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1 The problem

A famous result of Gidas, Ni and Nirenberg, [3], following an earlier result of
Serrin [5], states that positive solutions of the semilinear elliptic boundary value
problem {

−∆u = f (u) in B,
u = 0 on ∂B,

where B is a ball in Rn and f Lipschitz, are radially symmetric and radially
decreasing. A similar conjecture (e.g. [2]) has been made for the semilinear
biharmonic problem under zero Dirichlet boundary conditions{

∆2u = f (u) in B,
u = |∇u| = 0 on ∂B,

(1)

or with Navier boundary conditions:{
∆2u = f (u) in B,
u = ∆u = 0 on ∂B.

(2)

Since the proof of [3] is based on the maximum principle, which is available
in its full generality only for (cooperative systems of) second order equations,
one would tend to believe that such type of result cannot hold for (1) or (2).
Trying to get a negative answer to the question whether or not positive solutions
are radially symmetric will necessarily lead to a strict p.d.e. approach and will
hence be hard to obtain. The radially decreasing part of the claim however
allows an o.d.e.-counterexample as we will show shortly. Let us fix this part in
a conjecture:

Conjecture 1 A radially symmetric positive solution to (1) or (2) is radially
decreasing. That is, if B = {|x| < R} and u(x) = u(|x|), then u′(r) ≤ 0 for
r ∈ [0, R].
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Remark 1: Whenever f(u) ≥ 0 this conjecture holds true for (2). One
may write this boundary value problem as a second order system by setting
w = −∆u. Since w = 0 on ∂B and −∆w = f(u) ≥ 0 the strong maximum
principle implies w ≡ 0 or w > 0 and hence either u ≡ 0 or it holds that u has
no interior minimum. Since u is positive it follows that the solution is radially
decreasing.

Remark 2: For (1) the boundary conditions do not allow a decoupling as
for (2). However it follows from [6, Prop. 1] that if a radial function satisfies
∆2u ≥ 0 in B and satisfies the zero Dirichlet boundary conditions, this function
is radially decreasing. Hence a radially symmetric solution of (1) with f(u) ≥ 0
is radially decreasing. In dimension 2 an even stronger result holds, see [4],
functions u, not necessarily radially symmetric, that satisfy ∆2u ≥ 0 on a disk
B and u = |∇u| = 0 on ∂B cannot have a local minimum. Since the approach
in [4] uses conformal mappings the last result has no direct extension to higher
dimensions.

2 The counterexamples

We will restrict ourselves to two dimensions. In R2 one finds for functions
u(x) = u(|x|) that

∆2u = uiv(r) + 2u′′′(r)/r − u′′(r)/r2 + u′(r)/r3.

One may check that
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solves ∆2v + v = 0 and also that v oscillates with increasing amplitude.
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Figure 1: The graph of v.

The functions J0 and I0 are the Bessel function and the so-called modified Bessel
function of the first kind. See [1].
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• In order to obtain a counterexample for (1) let r0 > 0 be the location of the first
nonzero minimum of v and set m0 = −v (r0) > 0. By setting u0 (r) = v (r)+m0

and f (u) = m0 − u one finds that u0 is a solution of{
∆2u = f (u) in Br0 ,
u = |∇u| = 0 on ∂Br0 ,

(3)

which is not radially decreasing. See Figure 2.
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Figure 2: The graph of u0 = v + m0.

Numerically one finds r0 = 8.28099 . . . and m0 = 72.3308 . . . .

• For (2) let r1 > 0 be the location of the first zero of v′′ (r) + v′ (r) /r and set
m1 = −v (r1) > 0. By setting u1 (r) = v (r) + m1 and f (u) = m1 − u one finds
that u1 is a solution of {

∆2u = f (u) in Br1 ,
u = ∆u = 0 on ∂Br1 ,

(4)

which is not radially decreasing.
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Figure 3: The graphs of u1 = v + m1 and −∆u1 (the lower one in red).

Numerically one finds r1 = 7.2388 . . . and m1 = 50.1554 . . . .

So we may state:

Proposition 2 Both (1) and (2) may have positive radially symmetric solutions
that are not radially decreasing.
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Remark 3: Although the construction above is in 2 dimensions, the result is
not restricted to 2 dimensions. In dimensions n > 2 one replaces v by

vn(x) =
∞∑

m=0

(−1)m

(2m + 1)! Γ
(
2m + 1 + 1

2n
) (
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2r

)4m+2

and proceeds in a similar way. This formula even applies in one dimension
and v1(x) = sin( 1

2

√
2 x) sinh( 1

2

√
2 x) may be used for the construction of a

counterexample.
A careful reader might have noticed that we did not use a consequent nor-

malization for the vn.
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