since u 7!
��f 0 (u)�� is

uniformly bounded away from 0 and 1 on

f inv
�

n
�S

k+m
i=1 B 1

2
"

�
y(i)
���

:

The last result follows from an adaptation of Theorem 3.5 in [21].

It remains to show the estimate when both x and y belong to

B"
�
y(i)
�
\
. Suppose that B"

�
y(i)
�
\
 � y(i)+D ( ) after a possible
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rotation. Then we may de�ne g : �
 ! R2 , with g holomorphic on


 by g (x) =
�
x� y(i)

��i
. By a theorem of Warschawski (Theorem

3.9 in [21]) one �nds that

jg � f (u)� g � f (v)j ' ju� vj for u; v 2 f inv
�
B"

�
y(i)
�
\ 


�
:

Hence and by using Lemma A.3 we �nd if �i > 1 that for x; y 2
B"
�
y(i)
�
\ 
 ��f inv (x)� f inv (y)

�� ' jg (x)� g (y)j '

'
����x� y(i)��i � �y � y(i)��i��� '

'
���x� y(i)

���i�1
+
��y � y(i)

���i�1
�
jx� yj :

Similarly the result for �i 2 (0; 1) can be shown.

The second statement of Theorem 3.9 in [21] shows that

��(g � f)0 (u)�� ' 1 for u 2 hinv
�
B"

�
y(i)
�
\ 


�
and since �i > 0 hence���x� y(i)

����i�1
=

1

�i

��g0 (x)�� ' ��f 0 �f inv (x)����1
=
����f inv�0 (x)��� :

2

Corollary A.5. Let 
 satisfy Condition 9. For every i 2 f1; : : :,
k +mg there is a continuous mapping hi : �
! R2 such that

i. hi : 
! C is conformal;

ii. hi (@
) = @hi (
);

iii. hi
�
y(i)
�
= 0;

iv. hi (
) \B1 (0) = D ( i);

v. h0i can be extended continuously to @
;

vi. 0 <
��h0i�� <1 on 
.
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Remark 2: Assuming that � � @
 is Cn;� with 0 < � < 1 implies

that hi 2 Cn;� on �. See Theorem 3.6 of [21].

Proof. Since �+
i;"

and ��
i;"

are Dini smooth arcs 
0 is uniformly bound-

ed near the corner. Hence there exists a domain 
� that satis�es

@
� � �+
i;"=2[�

�

i;"=2, 
 � 
� 6= 
 and @
�n
�
y(i)
	
is Dini smooth. By

the Riemann Mapping Theorem there exist a holomorphic mapping

f from D onto 
� with f((�1; 0)) = y(i) and f((1; 0)) 2 @
�n@
.
Set

g1 (z) =
z � 1

z + 1
for z with jarg zj � 1

2� ;

g2 (z) = z

�
 i for z with jarg zj �  i:

For su�ciently large constant c > 0 the function hi de�ned by

hi = c ginv2 � ginv1 � f inv

satis�es the assumptions above. 2

In a similar way one shows:

Corollary A.6. Let 
 satisfy Condition 9. Then there is a con-

tinuous mapping h : �
! R2 such that

i. h : 
! C is conformal;

ii. h (@
) = @h (
);

iii. h0 can be extended continuously to @
;

iv. 0 <
��h0�� <1 on 
;

v. @h (
) n
�
h
�
y(i)
�
; 1 � i � k +m

	
2 C1;

vi. @h (
) at h
�
y(i)
�
, with 1 � i � k +m, has a corner with the

same angle as @
 at y(i).
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