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1. SECOND ORDER ELLIPTIC EQUATIONS

It is well known that in solving second order elliptic boundary value problems
such as {

−∆u = λu+ f in Ω,
u = 0 on ∂Ω,

for quite general domains Ω ⊂ Rn and functions f, one has the following sign results.

• There is λ1 such that for all 0 �= f ≥ 0

1. if λ < λ1, then there is a solution u and u > 0;

2. if λ = λ1, then there is no solution u;

3. if λ > λ1, then u � 0; that is, either no solution or if there is a solution there
exists x̃ ∈ Ω such that u (x̃) < 0.

For bounded smooth domains the number λ1 is the so-called principal eigenvalue.
It has a unique eigenfunction, which is positive, and this eigenfunction is the only
positive one (up to normalization).
Two main references for this type of results, which are usually called max-

imum principles, are the books by Walter (1964) and by Protter and Weinberger
(1967). Extensions to general bounded non-smooth domains are studied by Beresty-
cki, Nirenberg and Varadhan (1994).

Due to Clément and Peletier (1979) there is even a property which is called the
anti-maximum principle.

• For every 0 �= f ≥ 0 there is δf > 0 such that

4. if λ1 < λ < λ1 + δf , then there is a solution u and u < 0.
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A crucial difference with the maximum principle is the fact that the constant
δf depends on f in general. This result cannot be made uniform in general: that
is inf

{
δf ; f ∈ C

(
Ω̄;R+

0

)}
= 0. It is shown (Sweers, 1996b) that, even on smooth

domains, f ∈ Lp (Ω) with p > n is a necessary condition for the anti-maximum
principle to hold. The only uniform result that is known holds for non-Dirichlet
boundary conditions in one dimension. See (Clément and Peletier, 1979). The anti-
maximumprinciple is extended to non-smooth domains by Birindelli (1996) but only
for right hand sides f that have its support outside of the non-smooth boundary.
Behaviour at cone shaped boundary points is studied in (Sweers, 1996a).

Similar results hold for cooperative, weakly coupled systems of second order
elliptic equations. For more details see (Walter, 1964), (Mitidieri and De Figueiredo,
1990), (Cosner and Schaefer, 1989), (Pao, 1992), (Mitidieri and Sweers, 1995) and
(Sweers, 1992). The last paper also contains an anti-maximumprinciple for systems.
Systems that are coupled by derivatives or where the coupling is noncoopera-

tive in general do not have the sign results mentioned above. Except some higher
order operators that can be rewritten as a cooperative system, elliptic operators of
order larger than two do not have such features. Remaining positivity preserving
properties will be subject of the present paper.

2. POLYHARMONICS ON BALLS

For higher order equations with Dirichlet boundary conditions, such as the poly-
harmonic, only a very restricted result seems to remain. A basic result goes back
91 years to (Boggio, 1905). Boggio gave an explicit formula for the Green functions
of all polyharmonic equations with Dirichlet boundary conditions on the unit ball
B ⊂ Rn for any n. Dirichlet boundary condition for (−∆)m means that all 0 to
m − 1 derivatives are zero at the boundary. His formula immediately shows one
that the Green function is positive:

Gm,n (x, y) = km,n |x− y|2m−n

A(x,y)∫
1

(
v2 − 1

)m−1

vn−1
dv, (2.1)

with

A (x, y) =
[XY ]
|x− y| .

The constants km,n are positive and the expression [XY ] denotes the ’Kelvin-
transformed’ distance of x and y :

[XY ] =
∣∣∣∣x |y| − y

|y|

∣∣∣∣ =
√
|x|2 |y|2 − 2x · y + 1.

Positivity of Gm,n (·, ·) follows since [XY ] > |x− y| implies A (·, ·) > 1 on B2.
Indeed

[XY ]2 − |x− y|2 =
(
1− |x|2

)(
1− |y|2

)
> 0 on B2.
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The solution of {
(−∆)m u = f in B,

Dmu = 0 on ∂B,
(2.2)

where Dm is the Dirichlet boundary condition

Dmu = (Dαu)α∈Nn,|α|≤m−1 ,

is given by

u (x) =
∫
y∈B
Gm,n (x, y) f (y) dy.

By a rescaling argument one recovers from (2.1) a similar Green function on the
half-space Rn

+ =
{
(x′, xn) ; x′ ∈ Rn−1, xn > 0

}
. Replacing [XY ] in A (x, y) of (2.1)

by
[XY ] = |x− y∗|

where y∗ = (y1, . . . , yn−1,−yn) one finds a solution of{
(−∆)m u = f in Rn

+,

Dmu = 0 on ∂Rn
+,

(2.3)

for suitable f. Since we still have that A (x, y) > 1 for x, y ∈ Rn
+ this Green function

on Rn
+ is positive.

3. OTHER HIGHER ORDER EQUATIONS AND OTHER DOMAINS

Before Boggio showed that the polyharmonic Green function on the ball is posi-
tive, he (1901), and also Hadamard (1908a), conjectured that in arbitrary reasonable
domains Ω, f ≥ 0 implies u ≥ 0. After Hadamard (1908b) showed that such a result
does not hold in annuli with small inner radius, the conjecture remained for convex
domains.
For m = n = 2 there is a physical interpretation. For Ω being the plate, f the

load and u the displacement one obtains the so-called clamped plate equation:{
(−∆)2 u = f in Ω,
u = ∂

∂νu = 0 on ∂Ω.
(3.1)

For (3.1) the conjecture can be formulated as:

Pushing upwards implies bending upwards.
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3.1 Examples for non-positivity
The conjecture of Boggio and Hadamard proved to be wrong. In 1949 a counter

example appeared by Duffin, soon to be followed by Garabedian (1951), see also
(Garabedian, 1986,p. 275), Loewner (1953) and Szegö (1953). Garabedian showed
that already in nice domains such as an ellipse in R2 with the ratio of the half axes

 2, the Green function for the biharmonic operator ∆2 changes sign. Hedenmalm
(1994) has numerical evidence that for the ratio of the axes between 1.5933 . . . and
2.4716 . . . the Green function G (·, ·) at x, y, with x, y close to the two opposite
extreme points, is negative. For ratio larger then 2.4716 . . . the sign of G (x, ·) ,
with x fixed close to the end of the longer axis, is expected to change at least twice
and for growing ratio we expect an oscillatory behaviour. An elementary proof that
an eccentric ellipse gives a counter example has recently been published by Shapiro
and Tegmark (1994).
A renewed interest in sign properties for the biharmonic started in the seventies.

Osher (1973) studied the Green function for the biharmonic in a wedge. In the
eighties Coffman (1982) and Coffman and Duffin (1980) studied the Green function
for the biharmonic on rectangles and obtained that the Green function has infinitely
many sign-changes near a corner. Also Kozlov, Kondrat’ev and Maz’ya (1990)
should be mentioned.
Altogether we may conclude that neither arbitrary smoothness, nor uniform

convexity or symmetry of domains yields a positive Green function. The question
that comes to ones mind is the following.

Is the polyharmonic on the unit ball the only higher order elliptic op-
erator for which the inverse for the Dirichlet problem is sign preserving?

A trivial answer no is obtained by using the same transformation both for the
operator and the domain. But it has been shown that the Green function for the
Dirichlet problem is positive for a more general class of elliptic operators than the
ones obtained by this trivial transformation.

3.2 Examples for positivity
The perturbation of the polyharmonic that has been considered in (Grunau and

Sweers, 1996a) adds small lower order derivatives to the operator. Which means
that (−∆)m is replaced by

L = (−∆)m +
∑

|α|≤2m−1

aα (·) Dα, (3.2)

with α ∈ Rn a multi-index, Dα =
∏n

i=1

(
∂

∂xi

)αi

and |α| =
∑n

i=1 αi. We were able
to show that for ‖aα‖∞ sufficiently small the corresponding Green function GL (·, ·)
remains positive. The proof uses a power series expansion of the Green operator
GL in terms of G(−∆)m :

GL = G(−∆)m


I + ∞∑

k=1

(
−

∞∑
|α|<2m−1

Maα D
α G(−∆)m

)k

 ,
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where

(GLf) (x) =
∫
y∈Ω

GL (x, y) f (y) dy,

(Maf) (x) = a (x)f (x) .

The crucial step is the pointwise estimate

G(−∆)m (x, y) ≥ c
∣∣∣∣
∫
z∈B
G(−∆)m (x, z) Dα

zG(−∆)m (z, y) dz
∣∣∣∣ (3.3)

(for some c > 0) which is a polyharmonic equivalent of the so-called 3G-Theorem
of Cranston, Fabes and Zhao (1988). Their theorem holds for bounded Lipschitz
domains. Our estimates, valid only on B, are proved by pointwise estimates for the
Green function and its derivatives. For these estimates see the appendix.

THEOREM 3.1 (Grunau and Sweers, 1996a) Let L be defined in (3.2). There exists
εm,n > 0 such that if ‖aα‖∞ ≤ εm,n for |α| < 2m then for all f ∈ Lp (B) , with B the
unit ball in Rn and p ∈ (1,∞) , there is a unique solution u ∈W 2m,p (B)∩Wm,p

0 (B)
of {

Lu = f in B,
Dmu = 0 on ∂B.

(3.4)

Moreover, if 0 �= f ≥ 0 in Ω then u (x) > 0 for all x ∈ B.

Remark 3.1: Formp > n one finds that u ∈ Cm
(
B̄
)
and for 0 �= f ≥ 0 an equivalent

of Hopf’s boundary point Lemma follows for ‖aα‖∞ < εm,n; namely
(
− ∂

∂ν

)m
u > 0

on ∂B where ν is the outward normal. See (Grunau and Sweers, 1996d).

Domain perturbation yields a more complicated problem. In two dimensions,
by using the link with conformal mappings (see Courant, 1950), the following is
proven.

THEOREM 3.2 (Grunau and Sweers, 1996c) Fix m ∈ N and let Ω ⊂ R2 with
∂Ω ∈ C2m,γ be such that there exists a mapping g ∈ C2m

(
Ω̄;R2

)
with ‖g − Id‖C2m

small enough and g(Ω̄) = B̄. Then the Green function for{
(−∆)m u = f in Ω,

Dmu = 0 on ∂Ω,
(3.5)

is positive.

The similar question for higher dimensional domains (n > 2) remains open.

Hedenmalm (1994) exploited the relation with conformal mappings and studied
positivity preserving properties on the disk for the operator ∆ |z|−2α∆ with α > −1
and Dirichlet boundary conditions.
Using pseudoconformal mappings one can even allow small perturbations in the

leading order terms of the polyharmonic equation on the ball in R2 and still have
positivity of the solution operator. This type of result can also be found in (Grunau
and Sweers, 1996c).
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4. POSITIVE RESOLVENTS FOR THE POLYHARMONIC

We consider the elliptic problem{
(−∆)m u = λu+ f in Ω,

Dmu = 0 on ∂Ω,
(4.1)

where Ω is a bounded C2m-smooth domain in Rn. Let us define

λ1 = inf
{∫

Ω
u ((−∆)m u) dx∫

Ω
u2 dx

; u ∈W 2m,2 (Ω) ∩Wm,2
0 (Ω)

}
, (4.2)

which is positive by an integration by parts of
∫
Ω u ((−∆)

m
u) dx and a repeated

use of the Poincaré-Friedrichs inequality. The number λ1 is the first eigenvalue and
we let φ1 denote a corresponding eigenfunction. Assume that φ1 is unique up to
normalization. We want to remark that for m > 1 in general one doesn’t have
uniqueness, or positivity, of the first eigenfunction. Both uniqueness and positivity
are lost on annuli with very small inner radius (Coffman, Duffin, Shaffer, 1979).

PROPOSITION 4.1 (Grunau and Sweers, 1996a, Theorem 6.1, Lemma 6.2) Sup-
pose that for some λ̃ < λ1 the Green function Gλ̃ (x, y) for (4.1) is positive:

Gλ̃ (x, y) > 0 for all x �= y ∈ Ω.

Then for all λ ∈
(
λ̃, λ1

)
the Green function Gλ (x, y) is positive and moreover, the

first eigenfunction is of fixed sign.

Remark 4.1: A fixed sign implies uniqueness: if an eigenvalue doesn’t have a unique
eigenfunction then obviously there exists a sign-changing one.

Proof: Since (−∆)m :W 2m,2 (Ω)∩Wm,2
0 (Ω)→ L2 (Ω) is self-adjoint all eigenvalues

are real and the geometric multiplicity equals the algebraic multiplicity. Because of
(4.2) we find λi ≥ λ1. Let us denote the solution operator of (4.1) for λ /∈ {λi}∞i=1

by Gλ :
(Gλf) (x) :=

∫
y∈Ω

Gλ (x, y) f (y) dy.

The eigenvalues of Gλ̃ we denote by {µi}
∞
i=1 . The eigenvalues {λi}

∞
i=1 of (4.1) and

{µi}∞i=1 are related through µi =
(
λi − λ̃

)−1

. For
∣∣∣λ− λ̃∣∣∣ < ν (Gλ̃)−1 the following

series converges and we find

Gλ =
∞∑
k=0

(
λ− λ̃

)k
Gk+1

λ̃
.

Since Gλ̃ : C(Ω̄) → C(Ω̄) is a compact integral operator with a strictly positive
kernel a theorem of Jentzsch (1912) (a predecessor of the Krein-Rutman Theorem)
implies that the spectral radius µ = ν

(
Gλ̃
)
is the largest eigenvalue of Gλ̃ and that
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the corresponding eigenfunction is positive. Hence ν
(
Gλ̃
)
=
(
λ1 − λ̃

)−1

and the

series converges for λ with
∣∣∣λ− λ̃∣∣∣ < λ1 − λ̃. For λ ∈

[
λ̃, λ1

)
we do not only find

convergence but also that Gλ is positive. �

COROLLARY 4.2 (Grunau and Sweers, 1996a, Corollary 6.4) Let λ1 be the first
eigenvalue and assume that φ1 (x) > 0 for all x ∈ Ω. Then there exists λc ∈ [−∞, λ1]
such that for λ, u and f as in (4.1) we have

i) if λ ∈ (λ1,∞) then 0 �= f ≥ 0 implies u ≯ 0 or no solution u;
ii) if λ = λ1 then 0 �= f ≥ 0 implies no solution u;
iii) if λ ∈ (λc, λ1) then 0 �= f ≥ 0 implies u > 0;
iv) if λ = λc < λ1 then 0 �= f ≥ 0 implies u ≥ 0;
v) if λ ∈ (−∞, λc) then 0 �= f ≥ 0 implies u ≮ 0.

Remark 4.2: For second order elliptic operators λc = −∞; for higher order elliptic
operators one finds that λc > −∞. For the polyharmonic Dirichlet problem we find
that λc < 0 if Ω = B. See respectively the counterexample and Theorem 3.1 in
(Grunau and Sweers, 1996a).

Remark 4.3: For λ = λc one finds f > 0 implies u ≥ 0. We expect the positivity
preserving property to break down at the boundary first. That is, for λ < λc and
|λ− λc| small enough the Green function satisfies Gλ (x, y) > 0 on Ω2 except for
some x, y near ∂Ω × ∂Ω. Some numerical evidence is mentioned by Hedenmalm
(1994).

Proof of i) and ii). The usual multiplication with the eigenfunction for a weight
yields after integrating by parts:

0 <
∫

Ω

φ1f dx =
∫

Ω

φ1 ((−∆)m − λ)u dx =

=
∫

Ω

((−∆)m − λ)φ1u dx = (λ1 − λ)
∫

Ω

φ1u dx. (4.3)

For λ1 < λ one finds u ≯ 0 and for λ1 = λ one gets a contradiction.
iii). Set λc = inf {λ ∈ [−∞, λ1) ;Gλ (x, y) > 0 for all x �= y ∈ Ω} if the infimum

exists; otherwise set λc = λ1. Proposition 4.1 shows that for all λ ∈ (λc, λ1) the
operator Gλ is positive.

iv). A continuity argument for λ ↓ λc and iii) imply iv).
v). With (4.3) one finds a contradiction whenever 0 �= u ≤ 0. �

5. A POSITIVE PRINCIPAL EIGENFUNCTION

As mentioned before we could not solve in dimensions n ≥ 3 the question whether
or not the resolvent remains positive under small smooth perturbations of the do-
main. We can show however that such small perturbations do not change the
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positivity of the first eigenfunction. This result will be the consequence of a lemma
for more general elliptic operators. Let w be a smooth, strictly positive function on
Ω and let L be a self-adjoint elliptic operator on Wm,2

0 (Ω, wdx) as follows

L = w (x)−1M∗ (x,D) · w (x) M (x,D) (5.1)

where

M (x,D) =
∑

|α|≤m

bα (x)Dα and M∗ (x,D) =
∑

|α|≤m

(−1)|α|Dαbα (x)

and with the functions bβ (·) , possibly vectorvalued, having appropriate regularity
and satisfying for some c > 0 and for all x ∈ Ω̄ and ξ ∈ Rn

∑
|α|=m

∑
|β|=m

bα (x) · bβ (x) ξα+β ≥ ce |ξ|2m . (5.2)

Condition (5.2) shows that for some c0 = C (ce, ‖bα‖∞ ,Ω) ∈ R large enough the
operator L+ c0 is coercive with constant c′e = c

′
e (ce, inf w, supw):∫

Ω

u (L+ c0)uwdx ≥ c′e ‖u‖Wm,2
0 (Ω,wdx) .

The first eigenvalue of L is then well defined by

λ1 = inf
{∫

Ω (Mu ·Mu) wdx∫
Ω
u2 wdx

; u ∈Wm,2
0 (Ω)

}
. (5.3)

Note that λ1 ≥ C (c0, ce) .
We assume that a corresponding eigenfunction φ is normalized by∫

Ω

φ2 dx = 1.

LEMMA 5.1 Let γ ∈ (0, 1), let the operators L and L̃ be as in (5.1) and assume
that ‖bα‖Cm,γ(Ω̄) , ‖b̃α‖Cm,γ(Ω̄), ‖w‖Cm,γ(Ω̄) , ‖w̃‖Cm,γ(Ω̄) , ‖w−1‖∞ and ‖w̃−1‖∞ are
bounded, say by κ. Suppose that the multiplicity of λ1, the principal eigenvalue of
L, is 1.
Then for all ε > 0 there exists δ > 0 such that if

‖bα − b̃α‖Cm,γ(Ω̄) ≤ δ and ‖w − w̃‖Cm,γ(Ω̄) ≤ δ

then the multiplicity of λ̃1 is 1 and the eigenfunction φ̃1 (or −φ̃1) satisfies∥∥∥φ1 − φ̃1

∥∥∥
C2m(Ω̄)

≤ ε. (5.4)
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Proof: For short notation we use Wm,2
w :=Wm,2 (Ω, wdx) and Wm,2 :=Wm,2 (Ω) .

First we will estimate the difference in the eigenvalues. Testing with an auxiliary
function in (5.3) one finds that λ1 ≤ C (‖bα‖∞ ,Ω,minw,maxw) and the analogous
result for λ̃1. Hence we have a uniform bound for ‖φ1‖Wm,2

w
, ‖φ̃1‖Wm,2

w̃
and also

for ‖φ1‖Wm,2 , ‖φ̃1‖Wm,2 , ‖φ1‖Wm,2
w̃

and ‖φ̃1‖Wm,2
w
. Let us denote this bound by

C1 = C (κ, ce,Ω) .
Writing FM

w (u) =
∫
Ω
(Mu ·Mu) wdx for u ∈Wm,2

0 (Ω) , we find that

λ̃1 − λ1 =
FM̃
w̃ (φ̃1)
‖φ̃1‖2L2

w̃

− F
M
w (φ1)
‖φ1‖2L2

w

≤ FM̃
w̃ (φ1)
‖φ1‖2L2

w̃

− F
M
w (φ1)
‖φ1‖2L2

w

=

=

�
FM̃

w̃ (φ1)−FM̃
w (φ1)

�
‖φ1‖2

L2
w

+
�
FM̃

w (φ1)−FM
w (φ1)

�
‖φ1‖2

L2
w

+FM
w (φ1)

�
‖φ1‖2

L2
w
−‖φ1‖2

L2
w̃

�

‖φ1‖2
L2

w̃
‖φ1‖2

L2
w

≤

≤ C2
1
‖b̃α‖2

L∞‖w−w̃‖L∞‖w‖L∞+‖b̃α−bα‖
L∞‖b̃α+bα‖

L∞‖w‖2
L∞+‖bα‖2

L∞‖w‖L∞‖w−w̃‖L∞

‖φ1‖2
L2

w̃
‖φ1‖2

L2
w

≤

≤ 2κ5C2
1

(
‖w − w̃‖L∞ +

∥∥∥b̃α − bα∥∥∥
L∞

)
. (5.5)

By a similar argument one estimates λ1 − λ̃1 to find with C∗ = 2κ5C2
1 that∣∣∣λ̃1 − λ1

∣∣∣ ≤ C∗ δ. (5.6)

Next we will estimate the L2
w−difference of the eigenfunctions. Let P1 denote

the w-weighted projection on φ1 :

P1 (u) (x) =

∫
Ω φ1uwdx

‖φ1‖2L2
w

φ1 (x) .

We have for u ∈Wm,2
0 (Ω) that

FM
w ((I − P1)u) ≥ λ2 ‖(I − P1)u‖2L2

w
.

Then it follows that

FM
w (u) =

∫
Ω

(MP1u+M (I − P1)u)
2
wdx ≥ λ1 ‖P1u‖2L2

w
+ λ2 ‖(I − P1)u‖2L2

w

implying

FM
w (φ̃1) ≥ λ1

∥∥∥P1φ̃1

∥∥∥2

L2
w

+ λ2

∥∥∥(I − P1) φ̃1

∥∥∥2

L2
w

. (5.7)

Using (5.5) and the similar estimate with L and L̃ interchanged, we find

FM̃
w̃ (φ1)

‖φ1‖2
L2

w̃

≤ FM
w (φ1)

‖φ1‖2
L2

w

+C∗ δ and FM
w (φ̃1)

‖φ̃1‖2

L2
w

≤ FM̃
w̃ (φ̃1)

‖φ̃1‖2

L2
w̃

+ C∗ δ

implying that

FM
w (φ̃1) ≤

∥∥∥φ̃1

∥∥∥2

L2
w

(
λ̃1 + C∗ δ

)
≤
∥∥∥φ̃1

∥∥∥2

L2
w

(λ1 + 2C∗δ) =
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= λ1

∥∥∥P1φ̃1

∥∥∥2

L2
w

+ λ1

∥∥∥(I − P1) φ̃1

∥∥∥2

L2
w

+ 2C∗δ
∥∥∥φ̃1

∥∥∥2

L2
w

. (5.8)

Set δ0 = λ2−λ1
2C∗ which is positive since λ2 > λ1. Combining (5.7)-(5.8) it follows for

δ < δ0 that ∥∥∥(I − P1) φ̃1

∥∥∥2

L2
w

≤ 2C∗δ

λ2 − λ1

∥∥∥φ̃1

∥∥∥2

L2
w

and hence ∥∥∥P1φ̃1

∥∥∥2

L2
w

≥
(
1− 2C∗δ

λ2 − λ1

)∥∥∥φ̃1

∥∥∥2

L2
w

.

One has φ1 = ±
‖φ1‖L2

w

‖P1φ̃1‖
L2

w

P1φ̃1. Assuming a +-sign we first estimate

∥∥∥∥‖φ̃1‖
L2

w

‖φ1‖L2
w

φ1 − φ̃1

∥∥∥∥
L2

=

=
∥∥∥∥
( ‖φ̃1‖

L2
w

‖P1φ̃1‖
L2

w

− 1
)
P1φ̃1 − (I − P1) φ̃1

∥∥∥∥
L2

≤

≤
‖φ̃1‖

L2
w
−‖P1φ̃1‖

L2
w

‖P1φ̃1‖
L2

w

∥∥∥P1φ̃1

∥∥∥
L2
+
∥∥∥(I − P1) φ̃1

∥∥∥
L2
≤

≤
(
1−

√
1− 2C∗δ

λ2−λ1

)
‖P1φ̃1‖

L2

‖P1φ̃1‖
L2

w

∥∥∥φ̃1

∥∥∥
L2

w

+
√

2C∗δ
λ2−λ1

‖(I−P1)φ̃1‖
L2

‖(I−P1)φ̃1‖
L2

w

∥∥∥φ̃1

∥∥∥
L2

w

≤

≤ 2κ
√

2C∗δ
λ2−λ1

. (5.9)

By this estimate and the normalisation ‖φ1‖L2 =
∥∥∥φ̃1

∥∥∥
L2
= 1, we also have

∥∥∥φ1 − φ̃1

∥∥∥
L2
≤

≤
∣∣∣∣1− ‖φ̃1‖

L2
w

‖φ1‖L2
w

∣∣∣∣‖φ1‖L2 +
∥∥∥∥‖φ̃1‖

L2
w

‖φ1‖L2
w

φ1 − φ̃1

∥∥∥∥
L2

≤

≤
∣∣∣∣∥∥∥φ̃1

∥∥∥
L2
−
∥∥∥∥‖φ̃1‖

L2
w

‖φ1‖L2
w

φ1

∥∥∥∥
L2

∣∣∣∣+ 2κ
√

2C∗δ
λ2−λ1

≤

≤
∥∥∥∥φ̃1 −

‖φ̃1‖
L2

w

‖φ1‖L2
w

φ1

∥∥∥∥
L2

+ 2κ
√

2C∗δ
λ2−λ1

≤

≤ 4κ
√

2C∗δ
λ2−λ1

.

The C2m-estimates for φ1−φ̃1 follow from the regularity theory (Agmon, Douglis,
Nirenberg, 1959) for the boundary value problem


(L+ c0)

(
φ1 − φ̃1

)
= f in Ω,

Dm

(
φ1 − φ̃1

)
= 0 on ∂Ω,

(5.10)
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with f =
(
λ1 − λ̃1

)
φ1 +

(
λ̃1 + c0

)(
φ1 − φ̃1

)
+
(
L̃− L

)
φ̃1. Note that the Cm,γ-

bounds on bα, b̃α, w, and w̃ will be used in
(
L̃− L

)
φ̃1 as well as for the Schauder-

type regularity. �

Let Ω be a domain in Rn, k ∈ N, γ ∈ [0, 1) and ε > 0. We call Ω ε-close in
Ck,γ-sense to the unit ball B if there exists a surjective mapping g : Ck,γ

(
B̄; Ω̄

)
such that

‖g − Id‖Ck,γ(B̄) ≤ ε. (5.11)

THEOREM 5.2 There is εm,n > 0 such that if Ω is ε-close in C2m,γ-sense to B
with ε < εm,n, then the eigenfunction φ1,Ω for the first eigenvalue of{

(−∆)m φ = λφ in Ω,
Dmφ = 0 on ∂Ω,

(5.12)

is unique (up to normalization) and there exists c > 0 such that φ1,Ω (x) ≥ c d (x)m
for all x ∈ Ω.

Here we denote by d (x) the distance of x to the boundary of ∂Ω :

d (x) = inf
y∈∂Ω

|x− y| . (5.13)

Proof: Let g : B̄ → Ω̄ be as in (5.11) and denote the inverse by h. For ε ∈ (0, ε0)
with ε0 small we find that the inverse h of g exists and satisfies

‖h− Id‖C2m,γ(Ω̄) = O
(
‖g − Id‖C2m,γ(B̄)

)
.

For u ∈Wm
0 (Ω) define ũ ∈Wm

0 (B) by

ũ (x) = u (g (x)) .

For m even one finds that∫
Ω

(
∆

m
2 u (y)

)2
dy =

∫
B

(
M̃ũ (x)

)2

Jg (x) dx

with the Jacobian Jg (·) ∈ C2m−1,γ ε-close to 1, and M̃ defined by(
M̃ (ũ)

)
(x) =

(
∆

m
2 u
)
(g (x)) = A

m
2 ũ (x)

where

A =
n∑

k=1

n∑
l=1

((∇hk · ∇hl) ◦ g (x))
∂

∂xk

∂

∂xl
+

n∑
l=1

((∆hl) ◦ g (x))
∂

∂xl
.

For m odd ∫
Ω

(
∇∆

m−1
2 u (y)

)2

dy =
∫
B

(
M̃ũ (x)

)2

Jg (x) dx
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with M̃ =
(
M̃1, . . . , M̃n

)
defined by

(
M̃i (ũ)

)
(x) =

(
∂

∂yi
∆

m−1
2 u

)
(g (x)) =

n∑
p=1

∂hp
∂yi

∂

∂xp
A

m−1
2 ũ (x) .

Using this transformation and w̃ = Jg we find that the eigenvalues and eigenfunc-
tions of {

(−∆)m φ = λφ in Ω,
Dmφ = 0 on ∂Ω,

and
{
M̃∗w̃M̃ φ̃ = λ̃w̃ φ̃ in B,

Dmφ̃ = 0 on ∂B,

are corresponding through

λi,Ω = λ̃i and φi,Ω ◦ g = φ̃i.

In the next step one shows that L̃ = 1
wM̃

∗w̃M̃ with w̃ = Jg and L = (−∆)m with
w = 1 satisfy the conditions of Lemma 5.1 whenever ‖g − Id‖C2m,γ is sufficiently
small. Indeed for m even, writing the mth-order terms of M̃ as in (5.1), we find

∑
|β|= 1

2m

β∈N
n×n

( 1
2m

β

) n∏
k,l=1

((∇hk · ∇hl) ◦ g (x))βkl


×

×


 n∏

l=1

(
∂

∂xl

) nP

k=1
βkl




 n∏

k=1

(
∂

∂xk

) nP

l=1
βkl




and
‖(∇hk · ∇hl) ◦ g − δkl‖Cm,γ = O (‖g − Id‖Cm+1,γ ) .

The lower order terms of M̃ each contain at least one derivative of (∇hk · ∇hl) ◦ g
of at least order 1 and at most a derivative of (∇hk · ∇hl) ◦ g of order m − 1. For
β ∈ Nn with |β| =m− 1 we have∥∥Dβ (∇hk · ∇hl) ◦ g

∥∥
Cm,γ = O (‖g − Id‖C2m,γ ) .

Similar results hold for m odd. We also find that

‖Jg − 1‖Cm,γ = O (‖g − Id‖Cm+1,γ ) .

Since φ1,B has the property above, namely it is the unique principal eigenfunction
satisfying the estimate from below by Proposition 4.1 and Remark 3.1, we are
done for ‖g − Id‖C2m,γ sufficiently small by comparing with Lemma 5.1 the first
eigenvalues/functions of

{
(−∆)m φ = λφ in B,

Dmφ = 0 on ∂B,
and

{
L̃φ = λφ in B,

Dmφ = 0 on ∂B.
(5.14)

�
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PROPOSITION 5.3 (An anti-maximumprinciple)We consider (4.1). Suppose that
the principal eigenfunction φ1 is unique and that for some C > 0 one has

φ1 (x) > C d (x)
m for all x ∈ Ω.

Then for all f ∈ Lp(Ω), with p > n
m and p ≥ 2, and f > 0 there exists δf > 0 such

that the solution u of (4.1) satisfies

vi) if λ1 − δf < λ < λ1 then u > 0,
vii) if λ1 < λ < λ1 + δf then u < 0.

See (5.13) for d (x).

Remark 5.1: By the previous theorem the assumption φ1 (x) > c′ d (x)
m holds for

Ω ⊂ Rn that is ε-close to a ball with ε sufficiently small.

Proof: The proof uses similar steps as Clément and Peletier (1979). Some steps we
can simplify because of the special form of our operator.
We write L2 (Ω) = [[φ1]] ⊕ E where E =

{
u ∈ L2 (Ω) ;

∫
Ω uφ1 dx = 0

}
. The

operator A :
(
W 2m (Ω) ∩Wm

0 (Ω)
)
→ L2 (Ω) defined by A = (−∆)m is self-adjoint.

By assumption λ1 has a unique eigenfunction φ1 and all other eigenvalues are real.
Consequently we have λ1 < λ2 ≤ λ3 ≤ . . .. Moreover by using the eigenfunction
expansion the operator

T2 = A− λ1I :
(
W 2m,2 (Ω) ∩Wm,2

0 (Ω) ∩E
)
→ E

has a well defined inverse T−1
2 f =

∑∞
i=2 (λi − λ1)

−1 〈f, φi〉φi and T2 is an isomor-
phism. Since one finds for fe ∈ Lp (Ω) ∩E with 2 ≤ p ≤ 2n

n−4m that∥∥∥(A − λ1I)
−1
fe

∥∥∥
W2m,p

≤ c
(∥∥∥A (A− λ1I)

−1
fe

∥∥∥
Lp
+
∥∥∥(A− λ1I)

−1
fe

∥∥∥
Lp

)
≤

≤ c
(∥∥∥(A− λ1I) (A − λ1I)

−1
fe

∥∥∥
Lp
+ (1 + |λ1|)

∥∥∥(A− λ1I)
−1
fe

∥∥∥
Lp

)
≤

≤ c ‖fe‖Lp + c′
∥∥∥(A− λ1I)

−1
fe

∥∥∥
W2m,2

≤

≤ c ‖fe‖Lp + c
′′
‖fe‖L2 ≤

(
c + c

′′
)
‖fe‖Lp

also
Tp = A− λ1I :

(
W 2m,p (Ω) ∩Wm,p

0 (Ω) ∩E
)
→ (Lp (Ω) ∩E)

is an isomorphism for such p. A bootstrapping argument shows that Tp is an
isomorphism for all p ∈ [2,∞) . Note that sinceW 2m,p (Ω) ↪→ Cm(Ω̄) for p > n

m (see
Gilbarg and Trudinger 1983, Theorem 7.26), the boundary conditions are satisfied
in the classical sense, implying (A− λ1I)

−1
fe ∈Wm,p

0 (Ω) .
Let 0 < θ < λ2 − λ1. Note that λ2 > λ1 follows from the assumption and (4.2).

Then for |λ− λ1| < θ the operators

A− λI :
(
W 2m,p (Ω) ∩Wm,p

0 (Ω) ∩E
)
→ (Lp (Ω) ∩E)
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are isomorphisms. For fe ∈W 2m,p (Ω) ∩Wm,p
0 (Ω) ∩E we have∥∥∥(A − λI)−1
fe

∥∥∥
W2m,p

=

=

∥∥∥∥∥
∞∑
k=0

(
(λ− λ1) (A− λ1I)

−1
)k
(A− λ1I)

−1
fe

∥∥∥∥∥
W2m,p

≤

≤ Cθ

∥∥∥(A− λ1I)
−1
fe

∥∥∥
W2m,p

≤ C ′
θ ‖fe‖Lp .

Then the solution of (A− λ)u = f with f = cfφ1 + fe and fe ∈ Lp (Ω) ∩E can be
written as

u =
cf
λ1 − λ

φ1 + (A− λ)−1
fe.

The continuous imbedding W 2m,p (Ω) ↪→ Cm(Ω̄) for p > n
m
shows that∥∥∥(A − λ)−1

fe

∥∥∥
Cm(Ω̄)

≤ cp,m,n,θ ‖fe‖Lp

and hence we obtain from the boundary condition that∣∣∣((A− λ)−1
fe
)
(x)
∣∣∣ ≤ c′p,m,n,θ ‖fe‖Lp (d (x))m .

For f > 0 it follows that cf > 0 and since φ1 (x) > C d (x)
m we find by

u (x) =
cf

λ1 − λ
φ1 (x) +

(
(A− λ)−1

fe
)
(x)



≥
(

cf

λ1−λ
− c′p,m,n,θ

C
‖fe‖Lp

)
φ1 (x)

≤
(

cf

λ1−λ +
c′p,m,n,θ

C ‖fe‖Lp

)
φ1 (x)

that for |λ1 − λ| ≤ C cf

c′p,m,n,θ‖fe‖Lp
the sign of u equals the sign of λ1 − λ. �

6. AN APPLICATION TO SEMILINEAR EQUATIONS

The first author (Grunau, 1990 and 1991) studied growth conditions that imply
the existence of a strong solution for the following type of problems:{

Lu+ g (·, u) = f in Ω,
Dmu = 0 on ∂Ω,

(6.1)

with L = (−∆)m and where u �→ g (·, u) exceeds the controllable growth rate u
n+2m
n−2m .

Recently in (Grunau and Sweers, 1996b) results have been extended to the following

L =

(
−

n∑
i,j=1

aij
∂2

∂xi∂xj

)m

+
∑

|α|≤2m−1

bα (x)Dα (6.2)
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with aij ∈ R,
∑n

i,j=1 aijξiξj ≥ c |ξ|
2 , bα ∈ C |α|,γ(Ω̄) and L assumed to be coercive,

which means that for some c > 0 and all u ∈Wm,2
0 (Ω) ∩ C2m(Ω̄) one has∫

Ω

uLu dx ≥ c ‖u‖2Wm,2(Ω) .

In this section we will briefly explain the arguments necessary in proving a result
as follows. For the sake of argument we assume that g and Ω are sufficiently smooth.

THEOREM 6.1 (Grunau and Sweers, 1996b) Fix n ≥ 2m and suppose that g satis-
fies the sign condition ug (·, u) ≥ 0 for all u ∈ R and the one-sided growth condition

g (x, u) ≥ −c (1 + |u|σ) (6.3)

with
σ = 1 if 6m ≤ n,
σ < 4m

n−2m
if 2m < n < 6m,

σ < ∞ if n = 2m.
(6.4)

Then for every f ∈ Cα(Ω̄) problem (6.1) has a solution u ∈ C2m,α (Ω)∩Wm,2
0 (Ω) .

Remark 6.1: We do not consider n < 2m since there is no critical growth rate.

For the following two-sided growth condition, instead of (6.3),

g (x, u) ≥ −c (1 + |u|τ ) for u ≤ 0
g (x, u) ≤ c (1 + |u|τ ) for u ≥ 0 (6.5)

with τ ≤ n+2m
n−2m

existence of a weak solution u ∈Wm,2
0 (Ω) follows from the coercivity

of (6.1). Moreover, for τ < n+2m
n−2m

a linear argument, bootstrapping between Sobolev
imbedding and regularity theory (see (Agmon, Douglis, Nirenberg 1959)), shows
existence of a strong solution u ∈ C2m(Ω̄) as well as regularity of any weak solution.
Luckhaus (1979) proved for general elliptic operators that the solutions for (6.1) are
classical, meaning u ∈ C2m(Ω̄), whenever (6.5) holds with τ ≤ n+2m

n−2m.
For m = 1 no controllable growth conditions are needed. Here the maximum

principle together with the sign condition for g give an L∞-bound to start the
bootstrapping. For m = 2 Tomi in 1976 obtains a classical solution by using the
maximum principle for an auxiliary function like a (∆u)2+G (u) where G′ = g and
a ∈ R.
These approaches do not work for general higher order elliptic equations with

zero Dirichlet boundary conditions. Not only no maximum principle on general
domains exists but also the restriction to a level set defines a new non-zero Dirichlet
problem. By exploiting the Green function estimates on balls a local maximum
principle can however be proven.
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THEOREM 6.2 (A local maximum principle; see (Grunau and Sweers, 1996b)) Let
Ω ⊂ Rn be open and K ⊂ Ω be compact, and suppose that L is as in (6.2). Let
q ∈ R be such that q > n

2m and q ≥ 1. Then there exists c ∈ R such that for every
u ∈ C2m(Ω̄), f ∈ C0(Ω̄) that satisfy the differential inequality

Lu ≤ f in Ω

it follows that
sup
x∈K
u (x) ≤ c

(∥∥f+
∥∥
Lq(Ω)

+ ‖u‖Wm−1,1(Ω)

)
.

This local maximum principle is proven by taking the Green function on the
unit ball, rescaling it for small balls in Ω and using it for a test function on these
balls.

We end with the explanation how the growth rates for u < 0 in (6.4) appear.
By the coercivity of L and the sign condition for g one finds

‖u‖2Wm,2(Ω) ≤ c
∫

Ω

uLu dx ≤ c
∫

Ω

u (Lu + g (x, u)) dx ≤ c ‖u‖L2(Ω) ‖f‖L2(Ω)

implying with Poincaré-Friedrichs that

‖u‖Wm,2(Ω) ≤ c
′ ‖f‖L2(Ω) .

We have
Lu (x) ≤

∥∥f+
∥∥
C0(Ω̄)

− g (x, u (x)) ≤

≤
∥∥f+

∥∥
C0(Ω̄)

+ cχ[u<0] (1 + |u (x)|σ) .

In order to apply the local maximum principle we need the right hand side to be
in Lq (Ω) for some q satisfying q > n

2m
and q ≥ 1. If 2m < n < 6m one may take

q = 2n
σ(n−2m)

, hence q > n
2m
> 1, to find by the imbedding ofWm,2 (Ω) in L

2n
n−2m (Ω)

that
‖1 + |u|σ‖Lq(Ω) ≤ c

(
1 + ‖u‖σLσq(Ω)

)
≤

≤ c′
(
1 + ‖u‖σWm,2(Ω)

)
≤ c′′

(
1 + ‖f‖σL2(Ω)

)
.

If n = 2m then any q > 1 will do.
For n ≥ 6m the number 4m

n−2m is less or equal 1. In this case one replaces the
operator L by L+ b0 (x) for an appropriately chosen function b0. See (Grunau and
Sweers, 1996c). One can show that the dependence of the constant in the local
maximum principle on the function b0 can be controlled.
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A. ESTIMATES FOR THE POLYHARMONIC GREEN FUNCTION

DEFINITION A.1 Let g, h : Ω→ R with g, h ≥ 0. We say that

g (x) � h (x) on Ω

if there exists c > 0 such that g (x) ≤ c h (x) for all x ∈ Ω̄.
We say that

g (x) ∼ h (x) on Ω

if g (x) � h (x) on Ω and h (x) � g (x) on Ω.

Let Gm,n (x, y) denote the Green function for{
(−∆)m u = f in B,

Dmu = 0 on ∂B.

The following estimates are proven in (Grunau and Sweers, 1996a). These estimates
are the crucial tools in most of the results mentioned in this paper.
The distance d (x) of x ∈ B to the boundary satisfies d (x) = 1− |x| .

PROPOSITION A.2 On B2 (that is (x, y) ∈ B2) we have the following.

1. For 2m < n :

Gm,n (x, y) ∼ |x− y|2m−n

(
1 ∧ d (x)

m d (y)m

|x− y|2m

)
.

2. For 2m = n :

Gm,n (x, y) ∼ log
(
1 +
d (x)m d (y)m

|x− y|2m

)
.

3. For 2m > n :

Gm,n (x, y) ∼ (d (x) d (y))m− 1
2n

(
1 ∧ d (x)

1
2n d (y)

1
2n

|x− y|n

)
.

PROPOSITION A.3 Let α ∈ Nn. Then on B2 we have the following.

1. For |α| ≥ 2m− n and n odd, or, |α| > 2m− n and n even:

(a) if |α| ≤ m then

|Dα
xGm,n (x, y)| � |x− y|2m−n−|α|

(
1 ∧ d (x)

m−|α|
d (y)m

|x− y|2m−|α|

)
;

(b) if |α| ≥ m then

|Dα
xGm,n (x, y)| � |x− y|2m−n−|α|

(
1 ∧ d (y)m

|x− y|m
)
.

2. For |α| = 2m− n and n even:
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(a) if |α| ≤ m (that is m ≤ n) then

|Dα
xGm,n (x, y)| � log

(
2 +

d (y)
|x− y|

) (
1 ∧ d (x)

m−|α|
d (y)m

|x− y|2m−|α|

)
;

(b) if |α| ≥ m (that is m ≥ n) then

|Dα
xGm,n (x, y)| � log

(
2 +

d (y)
|x− y|

) (
1 ∧ d (y)m

|x− y|m
)
.

3. For |α| ≤ 2m− n and n odd, or, |α| < 2m− n and n even:

(a) if |α| ≤ m− 1
2
n then

|Dα
xGm,n (x, y)| � d (x)m− 1

2n−|α|
d (y)m− 1

2n

(
1 ∧ d (x)

1
2n d (y)

1
2n

|x− y|n

)
;

(b) if m− 1
2n ≤ |α| ≤m then

|Dα
xGm,n (x, y)| � d (y)2m−n−|α|

(
1 ∧ d (x)

m−|α|
d (y)n−m+|α|

|x− y|n

)
;

(c) if m ≤ |α| then

|Dα
xGm,n (x, y)| � d (y)2m−n−|α|

(
1 ∧ d (y)n−m+|α|

|x− y|n−m+|α|

)
.
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