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Abstract

Boggio proved in 1905 that the clamped plate equation is positivity preserving for
a disk. It is known that on many other domains such a property fails. In this paper
we will show that an affirmative result holds on still a large class of domains. We also
survey the available methods in obtaining domains with such property.

1. Introduction

In 1905 Boggio in [1] gave an explicit Green formula for the clamped plate equation on a
disk, that is, for the boundary value problem{

∆2u = f in Ω,

u = ∂
∂ν u = 0 on ∂Ω,

(1)

with Ω = B =
{
x ∈ R2; |x| < 1

}
. As a direct consequence of that formula one finds that

(1) is positivity preserving:
f > 0 implies u > 0. (2)

Boggio and Hadamard conjectured that such a property holds on almost any (convex)
domain. By now this conjecture has numerous counterexamples. Duffin [5] was the first
one who in 1949 showed that on the infinite strip a positive f exists for which (1) has a
sign-changing solution u. Garabedian [7] obtained a similar result for an elongated ellipse
with axes having ratio 2. Other domains such as non-simply connected ones ([3]) and
domains with corners ([14],[2]) followed. It was believed that most non-circular domains
failed to have the sign preserving property, or as Hayman and Korenblum stated in [13]: we
are tempted to conjecture that balls are the only domains in Rn. But since they consider
the sign not just for biharmonic but for all polyharmonic Green functions they could still
be right. In this paper we will show that for the biharmonic there are many domains even
quite different from the disk where the clamped plate problem is positivityy preserving.

In [8] a perturbation argument did show that on domains very close to the disk (2)
remained. Next to showing some more domains for which (2) holds we aim to survey the
limited methods to find such domains that we know to be available presently. In doing so
we will also explain that the Möbius transformation plays a special role not only in higher
dimensions but also for polyharmonic equations in 2 dimensions.

The three different ways of finding domains other than a disk and for which (2) holds
will be addressed in the next sections. Although each of these three approaches are
known, the combination has not been exploited. The perturbation that we state has a
wider range than the version published in [8]. We will end with a section that states one
ingredient for possible extensions of these results namely optimal estimates from above for
the polyharmonic Green functions and its derivatives on general domains. Such estimates
do not seem to be ready available in literature and do have some interest for their own
sake.

2. Direct approaches

The example
(
x3 − x

)′′′′ = 0 immediately shows that for the biharmonic one cannot pro-
ceed to a positivity preserving property by way of the local maximum principle as for
second order elliptic equations. A way out is to start from a domain with an explicitly
known positive Green function and try to transform this to another domain. One may
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start from the results of Boggio mentioned above. By the way, Boggio in [1] not only
derived the Green function for the clamped plate equation on the disk but did even so for
any polyharmonic equation, (−∆)m u = f, on a ball in any dimension under zero Dirichlet
boundary conditions u = ∂

∂nu = · · · =
(

∂
∂n

)m−1
u = 0. This Green function is as follows:

GB (x, y) = cn,m |x− y|2m−n
∫ (1−|x|2)(1−|y|2)

|x−y|2

0
wm−1 (1 + w)−

1
2
n dw,

with cn,m some explicit constants. The solution of (1) is u (x) =
∫
B GB (x, y) f(y)dy.

One might try to transfer this formula to other domains. A necessary condition that
such a transformation h from B to Ω at least keeps the highest order terms polyharmonic,
that is (−∆)m (w. (u ◦ h)) = w̃. ((−∆)m u) ◦ h + l.o.t., is that h is conformal. Without the
conformality assumption the transformed differential equation would become nonisotropic.
Let us shortly address such conformal mappings.

2.1. Conformal mappings in Rn.

It is well known that in dimensions 3 and larger very few conformal mappings exists.
Except so-called similarities, the only ones that exist are the Möbius transformations.
This result is due to Liouville around 1850 for n = 3. For general dimensions n ≥ 3 see
Theorem 5.10 in [16].

A mapping φ is called a similarity if there are c ∈ R+, a ∈ Rn and an orthogonal
matrix F such that φ (x) = a + cFx. A Möbius transformation can be written as a finite
combination of similarities and the inversion j0 : x 7→ |x|−2 x. In fact, see Corollary 4 on
page 39 of [16], every Möbius transformation φ can be written as

φ = φ1 ◦ j0 ◦ φ2 (3)

with φ1, φ2 similarities and j0 (x) = |x|−2 x.
Combining polyharmonic equations with similarity transformations give an obvious

result. Let us address how one may combine biharmonic (and polyharmonic) equations
with the inversion j0. By the way, for n = 2 it is common to use notation in C and to
consider the conjugate version j̄0 (z) = z−1.

We shall see that there is only one obvious choice if we want to keep the same poly-
harmonic differential operator. Since pure powers of |x| remain in this class both under
j0 and ∆ it seems reasonable to try with power functions of |x| only.

Lemma 1 Let α, β, γ ∈ R be such that for all u ∈ C4
(
Ω̄
)

with Ω ⊂ Rn\ {0} some open
domain

∆k (|x|α (u ◦ j0) (x)) = γ |x|β
(
∆ku

)
◦ j0 (x) for x ∈ j0 (Ω) ,

then α = 2k − n, β = −2k − n and γ = 1.

Proof. By testing with u (x) = |x|δ for δ ∈ R, using ∆rad = r1−n∂rr
n−1∂r, one finds:

∆k
(
|x|α |j0 (x)|δ

)
=

(
k−1∏
m=0

(α− δ − 2m) (n− 2 + α− δ − 2m)

)
|x|α−δ−2k , (4)

|x|β
(
∆k |y|δ

)
y=j0(x)

=

(
k−1∏
m=0

(δ − 2m) (n− 2 + δ − 2m)

)
|x|β−(δ−2k) . (5)
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These two expressions are identical for all δ if and only if α− δ − 2k = β − (δ − 2k) , and
hence

β = α− 4k.

This leaves us with two coefficients which are polynomials in δ and these are multiples of
each other if and only if the roots coincide. For the largest root one finds n − 2 + α =
2 (k − 1) and hence

α = 2k − n.

In fact now all roots coincide and one finds that γ = 1.
To show that

∆k
(
|x|2k−n (u ◦ j0) (x)

)
= |x|−2k−n

(
∆ku

)
◦ j0 (x) (6)

holds for all sufficiently smooth functions u we remark that ∆ = r1−n∂rr
n−1∂r + r−2∆Γ

where ∆Γ is the Laplace-Beltrami operator on the surface of the unit ball. Let ϕ denote
these angular coordinates. Then

∆
(
rδΦ (ϕ)

)
= rδ−2

(
δ (δ + n− 2) + ∆Γ

)
Φ (ϕ) .

So a similar computation as for (4-5) leads for u = rδΦ (ϕ) to

∆k
(
r2k−n−δΦ (ϕ)

)
=

(
k−1∏
m=0

(
(2k − δ − n− 2m) (2k − δ − 2m− 2) + ∆Γ

))
r−n−δΦ (ϕ) ,

r−2k−n
(
∆ksδΦ (ϕ)

)
s=r−1

=

(
k−1∏
m=0

(
(δ − 2m) (δ + n− 2m− 2) + ∆Γ

))
r−n−δΦ (ϕ) .

Both right hand sides are equal so (6) holds for a dense set of functions in C4
(
Ω̄
)

and
hence for all u ∈ C4

(
Ω̄
)
.

Corollary 2 For any Möbius transformation h in Rn one finds:

∆k

(
J

1
2
− k

n
h u ◦ h

)
= J

1
2
+ k

n
h

(
∆ku

)
◦ h, (7)

where Jh =
∣∣∣det

(
∂hi
∂xj

)∣∣∣ is the Jacobian.

Remark 2.1 Some special cases:

i. For k = 2 and n = 2:

∆2

(
J
− 1

2
h · (u ◦ h)

)
= J

3
2
h ·
(
∆2u ◦ h

)
. (8)

ii. For k ≥ 1 and n = 2k:
∆k (u ◦ h) = Jh ·

(
∆ku ◦ h

)
. (9)
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Proof. It is sufficient to show that (7) holds for each of the transformations involved.
Since scaling, dilation, rotation and reflection give immediately the appropriate changes
and since every Möbius transformation can be expressed as (3), we are left with the
inversion j0. For j0 one finds

∂j0 (x)
∂x1, . . . , xn

=
1
|x|2

I −
(

2xixj

|x|4

)
ij

=
1
|x|2

[
I − 2

(
x

|x|

)T ( x

|x|

)]
,

using column notation for x. Since the matrix between square brackets describes the
reflection in the hyperplane through 0 perpendicular to x, it has determinant −1. Hence
the Jacobian of j0 satisfies:

Jj0 (x) =
∣∣∣∣det

(
∂j0 (x)

∂x1 . . . xn

)∣∣∣∣ = 1
|x|2n .

A well-known property of Möbius transformations is that the image of a (generalized)
sphere is again a (generalized) sphere (see Theorem 3.4 in [16]). Hence there is no con-
formal mapping in dimensions ≥ 3 available that could extend Boggio’s result to other
domains than generalized spheres. By the way, a generalized sphere is either a sphere or
a hyperplane.

2.2. Conformal mappings in two dimensions

For the second order Laplace equation in two dimensions Riemann’s Mapping Theorem
allows us to solve {

−∆u = f in Ω,
u = 0 on ∂Ω,

(10)

at least for simply connected Ω by way of a Green function for the disk. There exists a
bijective conformal h : B → Ω and it holds that

∆ (u ◦ h) =
∣∣h′∣∣2 (∆u) ◦ h (11)

where h (x + iy) = h1 (x, y) + ih2 (x, y) . Indeed, since |h′ (x + iy)|2 = Jh (x, y), the Jaco-
bian of h, it follows that one solves (10) by

u (x) =
∫

Ω
GB

(
h−1 (x) , h−1 (y)

)
f (y) dy.

For the biharmonic equation we could try to mimic this approach even if we have to
add weight functions as in (8). Boldface is used for the complex alternative.

Lemma 3 Let h ∈ C1
(
Ā; R2

)
be a conformal mapping from A to Ω ⊂ R2 and suppose h

is not a similarity. Then there exists a meromorphic function f and a number c such that
for all u ∈ C4

(
Ω̄
)
:

∆2
(
|f |2 (u ◦ h)

)
= c |f |2

∣∣h′∣∣4 (∆2u
)
◦ h

if and only if h is a Möbius transformation, c = 1 and |f |2 |h′| is constant.
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Proof. Using the complex notation and new independent variables z = x + iy and
z̄ = x− iy the notations will simplify. Setting U (x + iy, x− iy) = u (x, y) we find

∆u = 4∂z̄∂zU.

Notice that formally h (z) = h̄ (z̄) and hence ∂z̄h (z) = h′ (z). With h = h (z) and h̄ =
h̄ (z̄) and a tedious computation:

∂z̄∂z∂z̄∂z

(
f (z) f̄ (z̄) U

(
h (z) , h̄ (z̄)

) )
= (12)

= f ′′ f̄ ′′ U + f̄ ′′
(
2f ′ h′ + f h′′

)
U1 + f ′′

(
2f̄ ′ h̄′ + f̄ h̄′′

)
U2 +

+f f̄ ′′
(
h′
)2

U11 + f ′′ f̄
(
h̄′
)2

U22 +
(
2f̄ ′ h̄′ + f̄ h̄′′

) (
2f ′ h′ + f h′′

)
U12 +

+f
(
2f̄ ′ h̄′ + f̄ h̄′′

) (
h′
)2

U121 + f̄
(
2f ′ h′ + f h′′

) (
h̄′
)2

U212 +

+f f̄
(
h′
)2 (h̄′)2 U1212.

In order for the lower order coefficients to cancel we need f ′′ = 0 and hence find

f (z) = α + βz.

Plugging this result in we may see that (12) simplifies to

=
(
2β̄ h̄′ +

(
ᾱ + β̄z̄

)
h̄′′
)(

2β h′ + (α + βz) h′′
)

U12 +

+(α + βz)
(
2β̄ h̄′ +

(
ᾱ + β̄z̄

)
h̄′′
) (

h′
)2

U121 +

+
(
ᾱ + β̄z̄

) (
2β h′ + (α + βz) h′′

) (
h̄′
)2

U212 +

+ |α + βz|2
(
h′
)2 (h̄′)2 U1212.

Since h′ 6= 0 it follows that the remaining lower order terms vanish if and only if

2β h′ + (α + βz) h′′ = 0,

which implies h′′ = β = 0 or h′ = γ (α + βz)−2 . The first possibility gives the similarities
h (z) = γ1 + γ2z and the second one the Möbius transformations

h (z) =
−γ/β

α + βz
+ δ.

Also note that h′ = γf−2.

Corollary 4 Suppose that A,Ω ⊂ R2 are bounded domains such that there exists a Möbius
transformation from A to Ω. Then (1) is positivity preserving for Ω if and only if (1) is
positivity preserving for A.

Proof. Let GΩ, GA be the respective Green functions and let us call the Möbius trans-
formstion h. A direct computation shows that√

Jh (x) Jh (y) GA (x, y) = GΩ (h(x), h(y)) . (13)
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Indeed, if u is the solution of (1) on Ω, then ∆2
(
Jh (x)−

1
2 (u ◦ h) (x)

)
= Jh (x)

3
2 (f ◦ h) (x)

and since also the boundary conditions go over nicely in the case of zero Dirichlet type:

(u ◦ h) (x) = Jh (x)
1
2

∫
A

GA (x, y) Jh (y)
3
2 (f ◦ h) (y)dy =

=
∫

A
Jh (x)

1
2 Jh (y)

1
2 GA (x, y) (f ◦ h) (y)Jh (y) dy.

On the other hand

u (h(x)) =
∫

Ω
GΩ (h(x), η) f(η)dη =

∫
A

GΩ (h(x), h(y)) (f ◦ h) (y)Jh (y) dy.

The claim follows from (13).

3. A perturbation argument

In [8] it has been shown that small perturbations of the disk do not destroy property
(2). However, the perturbed domains for which f > 0 implies u > 0 that were allowed
needed a small C2-bound for the difference between Ω and B. The result of [8] in fact is
not restricted the small perturbations of the disk; only the appropriate estimates for the
Green function on the specific domain are needed. Let us give the precise statement.

Here α is a multi-index of nonnegative integers, |α| =
∑

αi and ∂α
x =

∏ ∂αi

∂xαi
i

.

Proposition 5 Suppose that the Green function for (1) on Ω satisfies the following esti-
mates:

i. from below: ∃cΩ > 0∀x, y ∈ Ω

GΩ (x, y) ≥ cΩd (x) d (y) min
{

1,
d (x) d (y)
|x− y|2

}
, (14)

ii. from above: ∃ci,Ω∀x, y ∈ Ω :

|GΩ (x, y)| ≤ c0,Ω d (x) d (y) min
{

1, d(x)d(y)

|x−y|2

}
,

|α| = 1 : |∂α
x GΩ (x, y)| ≤ c1,Ω d (y) min

{
1, d(x)d(y)

|x−y|2

}
,

|α| = 2 : |∂α
x GΩ (x, y)| ≤ c2,Ω log

(
1 + d(y)2

|x−y|2

)
,

|α| = 3 : |∂α
x GΩ (x, y)| ≤ c3,Ω

1
|x−y| min

{
1, d(y)2

|x−y|2

}
.

Then there exists ε > 0 such that the following holds.
If there is a conformal map h from A to Ω with ‖h− Id‖C2(Ā) ≤ ε,

then (1) is also positivity preserving for Ω replaced by A.
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Here we used the identity Id on C: Id (z) = z.

Remark 5.1 As in [8] one may show that it is sufficient that there is a C3,γ-diffeomorphism
from A to Ω close to the identity.

Remark 5.2 For the estimate from above to hold we expect to need a more regular bound-
ary than just the C2 from the conformal map. The estimates above are based on results
of Krasovskii that would use a C12 boundary in the present setting.

Proof. Proceeding as in (12) with f = 1 one obtains since ∆ |h′|2 = 4 |h′′|2 that

∆2 (u ◦ h) = ∆
(∣∣h′∣∣2 (∆u) ◦ h

)
=

=
∣∣h′∣∣2 ∆ ((∆u) ◦ h) + 2∇

∣∣h′∣∣2 · ∇ ((∆u) ◦ h) + ∆
∣∣h′∣∣2 ((∆u) ◦ h)

=
∣∣h′∣∣4(((∆2u

)
◦ h
)

+
2∇ |h′|2

|h′|4
· (∂ihj) ((∇∆u) ◦ h) +

4 |h′′|2

|h′|4
((∆u) ◦ h)

)
. (15)

If the L∞-norms of α, β and |h′′|2 |h′|−2 are sufficiently small then we may use the
Green function estimates from [9, Theorem 5.1] to find that the modified fourth order
operator in (15) on Ω has a positive Green function. And indeed, these L∞-norms become
as small as one likes by choosing the ε-bound for the C2-difference of h and the identity.
For the disk such an approach is found in [8]. If (15) with Dirichlet boundary conditions
satisfies (2) on Ω then (1) is positivity preserving on A.

Remark 5.3 The obvious guess would be to proceed by considering ∆2(|h′|−1 u◦h) instead
of ∆2 (u ◦ h) . However this approach gives lower order terms that contain third order
derivatives of h. Indeed one finds

∆2
(∣∣h′∣∣−1

u ◦ h
)

=
∣∣h′∣∣3 (∆2u

)
◦ h + 1

2α (uxx − uyy) + βuxy +
(
α2 + β2

)
u.

Here α (x, y) = Re (w(x + iy)) and β (x, y) = Im (w(x + iy)) with

w =
(

3
4

(
h′
)− 5

2
(
h′′
)2 − 1

2

(
h′
)− 3

2 h′′′
) (

h′
)− 3

2 .

One would need C3-closeness of h to the identity in order to apply the results of [9].

Remark 5.4 The three main ingredients of the proof of this proposition are 1) a conformal
mapping near the identity from B to Ω, 2) estimates for the Green function from below,
and 3) estimates from above for the Green function and its derivatives. By the way, the
estimates for the derivatives of the Green function are not the necessary ones for the
proposition but are the ones that come out of the Green function itself.

Let us focus on the three ingredients mentioned in the remark above.
Using conformal mappings other than Möbius will restrict us to 2-dimensional domains.

If estimates would be available for small perturbations in the leading order this could be
overcome. We are not aware if such exist in dimensions higher than 2. In two dimensions
small perturbations in the leading order terms are allowed since such a differential equation
can be transformed to one with bi(poly)harmonic leading order on a disk. See [8].

The estimates for the Green function from below all come from an explicit formula
and the perturbation arguments as in [8], [9].
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The estimates from above however are available on rather general domains by starting
from the kernel estimates of Krasovskii in [15]. Since the consequences for the Dirichlet
problem of Krasovskii’s estimates do not seem to be available in the literature we will
state these in the last section.

4. Some domains with an explicit Green formula

Boggio’s explicit formula for the Green function of (1) on a ball directly implied the
positivity preserving property. Another type of domains for which an explicit Green
function of (1) is available are limacons. Hadamard in [12] gave such a formula. Proceeding
by direct arguments and not going through this tedious formula, he claimed that all
limacons had property (2). However his proof started with an erroneous argument. Only
recently it was proven ([4]) that some limacons do have the property in (2) and some
don’t. Let us recall the result from [4].

A so-called ‘Limaçon de Pascal’ is the image of B = {z ∈ C; |z| < 1} under the confor-
mal mapping:

ha (z) = z + a z2,

where a ∈
[
0, 1

2

]
, that is

Ωa =
{
(ρ cos ϕ, ρ sinϕ) ∈ R2; 0 ≤ ρ < 1 + 2a cos ϕ

}
.

The explicit Green formula from [11, Supplement] for (1) is given as follows for x, y ∈ Ωa :

Ga (x, y) = 1
2a2s2r2

[
log
(

r2

r2
1

)
+ r2

1
r2 − 1− a2

1−2a2
r2

s2

(
r2
1

r2 − 1
)2
]

, (16)

where, with η, ξ ∈ B such that x = ha (η) and y = ha (ξ), the r, r1 and s are given by

r2 = |η − ξ|2 , r2
1 =

∣∣1− ηξ̄
∣∣2 , s2 =

∣∣η + ξ + 1
a

∣∣2 . (17)

Proposition 6 ([4]) The limacons with a ∈ [0, 1
6

√
6] are the ones for which property (2)

holds.

Remark 6.1 One could view this result as a perturbation argument but only the explicit
formula allows us to come up with the explicit number 1

6

√
6 that is large enough to allow

nonconvex domains. A small C2-bound on the perturbation from the unit disk gives a
small bound for the curvature κ, namely that |1− κ| should be small. Note that κ ≥ 0
means convex.

In fact the claim that (1) is positivity preserving for all limacons goes back to Hadamard
in [12] (and was quoted in [18]). Hadamard claimed his result for all such domains but
his proof starts from an erroneous assumption. Nevertheless, as just mentioned, for some
limacons the property in (2) holds. For a ∈ (1

4 , 1
6

√
6] such a limacon is not convex and

nevertheless (2) holds.
Other publications concerning the clamped plate equation on limacon are [17] and

[6]. Sen considered explicit formula’s for the clamped plate equation on other domains
in R2 bounded by fourth order polynomials but only for constant right hand side f .
Sen proceeded directly with no hint at Hadamard’s result. Also Dube does not refer to
Hadamard’s explicit formula for the limacon nor does he consider positivity.

10



5. Using combinations

Figure 1: Domains for which the clamped plate system is positivity preserving.

Combining the Green function for a limacon of Proposition 6 with an inversion that
has its ‘center’ just outside of this limacon one obtains a new domain on which (1) is
positivity preserving. Indeed this result follows from Corollary 4. The drawings in Figure
1 are transforms of the limacon in the extreme case a = 1

6

√
6 and taking the inversion center

just outside that limacon. Both the angular position and the distance to the limacon of
the inversion center are varied. All graphs are scaled back to unit size. The arrow denotes
the inversion center.

Note that for these domains no extra perturbation is allowed since a = 1
6

√
6 is critical

for positivity. Taking a < 1
6

√
6 the resulting domains would allow a (small) perturbation

argument without destroying property (2).
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6. Sharp estimates for the Green function

As mentioned before one needs two types of estimates for the Green functions in order
to use the perturbation argument. First an estimate for the Green function itself from
below and secondly, estimates from above for the Green function and its derivatives. The
estimate from below that holds both for the disk and the limacon with a ∈

(
0, 1

6

√
6
)

is as
follows (note that Ω0 = B).

Proposition 7 ([4]) For all a ∈
[
0, 1

6

√
6
)

there is ca > 0 such that for all x, y ∈ Ωa

Ga (x, y) ≥ cad (x) d (y) min
{

1,
d (x) d (y)
|x− y|2

}
, (18)

where d is the distance to the boundary:

d (x) = inf {|x− x̃| ; x̃ /∈ Ωa} .

Remark 7.1 In [4] it is shown that one may take ca = c
(

1
6

√
6− a

)
for some uniform c.

Remark 7.2 For optimal estimates from below for the polyharmonic Green function for
zero Dirichlet boundary values on the ball in Rn see [10].

The estimates from above for the Green are known to hold in a much wider range.
Indeed, such estimates exists for all polyharmonic systems under zero Dirichlet boundary
data, at least when this boundary has sufficient regularity. Let GΩ,m denote the Green
function for {

∆mu = f in Ω,(
∂
∂ν

)k
u = 0 for all 0 ≤ ν ≤ m− 1 on ∂Ω,

(19)

Proposition 8 Suppose that Ω is a bounded domain with ∂Ω ∈ C∞. Let Gm,Ω (x, y) be
the Green function for (19). There exist cΩ,α,m,n > 0 such that for all x, y ∈ Ω

i. if |α| ≥ m,

(a) and 2m− n− |α| < 0, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n |x− y|2m−n−|α| min

{
1,

d (y)
|x− y|

}m

,

(b) and 2m− n− |α| = 0, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n log

(
1 +

d (y)m

|x− y|m
)

(c) and 2m− n− |α| > 0, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n d (y)2m−n−|α| min

{
1,

d (y)
|x− y|

}n+|α|−m

,

ii. if |α| < m,
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(a) and 2m− n− |α| < 0, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n |x− y|2m−n−|α| min

{
1,

d (x)
|x− y|

}m−|α|
min

{
1,

d (y)
|x− y|

}m

,

(b) and 2m− n− |α| = 0, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n log

(
1 +

d (y)m d (x)m−|α|

|x− y|2m−|α|

)
,

(c) and 2m− n− |α| > 0,

i. and m− 1
2n ≤ |α| , then∣∣∣∂|α|x Gm,Ω (x, y)

∣∣∣ ≤ cΩ,α,m,n d (y)2m−n−|α| min
{

1, d(x)
|x−y|

}m−|α|
min

{
1, d(y)

|x−y|

}n−m+|α|
,

ii. and |α| < m− 1
2n, then

|∂α
x Gm,Ω (x, y)| ≤ cΩ,α,m,n d (y)m−n

2 d (x)m−n
2
−|α| min

{
1,

d(x)d (y)
|x− y|2

}n
2

.

Remark 8.1 These estimates from above have been established for balls in [9].

All such estimates can derived from the pointwise estimates of Krasovskii in [15] for
general elliptic boundary value problems. For an elliptic equation of order 2m, such as
the mth-polyharmonic, with appropriate but general boundary conditions on a bounded
smooth domain in Rn his result can be rephrased as

∣∣∣∂α
x ∂β

y Gm,Ω (x, y)
∣∣∣ ≤ cα,β,n,m


1 if |α|+ |β| < 2m− n,

log
(

2diamΩ
|x−y|

)
if |α|+ |β| = 2m− n,

|x− y|2m−n−|α|−|β| if |α|+ |β| > 2m− n.

Here diamΩ = sup {|x− y| ;x, y ∈ Ω} . Krasovskii uses rather strong but explicit CM -
conditions, with M = M (α, β, 2m,n) , on the regularity of ∂Ω so for each of the estimates
above seperately one may weaken the C∞-condition.

The proof of the estimates in Proposition 8 that now do involve the distance to the
boundary, are obtained by a tedious repeated integration of the ones by Krasovskii inwards
from the boundary and using the zero Dirichlet boundary conditions. The actual proof
will appear elsewhere.

Acknowledgement 9 We would like to thank V. Kozlov for explaining how Krasovskii
results can be used for proving Proposition 8.
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