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Abstract

A nonlinear noncooperative elliptic system is shown to have a positivity
preserving property. That is, there exists a uniform positive constant such
that, whenever the noncooperative part is bounded by this constant, positivity
of the source term implies that the solution is positive. The model operator
is the p-laplacian with 1 < p < ∞ on a one-dimensional domain. The source
term appears in one of the equations.

1 Introduction and main result

We will study the positivity preserving property of the following nonlinear noncoop-
erative elliptic system


−∆pu (x) = f (x)− λφp (v (x)) for x ∈ Ω,
−∆pv (x) = φp (u (x)) for x ∈ Ω,

u (x) = v (x) = 0 for x ∈ ∂Ω,
(1)

where Ω = (−1, 1) .
The following notation is used:
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• φp (u) = |u|p−2 u, the inverse being denoted by φinv
p ,

• ∆pu =
(
|u′|p−2 u′)′ ,

• 0 < f meaning 0 ≤ f (x) for all x ∈ Ω and f 	 ≡0.

• 0� f meaning 0 < f (x) for all x ∈ Ω.

The number p lies in (1,∞) .
Problem (1) is interesting in higher dimensions as well. The crucial condition nec-

essary for our proofs however we are able to prove just for one dimensional domains.
Needless to say that we are eager to see a proof showing that the condition is satisfied
for higher dimensional domains.

For λ > 0 the system is noncooperative and hence does not satisfy the assumptions
used by Fleckinger e.a. in [2] that yield the maximum principle. However, it has been
proven ([6],[4]) that for p = 2 the system above, with only a source term in the first
component, is still positivity preserving for small λ > 0 on general domains Ω under
some smoothness conditions on the boundary. Such type of result follows from the
3G-Theorem that is due to Zhao in [8]. We will prove that a similar result holds for
the p-laplacian with p ∈ (1,∞) in one dimension.
For given f we solve for u (and v). Our main result is:

Theorem 1 There exists λp > 0 such that for all λ ∈ [0, λp) and f ∈ C [−1, 1] with
f > 0 the following holds. There exists at least one solution (u, v) of (1) and all
solutions satisfy u � 0 and v � 0.

Remarks:

i. We call (u, v) a solution if u, v, φp (u′) , φp (v′) ∈ C1 [−1, 1] and (1) holds.

ii. We will obtain even strong positivity in the following sense. There exists Cf,λ,1

and Cf,λ,2 such that
u (x) ≥ Cf,λ,1 (1− |x|) ,
v (x) ≥ Cf,λ,2 (1− |x|) .

iii. We are not able to show uniqueness of the solution. We include a partial result
in section 7.

iv. For p = 2 in one dimension the result follows from elementary estimates on the
Green function. The solution is unique for p = 2.
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2 An approximation

Let us denote by Gp : C
(
Ω̄
)
→ C1

(
Ω̄
)
the solution operator of{

−∆pw = f in Ω,

w = 0 on ∂Ω,
(2)

that is, w = Gp (f) solves (2). Then the solution u of (1) satisfies

u = Gp (f − λφp (v)) = Gp (f − λφp ◦Gp ◦ φp (u)) .

Now define the iteration {
u0 = 0,

un+1 = Sp,λ,f (un) ,
(3)

where
Sp,λ,f (w) := Gp (f − λφp ◦Gp ◦ φp (w)) . (4)

Note that Gp and φp are order preserving (see [7] and appendix). By the strong
maximum principle one even finds f > 0 implies Gp (f) � 0. An operator with the
last property is called strongly positive.

Lemma 2 Suppose that f ∈ C(Ω̄) and let {un}∞n=0 be defined by (3). If we have
f > 0 and Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) > 0, then:

i. 0 ≤ un ≤ Gp (f) for all n ≥ 0;

ii. {u2n}∞n=0, respectively {u2n+1}∞n=0 , is strictly increasing, respectively decreasing,
pointwise; hence u and ū are well defined by:

u (x) = lim
n→∞

u2n (x) ,

ū (x) = lim
n→∞

u2n+1 (x) ;
(5)

iii. every solution (u, v) of (1) with 0 ≤ u ≤ Gp (f) satisfies

u ≤ u ≤ ū.

Proof. Since Gp and φp are order preserving and since Gp is even strongly positive,
we find that w < v implies Sp,λ,f (w) � Sp,λ,f (v) . Since f > 0 it follows that
u0 = 0 � Gp (f) = u1 and hence u1 = Sp,λ,f (u0) � Sp,λ,f (u1) = u2. By the
assumption we have u2 = Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) > 0.
We found that

0 = u0 � u2 � u1 = Gp (f) .
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Since u0 < w < u1 implies that Sp,λ,f (u0)� Sp,λ,f (w)� Sp,λ,f (u1) we have

u1 � u3 � u2 and u1 � u � u2.

The result follows by induction. 2

Remark 1: Lemma 2 also holds when Ω = (−1, 1) is replaced by a bounded smooth
domain Ω in R

n.

Remark 2: Suppose that the conditions of the Lemma are satisfied. Since the
operator Sp,λ,f : C [−1, 1] → C1 [−1, 1] ⊂ C [−1, 1] is compact and [0, Gp (f)] is
bounded, the two functions u and ū, satisfy

u = Gp (f − λφp ◦Gp ◦ φp (ū)) ,

ū = Gp (f − λφp ◦Gp ◦ φp (u)) .
(6)

Note that both u and ū satisfy

u = Gp (f − λφp ◦Gp ◦ φp ◦Gp (f − λφp ◦Gp ◦ φp (u))) ,

which corresponds to an 8th-order equation.
If we would be able to show that u = ū then we have existence of a solution of

(1). We would even have found, due to the ’inverse’ ordering property of Sp,λ,f , that
between 0 and Gp (f) there exists just one solution.

3 An auxiliary system

In the previous section Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) was found to play a crucial
role. For the trivially coupled system


−∆pu = f − λφp (v) in Ω,
−∆pv = φp (w) in Ω,
−∆pw = f in Ω,

u = v = w = 0 on ∂Ω,

(7)

one finds u = Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) .
We will show that for λ small the operator Tp,λ : C [−1, 1]→ C [−1, 1] defined by

Tp,λ (f) = Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) (8)

is positivity preserving. For (7) it means that there exists λp such that for all λ ∈
[0, λp] one finds that f > 0 implies u > 0.
Since Tp,λ (cf) = φinv

p (c)Tp,λ (f) for all c ∈ IR it will be sufficient to show positivity
under some rescaling. The appropriate rescaling that we will use is the following. We
suppose that

max
x∈[−1,1]

Gp (f) (x) = 1. (9)
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Lemma 3 Let f ∈ C [−1, 1] with f > 0 satisfying (9). Then there exists xf ∈ (−1, 1)
such that w = Gp (f) satisfies w (xf) = 1, w′ (xf ) = 0 and

w (x) =

∫ x

−1

φinv
p

(∫ xf

t

f (s) ds

)
dt, (10)

or similarly

w (x) =

∫ 1

x

φinv
p

(∫ t

xf

f (s) ds

)
dt. (11)

Moreover

w (x) ≥ min
(
1− x

1− xf
,
1 + x

1 + xf

)
≥ 1

2
(1− |x|) . (12)

Proof. Since w satisfies (φp (w′))′ = −f ≤ 0 one finds that φp (w′) is decreasing.
Hence w′ is decreasing and w is concave. Then (12) follows from condition (9). 2

Lemma 4 Suppose that (9) is satisfied. Then for all x ∈ [−1, 1] we find

φp ◦Gp ◦ φp ◦Gp (f) (x) ≤ (1− |x|)p−1 .

Proof. Since (9) holds we find by the maximum principle ([7], see also the appendix)
that

φp ◦Gp ◦ φp ◦Gp (f) (x) ≤ φp ◦Gp (1) (x) =

=

(∫ 1

|x|

(∫ t

0

1 ds

) 1
p−1

dt

)p−1

=

(∫ 1

|x|
t

1
p−1 dt

)p−1

=

=

(
1

1 + 1
p−1

(
1− |x|1+ 1

p−1

))p−1

≤ (1− |x|)p−1 .

2

4 Regularity

By direct calculus one finds that f ∈ C [−1, 1] implies Gp (f) ∈ C1,γ [−1, 1] with
γ = min

(
1, 1

p−1

)
. But we will need an exact control of the dependence of u′ by the

source f. To do so the cases p ≥ 2 and 1 < p < 2 need different approaches.

For p ≥ 2 we will use the space C0 [−1, 1] ∩ C1 [−1, 1] equipped with the norm
‖·‖C1 defined by ‖u‖C1 = ‖u′‖∞ . This space is a Banach space.
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Proposition 5 Let p ≥ 2 and f ∈ C [−1, 1] . Then we find for all g ∈ C [−1, 1] that

‖Gp (f + g)−Gp (f)‖C1 ≤ 4‖g‖
1

p−1

L1 . (13)

Remark 3: As an immediate consequence we find

|Gp (f + g) (x)−Gp (f) (x)| ≤ 4‖g‖
1

p−1

L1 (1− |x|) . (14)

For 1 < p < 2 we cannot directly use the space C0 [−1, 1] ∩ C1 [−1, 1] in our
estimate. Instead we will give pointwise estimates. The right hand side of the estimate
that replaces (14) has a dependence on f but in a way that we are able to control.

Proposition 6 Let p ∈ (1, 2) and f ∈ C [−1, 1] . If we assume f > 0, then we find
for all g ∈ C [−1, 1] and for every ε ∈ (0, 1] that

|Gp (f + g) (x)−Gp (f) (x)| ≤ ε Gp (f) (x)+2
4

(p−1)2 ε−
2−p
p−1 ‖g‖

1
p−1

L1

Gp (f) (x)

‖Gp (f)‖∞
. (15)

Remark 4: If we assume (9) then (15) reduces to

|Gp (f + g) (x)−Gp (f) (x)| ≤
(
ε+ 2

4

(p−1)2 ε−
2−p
p−1 ‖g‖

1
p−1

L1

)
Gp (f) (x) . (16)

For f ≡ 0 one finds that for 1 < p ≤ 2 :

|Gp (g) (x)| ≤ ‖g‖
1

p−1

L1 (1− |x|) . (17)

Remark 5: Assuming (9) we are in fact using for p ∈ (1, 2) the space

Ce [−1, 1] = {v ∈ C0 [−1, 1] ; ‖v‖e < ∞} ,

where

‖v‖e = sup
x∈(−1,1)

|v (x)|
e (x)

, with e (x) = Gp (f) (x) .

For all f ∈ C [−1, 1] with f > 0 we obtain the same space Ce [−1, 1] . But even with
the normalization of such f by (9) there is no uniform estimate between all norms
‖·‖e1

and ‖·‖e2
coming from different f1, f2.

Since 1 ≥ Gp (f) (x) >
1
2
(1− |x|) the space Ce [−1, 1] satisfies(

C0 [−1, 1] ∩ C1 [−1, 1]
)
⊂ Ce [−1, 1] ⊂ C0 [−1, 1] .

Ce [−1, 1] is a Banach space. A similar space has been used by Amann ([1]) in relation
with positivity properties of the Laplace-Dirichlet problem.

We will show a technical lemma first.
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Lemma 7 For every f ∈ C [−1, 1] there is a unique constant cf such that the function
u = Gp (f) satisfies

u (x) =

∫ x

−1

φinv
p

(∫ 1

t

f (s) ds− cf

)
dt (18)

Moreover, for f, g ∈ C [−1, 1] we find:

|cf − cg| ≤ ‖f − g‖L1 .

Proof. The expression in (18) follows immediately. By contradiction we show that
|cf − cg| ≤ ‖f − g‖L1 . Indeed, suppose that cf − cg > ‖f − g‖L1 . Then

0 =

∫ 1

−1

φinv
p

(∫ 1

t

g (s) ds − cg

)
dt =

=

∫ 1

−1

φinv
p

(∫ 1

t

f (s) ds − cf +

∫ 1

t

(g (s)− f (s)) ds + cf − cg

)
dt ≥

≥
∫ 1

−1

φinv
p

(∫ 1

t

f (s) ds− cf − ‖f − g‖L1 + cf − cg

)
dt >

>

∫ 1

−1

φinv
p

(∫ 1

t

f (s) ds− cf

)
dt = 0,

a contradiction. By symmetry one finds cg − cf ≤ ‖f − g‖L1 . 2

Proof of Proposition 5: We will denote


u (x) = Gp (f) (x) ,

v (x) = Gp (f + g) (x) ,

F (x) =

∫ xf

x

f (s) ds.

(19)

Since p ≥ 2 we have that 1
p−1

≤ 1 holds and we may use (see Lemma B) that

(a+ b)
1

p−1 − a
1

p−1 ≤ b
1

p−1 for all a, b ≥ 0.

Indeed, for 0 ≤ F (x) :

φinv
p (F (x) + 2‖g‖L1)− φinv

p (F (x)) =
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= (F (x) + 2‖g‖L1)
1

p−1 − (F (x))
1

p−1 ≤ (2‖g‖L1)
1

p−1 ;

for −2‖g‖L1 < F (x) < 0 :

φinv
p (F (x) + 2‖g‖L1)− φinv

p (F (x)) ≤ 2 (2‖g‖L1)
1

p−1 ;

and for F (x) ≤ −2‖g‖L1 :

φinv
p (F (x) + 2‖g‖L1)− φinv

p (F (x)) =

= (−F (x)− 2‖g‖L1 + 2‖g‖L1)
1

p−1 − (−F (x)− 2‖g‖L1)
1

p−1 ≤

≤ (2‖g‖L1)
1

p−1 .

Then we have
v′ (x)− u′ (x) =

= φinv
p

(
F (x) +

∫ 1

x

g (s) ds− cf+g + cf

)
− φinv

p (F (x)) ≤

(by Lemma 7)

≤ φinv
p (F (x) + ‖g‖L1 + ‖g‖L1)− φinv

p (F (x)) ≤

≤ 2 (2‖g‖L1)
1

p−1 ≤ 4‖g‖
1

p−1

L1 .

In a similar way one obtains the estimate from below. Together they imply

|v′ (x)− u′ (x)| ≤ 4‖g‖
1

p−1

L1 .

2

Proof of Proposition 6: We will use u, v and F as in (19). Now we have 1
p−1

> 1

and hence 2−p
p−1

> 0. In the estimate from above we apply that for a, b ≥ 0 (see Lemma
B):

(a+ b)
1

p−1 − a
1

p−1 ≤ 2
1

p−1

(
a

2−p
p−1 b+ b

1
p−1

)
.

Indeed, for 0 ≤ F (t) we have

φinv
p (F (t) + 2‖g‖L1)− φinv

p (F (t)) ≤

≤ 2
1

p−1

(
2‖g‖L1 (F (t))

2−p
p−1 + (2‖g‖L1)

1
p−1

)
≤
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≤ 2
2

p−1

(
(F (t))

2−p
p−1 ‖g‖L1 + ‖g‖

1
p−1

L1

)
. (20)

For F (t) ≥ 0 we can use (46) from Lemma B to find that for any δ > 0

(F (t))
2−p
p−1 ≤

(
δ−1 ‖g‖L1

) 2−p
p−1 +

(
δ−1 ‖g‖L1

)−1
(F (t))

1
p−1 . (21)

Since F (t) ≥ 0 for x ≤ xf we get by (20-21) that

v (x)− u (x) ≤

≤
∫ x

−1

(
φinv

p (F (t) + 2‖g‖L1)− φinv
p (F (t))

)
dt ≤

≤ 2
2

p−1

∫ x

−1

(
(F (t))

2−p
p−1 ‖g‖L1 + ‖g‖

1
p−1

L1

)
dt ≤

≤ 2
2

p−1

∫ x

−1

(
δ (F (t))

1
p−1 +

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1

)
dt =

= 2
2

p−1

(
δ u (x) +

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1 (1 + x)

)
. (22)

For x > xf we find similarly by using (11) that

v (x)− u (x) ≤

≤ 2
2

p−1

(
δ u (x) +

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1 (1− x)

)
.

Now we will use that f is such that (9) holds. From (12) in Lemma 3 we find that
for x ∈ [−1, xf ] :

v (x)− u (x) ≤

≤ 2
2

p−1

(
δ u (x) +

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1 (1 + xf) u (x)

)
. (23)

and for x ∈ [xf , 1] :
v (x)− u (x) ≤

≤ 2
2

p−1

(
δ u (x) +

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1 (1− xf )u (x)

)
. (24)
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Combining (23) and (24) yields

v (x)− u (x) ≤ 2
2

p−1

(
δ + 2

(
1 + δ−

2−p
p−1

)
‖g‖

1
p−1

L1

)
u (x) .

By setting δ = 2
−2
p−1ε and fixing ε ∈ (0, 1] we find that

2
2

p−1 · 2
(
1 + δ−

2−p
p−1

)
≤ 2

4

(p−1)2 ε−
2−p
p−1

which shows

Gp (f + g) (x)−Gp (f) (x) ≤
(
ε+ 2

4

(p−1)2 ε−
2−p
p−1 ‖g‖

1
p−1

L1

)
Gp (f) (x) .

Set m = ‖Gp (f)‖∞ . Without rescaling we find

Gp (f + g) (x)−Gp (f) (x) = m

(
Gp

(
f + g

mp−1

)
(x)−Gp

(
f

mp−1

)
(x)

)
≤

≤ m

(
ε+ 2

4

(p−1)2 ε−
2−p
p−1

∥∥∥ g

mp−1

∥∥∥ 1
p−1

L1

)
Gp

(
f

mp−1

)
(x) =

≤


ε+ 2

4

(p−1)2 ε−
2−p
p−1

‖g‖
1

p−1

L1

‖Gp (f)‖∞


Gp (f) (x)

which completes the estimate from above.
For the estimate from below we use that for a, b ≥ 0 (see Lemma B) holds:

φinv
p (a− b)− φinv

p (a) ≥ − 1

p− 1
(
ba

2−p
p−1 + b

1
p−1

)
,

which implies instead of (20) that

φinv
p (F (t)− 2‖g‖L1)− φinv

p (F (t)) ≥

≥ − 2
1

p−1

p− 1

(
(F (t))

2−p
p−1 ‖g‖L1 + ‖g‖

1
p−1

L1

)
. (25)

We may continue as in the part where we estimated from above and since

2
1

p−1

p− 1 < 2
2

p−1

we find (15). 2
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5 Positivity for the auxiliary system

Lemma 8 There exists λ∗
p > 0 such that for all λ ∈

[
0, λ∗

p

)
the operator Tp,λ defined

in (8) satisfies for all f ∈ C [−1, 1] :

f > 0⇒ Tp,λ (f)� 0.

Remark 6: In the proof we will obtain rough estimates from below for λ∗
p. We find

λ∗
p ≥ 1

4

(
1
32

)p−1
for p ≥ 2,

λ∗
p ≥ 1

16

(
1
16

) 1
p−1 for p ∈ (1, 2) .

These estimates for λ∗
p are rather small. For p = 2 one finds λ

∗
2 = 3

3
14
.

Remark 7: The number λ∗
p is estimated from above by (λ1,p)

2 where λ1,p is the first
eigenvalue of the Dirichlet problem for the p-laplacian:{

−∆pϕ = λφp (ϕ) in (−1, 1) ,
ϕ = 0 on {−1, 1} .

(26)

Let ϕ1,p denote the first eigenfunction of (26). For λ > (λ1,p)
2 =

(πp

2

)2p
, with πp

defined in [5], one uses f = φp (ϕ1,p) to find a non-positive u = Tp,λ (f) . Indeed one
finds

u = φinv
p

((
λ2

1,p − λ
)
λ−3

1,p

)
ϕ1,p.

From [5] one can obtain

πp = (p)
−p∗ (p∗)−p Γ

(
p−1
)
Γ
(
(p∗)−1) (27)

where 1
p
+ 1

p∗ = 1 and Γ is denoting the usual gamma function. For comparison:

(λ1,2)
2 = π4

16
= 6.088 . . . .

Proof for p ≥ 2: For p ≥ 2 we have by Proposition 5 that

‖Tp,λ (f)−Gp (f)‖C1 ≤

≤ 4‖λφp ◦Gp ◦ φp ◦Gp (f)‖
1

p−1

L1 = 4 λ
1

p−1 ‖Gp ◦ φp ◦Gp (f)‖Lp−1 ≤

≤ 4 (2λ)
1

p−1 ‖Gp ◦ φp ◦Gp (f)‖C1 ≤

(again using Proposition 5)

≤ 16 (2λ)
1

p−1 ‖φp ◦Gp (f)‖
1

p−1

L1 = 16 (2λ)
1

p−1 ‖Gp (f)‖Lp−1 ≤

11



≤ 16 (4λ)
1

p−1 ‖Gp (f)‖∞ .

We may assume that (9) holds. Then with λ ∈
[
0, 1

4

(
1
32

)p−1
)
we find for x ∈ (−1, 1)

that
Tp,λ (f) (x)−Gp (f) (x) ≥ − (1− |x|) ‖Tp,λ (f) −Gp (f)‖C1 >

> −1
2
(1− |x|) ‖Gp (f)‖∞ = −1

2
(1− |x|) .

Hence, using (12), we find for x ∈ (−1, 1) that

Tp,λ (f) (x) > Gp (f) (x)− 1
2
(1− |x|) ≥ 0.

The case 1 < p < 2: Again we assume that (9) holds. We find by (16) that

|Tp,λ (f) (x)−Gp (f) (x)| ≤

≤
(
ε+ 2

4

(p−1)2 ε−
2−p
p−1 ‖λφp ◦Gp ◦ φp ◦Gp (f)‖

1
p−1

L1

)
Gp (f) (x) ≤

≤
(
ε+ 2

4

(p−1)2 ε−
2−p
p−1λ

1
p−12

1
p−1 ‖Gp ◦ φp ◦Gp (f)‖∞

)
Gp (f) (x) = ($)

By Hölder’s inequality we have ( 1
p−1

> 1) that

‖Gp ◦ φp (w)‖∞ = sup
x∈[−1,1]

∣∣∣∣
∫ x

−1

φinv
p

(∫ xf

t

φp (w (s)) ds

)
dt

∣∣∣∣ ≤

≤
∫ 1

−1

∣∣∣∣
∫ xf

t

|w (s)|p−1 ds

∣∣∣∣
1

p−1

dt ≤

≤
∫ 1

−1

2
2−p
p−1

∣∣∣∣
∫ xf

t

|w (s)| ds
∣∣∣∣ dt ≤ 2 1

p−1 ‖w‖L1 . (28)

Hence we may continue by

($) ≤
(
ε+ 2

4

(p−1)2
+ 2

p−1ε−
2−p
p−1 λ

1
p−1 ‖Gp (f)‖L1

)
Gp (f) (x) ≤

≤
(
ε+ 2

4

(p−1)2
+ 2

p−1
+1

ε−
2−p
p−1 λ

1
p−1

)
Gp (f) (x) .

Take ε = 1
2
. We have for λ ∈

[
0, 1

16

(
1
2

) 4
p−1

)
that

Tp,λ (f)−Gp (f) > −Gp (f)

and hence that Tp,λ preserves positivity. 2

12



6 A positive solution for the main system

Existence of a positive solution follows by an application of Schauder’s Fixed Point
Theorem. Let us denote

[0, Gp (f)] = {u ∈ C0 [−1, 1] ; 0 ≤ u (x) ≤ Gp (f) (x) for all x ∈ [−1, 1]} .

Lemma 9 Let f ∈ C [−1, 1] with f > 0 and λ ∈
[
0, λ∗

p

)
with λ∗

p as in Lemma 8.
Then (1) has a positive solution (u, v) .

Proof. Let the operator Sp,λ,f be as in (4). By Lemma 8 we find that

Sp,λ,f ([0, Gp (f)]) ⊂ [0, Gp (f)] .

Since [0, Gp (f)] is a convex set in the Banach space C [−1, 1] and Sp,λ,f is compact,
Schauder’s Fixed Point Theorem gives the existence of a solution u in [0, Gp (f)] .
From

Sp,λ,f ([0, Gp (f)]) ⊂ [Gp (f − λφp ◦Gp ◦ φp ◦Gp (f)) , Gp (f)]

it follows that u > 0 (and hence v > 0). 2

Lemma 10 There exists λ•
p such that for all λ ∈

[
0, λ•

p

)
, f ∈ C [−1, 1] with f > 0,

and every solution (u, v) of (1) we have

1
2
Gp (f) (x) ≤ u (x) ≤ Gp (f) (x) . (29)

Remark 8: Again we do obtain some rough estimates from below, namely λ•
p ≥

1
4

(
1
64

)p−1
when p ≥ 2, and λ•

p ≥ 1
64

(
1
16

) 1
p−1 when 1 < p < 2.

Proof. We assume (9). Note that u satisfies

u = Gp (f − λφp ◦Gp ◦ φp (u)) . (30)

The case p ≥ 2. We find by using (14) that

|u (x)−Gp (f) (x)| =

= |Gp (f − λφp ◦Gp ◦ φp (u)) (x)−Gp (f) (x)| ≤

≤ 4 λ
1

p−1 (1− |x|) ‖φp ◦Gp ◦ φp (u)‖
1

p−1

L1 ≤

13



≤ 4 (2λ)
1

p−1 (1− |x|) ‖φp ◦Gp ◦ φp (u)‖
1

p−1
∞ ≤

≤ 4 (2λ)
1

p−1 (1− |x|) ‖Gp ◦ φp (u)‖C1 ≤

(now use (13) with f = 0)

≤ 16 (2λ)
1

p−1 (1− |x|) ‖φp (u)‖
1

p−1

L1 = 16 (2λ)
1

p−1 (1− |x|) ‖u‖Lp−1 ≤

≤ 16 (4λ)
1

p−1 (1− |x|) ‖u‖∞ .

And hence by (12)

|u (x)−Gp (f) (x)| ≤ 32 (4λ)
1

p−1 ‖u‖∞ Gp (f) (x) . (31)

Take λ < 1
4

(
1
64

)p−1
. It follows that (we assume (9))

‖u‖∞ ≤ ‖Gp (f)‖∞ + ‖u−Gp (f)‖∞ ≤ 1 + 1
2
‖u‖∞

implying ‖u‖∞ ≤ 2. Then (31) shows that

u (x) ≥
(
1− 1

2
‖u‖∞

)
Gp (f) (x) ≥ 0 (32)

and
u (x) ≤

(
1 + 1

2
‖u‖∞

)
Gp (f) (x) ≤ 2Gp (f) (x) . (33)

But for u ≥ 0 we find by (30) and the maximum principle that u ≤ Gp (f) holds.
Hence ‖u‖∞ ≤ 1 and from (32) we have (29).

i. The case 1 < p < 2. Now 1
p−1

> 1. We obtain by (16) that

|u (x)−Gp (f) (x)| = |Gp (f − λφp ◦Gp ◦ φp (u)) (x)−Gp (f) (x)| ≤

≤
(
ε+ 2

4

(p−1)2 ε−
2−p
p−1 λ

1
p−1 ‖φp ◦Gp ◦ φp (u)‖

1
p−1

L1

)
Gp (f) (x) ≤

≤
(
ε+ 2

4

(p−1)2
+ 1

p−1ε−
2−p
p−1 λ

1
p−1 ‖Gp ◦ φp (u)‖∞

)
Gp (f) (x) ≤

(using (28))

≤
(
ε+ 2

4

(p−1)2
+ 2

p−1ε−
2−p
p−1 λ

1
p−1 ‖u‖L1

)
Gp (f) (x) ≤

14



≤
(
ε+ 2

4

(p−1)2
+ 2

p−1
+1

ε−
2−p
p−1 λ

1
p−1 ‖u‖∞

)
Gp (f) (x) . (34)

Fix ε = 1
4
and take λ ∈

[
0, 1

32

(
1
16

) 1
p−1

]
which yields 2

4

(p−1)2
+ 2

p−1
+1
4

2−p
p−1 λ

1
p−1 ≤ 1

4
.

Then
‖u‖∞ ≤ ‖u−Gp (f)‖∞ + ‖Gp (f)‖∞ ≤

≤
(

1
4
+ 1

4
‖u‖∞ + 1

)
‖Gp (f)‖∞ ≤ 5

4
+ 1

4
‖u‖∞

and we find that ‖u‖∞ ≤ 5
3
. If ‖u‖∞ ≤ 5

3
then we find from (34) that

|u (x)−Gp (f) (x)| ≤
(

1
4
+ 1

4
5
3

)
Gp (f) (x) =

2
3
Gp (f) (x) .

Hence we have
1
3
Gp (f) (x) ≤ u (x) ≤ 5

3
Gp (f) (x) .

If u > 0 then u (x) ≤ Gp (f) (x) which implies that ‖u‖∞ ≤ 1 and shows that

|u (x)−Gp (f) (x)| ≤
(

1
4
+ 1

4

)
Gp (f) (x) =

1
2
Gp (f) (x) .

The estimate in (29) follows. 2

Proof of the main result. Set λp = min
(
λ∗

p, λ
•
p

)
. The lemmas 9 and 10 give the

result of the Theorem 1. 2

7 Some remarks on uniqueness

Uniqueness for the p-laplacian is in general much harder to prove. We recall that for
the Dirichlet problem −∆pu = λφp (u) + f with p > 2 and 0 < λ < λp,1 there are f
(with sign change) such that there is no unique solution. This in contrary to the case
p = 2. See the paper by Del Pino e.a., [5].
A similar problem appears for systems. In the case of the cooperative system that

is studied by Fleckinger e.a. in [2], uniqueness of the positive solution has not been
shown. And also we are not able to prove that there exists a unique solution for the
problem we study. The only rather incomplete result we obtain, is the following.

Proposition 11 Let p > 2 and assume that λ ∈ [0, λp]. Assume that f ∈ C [−1, 1] .
There cannot exist solutions (u1, v1) and (u2, v2) such that either

{x ∈ [−1, 1] ; u1 (x) = u2 (x)} or {x ∈ [−1, 1] ; v1 (x) = v2 (x)} (35)

is finite.
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Proof. We will proceed by contradiction. Suppose that there exist two solutions
(u1, v1) and (u2, v2) with both the sets in (35) being finite. Let us denote U = u1 −u2

and V = v1 − v2. Note that U, V ∈ C1 [−1, 1] .
i) U cannot be of fixed sign. Suppose that u1 ≥ u2. Then the maximum principle

used for the second equation of (1) implies that v1 ≥ v2. The maximum principle used
in the first equation shows that u1 ≤ u2, a contradiction. Similarly one finds that v1

and v2 are not ordered.
We will study the set of zeros of U (and of V ) where a sign change occurs. Let us

denote
ZU = {−1, 1} ∪ {α ∈ (−1, 1) ; ∀ε > 0 ∃x1, x2 with

α− ε < x1 < α < x2 < α+ ε
such that U (x1)U (x2) < 0}

and similarly ZV .
ii) Between two consecutive zeros of U, the function V has opposite sign some-

where. Let α1, α2 ∈ [−1, 1] with α1 < α2 denote two consecutive zeros of U. Without
loss of generality we may assume that U = u1 − u2 > 0 on (α1, α2) . We find that

−φp (u
′
1)

′
+ φp (u

′
2)

′
= −λ (φp (v1)− φp (v2)) .

Multiplying both sides by u1 − u2 we obtain, after an integration by parts and using
the fact that φp is strictly increasing, that

0 <

∫ α2

α1

(φp (u
′
1)− φp (u

′
2)) (u

′
1 − u′

2) dx =

=

∫ α2

α1

(
−φp (u

′
1)

′
+ φp (u

′
2)

′)
(u1 − u2) dx =

= −λ

∫ α2

α1

(φp (v1)− φp (v2)) (u1 − u2) dx.

Since u1−u2 > 0 on (α1, α2) we find that there is some x ∈ (α1, α2) with φp (v1 (x))−
φp (v2 (x)) < 0 and hence V (x) = v1 (x)− v2 (x) < 0.

iii) Between two consecutive zeros of V, the function U has the same sign some-
where. The argument is similar as above. Let β1 < β2 be two consecutive zeros of V.
We use

−φp (v
′
1)

′ + φp (v
′
2)

′ = φp (u1)− φp (u2) ,

multiply by v1 − v2 and integrate by parts to find∫ β2

β1

(φp (u1)− φp (u2)) (v1 − v2) dx > 0.
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iv) Elements of ZU and ZV keep alternating. Set

ZU = {αi; i = 0, 1, 2, . . .} ,
ZV = {βi; i = 0, 1, 2, . . .} ,

with
−1 = α0 < α1 < α2 < . . .

−1 = β0 < β1 < β2 < . . .

and suppose without loss of generality that

signU = (−1)i on (αi, αi+1) . (36)

Note that by i) both ZU and ZV contain at least three elements.
First assume that

signV = (−1)i on (βi, βi+1) (37)

which implies with ii) that

−1 = β0 = α0 < β1 < α1. (38)

We will prove that
βi−1 ≤ αi−1 < βi < αi < 1 (39)

implies that there exist βi+1 and αi+1 with

βi ≤ αi < βi+1 < αi+1 < 1. (40)

For i = 1 (39) is satisfied by i) and (38).
Since βi, αi < 1 there exist βi+1, αi+1 ≤ 1. Now suppose that (40) does not hold.

Then either αi ≥ βi+1, or βi+1 ≥ αi+1, or αi <βi+1 < αi+1 = 1. Note that we will
have βi ≤ αi.
If αi ≥ βi+1 we have αi−1 <βi < βi+1 ≤ αi. It follows that signU = (−1)i−1 =

− signV on (βi, βi+1) which contradicts iii).
If βi+1 ≥ αi+1 then we have βi ≤ αi < αi+1 ≤ βi+1 implying that signU = (−1)i =

signV on (αi, αi+1) which contradicts ii).
If αi <βi+1 <αi+1 = 1 then there exists βi+2 and αi < βi+1 < βi+2 ≤ αi+1 = 1,

and again a contradiction by iii).
We have proven that (39) implies (40). A similar argument, with αi and βi

interchanged, holds when we assume that

sign V = (−1)i+1 on (βi, βi+1) .

iv) Finitely many zeroes isn’t possible. The previous argument shows that ZU or
ZV cannot have finitely many elements. Hence U and V have at least infinitely many
zeros, a contradiction. 2
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Remark 9: We cannot prove uniqueness when for two solutions either u1 − u2 or
v1−v2 has an infinite number of zeros. Hence there is at least one accumulation point
α̃ of zeros, both of u1 − u2 and v1 − v2. As a result (u1, v1) and (u2, v2) satisfy the
same initial value problem at α̃.We may rephrase the system of differential equations
to 


z′ = φp (v)− f,
u′ = φinv

p (z) ,
w′ = −φp (u) ,
v′ = φinv

p (w) .

(41)

If the right hand side of (41) is Lipschitz at α̃, there is a unique solution to the initial
value problem. Since we have proven that u′ and v′ are nonzero at the boundary the
right hand side of (41) satisfies the Lipschitz-condition at the boundary for p ≥ 2.
Hence in that case no accumulation of zeros of u1 − u2 (or v1 − v2) can occur at
−1 and 1. Similarly, for p < 2 such an accumulation of zeros can only occur at the
boundary since the Lipschitz-condition for (41) only fails when u = 0 or v = 0.

A Appendix: the strong maximum principle

The strong maximum principle in one dimension is a straightforward exercise. For
the sake of easy reference we state and prove it.

Proposition A Let p ∈ (1,∞). If f, g ∈ C [−1, 1] with f ≤ g and f 	= g, then there
is c > 0 such that for all x ∈ [−1, 1] we have

Gp (g) (x)−Gp (f) (x) ≥ c (1− |x|) . (42)

Proof. Set u = Gp (f) and v = Gp (g) and note that u, v ∈ C1 [−1, 1] .We also define

h (x) = φp (v
′ (x))− φp (u

′ (x)) .

Since h′ = f −g ≤ 0 it follows that h is decreasing. Since u 	= v and u (x) = v (x) = 0
for |x| = 1 there exists an extremum point for u−v, say ξ. Since v′ (ξ) = u′ (ξ) implies
h (ξ) = 0 one finds that h (−1) > 0 and h (1) < 0. These inequalities are strict:
h (−1) = 0 would imply h ≡ 0 on [−1, ξ] and hence u (ξ) = v (ξ) , a contradiction.
One finishes by observing that signh = sign (v′ − u′). 2

B Appendix: some inequalities

We have used the following elementary inequalities.

Lemma B For all a, b ≥ 0 we have:
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i. if p ≥ 2
(a+ b)

1
p−1 ≤ a

1
p−1 + b

1
p−1 ; (43)

ii. if 1 < p < 2 :

φinv
p (a+ b)− φinv

p (a) ≤ 2
1

p−1

(
b a

2−p
p−1 + b

1
p−1

)
, (44)

φinv
p (a)− φinv

p (a− b) ≤ 1
p−1

(
b a

2−p
p−1 + b

1
p−1

)
, (45)

a
2−p
p−1 ≤ b

2−p
p−1 + b−1 a

1
p−1 . (46)

Proof. We will prove the last three. Hence we have that 1
p−1

> 1. First we assume

that b ≤ a and denote x = b
a
. Since x ∈ [0, 1] we find that (44), (45) follow from

(1 + x)
1

p−1 − 1 ≤ 2
1

p−1x ≤ 2
1

p−1

(
x+ x

1
p−1

)
for 0 ≤ x ≤ 1

respectively

(1− x)
1

p−1 − 1 ≥ − 1
p−1

x ≥ − 1
p−1

(
x+ x

1
p−1

)
for 0 ≤ x.

If b > a then

φinv
p (a+ b)− φinv

p (a) ≤ φinv
p (a+ b) ≤ 2

1
p−1 b

1
p−1

and
φinv

p (a− b)− φinv
p (a) = − (b− a)

1
p−1 − a

1
p−1 ≥ −b

1
p−1 .

Inequality (46) is immediate by distinguishing a ≥ b and a ≤ b. 2

Acknowledgement: We would like to thank the referee for a shorter proof of Propo-
sition A as well as for some comments that improve our presentation.
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