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Abstract

A nonlinear noncooperative elliptic system is shown to have a positivity
preserving property. That is, there exists a uniform positive constant such
that, whenever the noncooperative part is bounded by this constant, positivity
of the source term implies that the solution is positive. The model operator
is the p-laplacian with 1 < p < oo on a one-dimensional domain. The source
term appears in one of the equations.

1 Introduction and main result

We will study the positivity preserving property of the following nonlinear noncoop-
erative elliptic system

“Apu(r) = [@)-Myw() forzen,
_Aw(z) = 6 (u(2)) for 2 € 0, 1)
u(z)=v(z) = 0 for x € 09,
where 2 = (—1,1).
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op (u) = lu[P"% u, the inverse being denoted by

Apu = (|u’|p_2 u’)/ ,

0 < f meaning 0 < f (z) for all x € Q and f £0.

e 0 < f meaning 0 < f (x) for all z € Q.

The number p lies in (1, 00).

Problem (1) is interesting in higher dimensions as well. The crucial condition nec-
essary for our proofs however we are able to prove just for one dimensional domains.
Needless to say that we are eager to see a proof showing that the condition is satisfied
for higher dimensional domains.

For A > 0 the system is noncooperative and hence does not satisfy the assumptions
used by Fleckinger e.a. in [2] that yield the maximum principle. However, it has been
proven ([6],[4]) that for p = 2 the system above, with only a source term in the first
component, is still positivity preserving for small A > 0 on general domains {2 under
some smoothness conditions on the boundary. Such type of result follows from the
3G-Theorem that is due to Zhao in [8]. We will prove that a similar result holds for
the p-laplacian with p € (1, 00) in one dimension.

For given f we solve for u (and v). Our main result is:

Theorem 1 There exists A\, > 0 such that for all A € [0, ;) and f € C[—1,1] with
f > 0 the following holds. There exists at least one solution (u,v) of (1) and all
solutions satisfy u > 0 and v > 0.

Remarks:

i. We call (u,v) a solution if u, v, ¢, (u') , ¢, (v') € C*[—1,1] and (1) holds.

ii. We will obtain even strong positivity in the following sense. There exists Cf 1
and Cy 2 such that
u ()

v (x)

iii. We are not able to show uniqueness of the solution. We include a partial result
in section 7.

Ciaa(1—|z]),

>

iv. For p = 2 in one dimension the result follows from elementary estimates on the
Green function. The solution is unique for p = 2.



2 An approximation

Let us denote by G, : C (Q) — 1 (Q) the solution operator of

—Apw=f inQ,
w=0 on 0f2,

that is, w = G, (f) solves (2). Then the solution u of (1) satisfies
u=Gy(f = Ay (v) =Gy (f = Appo Gy o gy (u)) -

Now define the iteration

Ug = O,
B (3)
Uny1 = Spas(un),
where
Spag (W) =Gy (f — Ay o Gpo ¢y (w)) . (4)

Note that G}, and ¢, are order preserving (see [7] and appendix). By the strong
maximum principle one even finds f > 0 implies G, (f) > 0. An operator with the
last property is called strongly positive.

Lemma 2 Suppose that f € C(Q) and let {u,},_, be defined by (3). If we have
f>0and G, (f —AppoGpop,0G,(f)) >0, then:

i. 0<wu, <G, (f) for alln > 0;

. {uan} o, respectively {uony1},o, , is strictly increasing, respectively decreasing,
pointwise; hence u and u are well defined by:

u(@) = lim (). .
u(x) = Jllgouzn+1 ()

iii. every solution (u,v) of (1) with 0 <u < G, (f) satisfies

u<u<u.

Proof. Since G, and ¢, are order preserving and since G, is even strongly positive,
we find that w < v implies Sy s (w) > Spas(v). Since f > 0 it follows that
uy = 0 < Gp(f) = w and hence uy = Sy (ug) > Spays(ur) = ug. By the
assumption we have uy = G, (f — Ap, 0 G0 ¢, 0 G, (f)) > 0.
We found that
OZUQ<<U2<<U1:Gp(f).
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Since ug < w < uy implies that S, (uo) > Spr s (w) > Sy s (u1) we have
Uy > uz > ug and up > u > us.

The result follows by induction. O

Remark 1: Lemma 2 also holds when Q = (—1, 1) is replaced by a bounded smooth
domain €2 in R".

Remark 2: Suppose that the conditions of the Lemma are satisfied. Since the
operator S,; : C[-1,1] — C'[-1,1] € C[-1,1] is compact and [0,G, (f)] is
bounded, the two functions u and u, satisfy

u = Gp(f=AppoGpogy,(u),

_ 6

i = Gyf =200 Gypod, (). o)

Note that both v and u satisfy
u=Gp(f —AppoGpog,oG,(f—AdpoGpody(u))),

which corresponds to an 8-order equation.

If we would be able to show that u = @ then we have existence of a solution of
(1). We would even have found, due to the 'inverse’ ordering property of S, 5 f, that
between 0 and G), (f) there exists just one solution.

3 An auxiliary system

In the previous section G, (f — Ap, 0 Gpo ¢, 0 G, (f)) was found to play a crucial
role. For the trivially coupled system

—Apu = f—=App(v) inQ,
-Apy = ¢, (w) in €, (7)
-Aw = in €2,

uU=v=w = on 0f),

one finds u =G, (f — App, 0 Gpo¢p,0 Gy (f)).
We will show that for A small the operator 7, : C'[—1,1] — C'[—1, 1] defined by

Top () = Gp(f = Adpo GpodyoGy(f)) (8)

is positivity preserving. For (7) it means that there exists A, such that for all A €
[0, Ap] one finds that f > 0 implies u > 0.

Since Ty (cf) = ¢ (¢) Ty (f) for all ¢ € IR it will be sufficient to show positivity
under some rescaling. The appropriate rescaling that we will use is the following. We
suppose that

S~

max G, (f) (x) = 1. (9)

z€[—1,1]



Lemma 3 Let f € C[—1,1] with f > 0 satisfying (9). Then there exists xy € (—1,1)
such that w = G, (f) satisfies w (xy) =1, w' (xy) =0 and

wio) = [Copr ([T reas)ar (10)
w= [ o < / £(s) ds) . (1)

or similarly

Moreover . .
. - +x 1
w(o) zmin (122, L) 2 b - . (12
Proof. Since w satisfies (¢, (w')) = —f < 0 one finds that ¢, (w') is decreasing.
Hence w' is decreasing and w is concave. Then (12) follows from condition (9). O

Lemma 4 Suppose that (9) is satisfied. Then for all x € [—1, 1] we find

¢p 0 GpodyoGy(f)(x) < (1— |z

Proof. Since (9) holds we find by the maximum principle ([7], see also the appendix)
that

$p 0 Gp o gy o Gy ( (fv Gp (1) (z) =

(L dt> >

4 Regularity

By direct calculus one finds that f € C'[—1,1] implies G, (f) € C*7[—1,1] with
v = min (1, p%l) . But we will need an exact control of the dependence of u’' by the

source f. To do so the cases p > 2 and 1 < p < 2 need different approaches.

For p > 2 we will use the space Cy[—1,1] N C'[—1,1] equipped with the norm
|-[|c1 defined by |lul|, = [|o||, - This space is a Banach space.



Proposition 5 Let p > 2 and f € C[—1,1] . Then we find for all g € C'[—1,1] that

Gy (F +9) = Gp (Nllex <49l (13)
Remark 3: As an immediate consequence we find

G, (7 +9) () = Gy () ()] < g 57 (1 Ja]). (14)

For 1 < p < 2 we cannot directly use the space Co[—1,1] N C*[—1,1] in our
estimate. Instead we will give pointwise estimates. The right hand side of the estimate
that replaces (14) has a dependence on f but in a way that we are able to control.

Proposition 6 Let p € (1,2) and f € C[—1,1]. If we assume f > 0, then we find
for all g € C'[—1,1] and for every € € (0,1] that

Gy (f) (x)

(RGN

Gy (F 4+ 9) (@) — Gy () (@) < £ Gy () (&) 4257 e 58 g7
Remark 4: If we assume (9) then (15) reduces to
G +0) ()~ Gy (1) ()] = (2257 <3 lET) G ). (19
For f =0 one finds that for 1 < p < 2 :
Gy (9) (@)] < g7 (1 = Ja]) (17)

Remark 5: Assuming (9) we are in fact using for p € (1,2) the space
Ce[-1,1] ={v e Go[-1,1];lv]. < oo},

where

) .
v||,= sup ——=, withe(z) =G, (f) (z).
ol = snp S with ¢ (2) = Gy (1) (2
For all f € C'[—1,1] with f > 0 we obtain the same space C. [—1,1]. But even with
the normalization of such f by (9) there is no uniform estimate between all norms
[ll., and [|-[|,, coming from different fi, fa.

Since 1 > G, (f) (z) > 1 (1 — |z|) the space C.[—1,1] satisfies
(Co[-1,1]nC'[-1,1]) C Cc[-1,1] C Gy [-1,1].

C.[—1,1] is a Banach space. A similar space has been used by Amann ([1]) in relation
with positivity properties of the Laplace-Dirichlet problem.

We will show a technical lemma first.



Lemma 7 For every f € C|—1,1] there is a unique constant ¢y such that the function

u= Gy (f) satisfies
v = [Coe ([ reris—e)a (18)

Moreover, for f,g € C'[—1,1] we find:

lep = col < IIf = gllzr-

Proof. The expression in (18) follows immediately. By contradiction we show that
lep — gl <||f — 9l|;1 - Indeed, suppose that ¢y — ¢y > || f — ¢g]|;: . Then

1 1
:/_1¢;””(/t g(s)ds—cg)dt:
1 1 1
:/_lgs;””(/t f(S)dS—Cf+/t (g(s)—f(s))ds—l—cf—cg)dtz
1 1
> [ ([ r@ds o= =gl e e, ) dr>
1 1
>/_1¢;"”(/t f(s)ds—cf)dt:O,

a contradiction. By symmetry one finds ¢, — ¢y < ||f — gl| 1 - O

Proof of Proposition 5: We will denote

u(r) = Gp (f) (),
v(z) = Gp(f+g)(z), (19)
F(x) = / f(s)ds.

Since p > 2 we have that -5 <1 holds and we may use (see Lemma B) that
(a—l—b)ﬁ g < bt for all a,b>0.

Indeed, for 0 < F'(x) :

& (F (2) + 29l ) = ¢, (F (2)) =



= (F () + 2llglp) 7 = (F ()77 < @llglly) ™
for =2||g||;. < F(z) <0:
O (F () +2 gl ) — & (F (2) < 2(2 gl )7 5
and for F (z) < ~2]lg]| . :
oy (F (x) + 29l 1) = & (F () =
= (=F (2) = 2|gllps + 2/lgll )77 — (—F (2) — 2||gll )77 <

1
< 2|lgllg)7T .
Then we have
o' (z) = (x) =

— o P+ [ ods—cpber) o (Rl <
(by Lemma 7)

<" (F(2) + gl + llgllp) — 6™ (F () <

1 =
< 2(2[lgllp)7T < 4llgllz"
In a similar way one obtains the estimate from below. Together they imply
_1
0" () — ' (2)] < 4llgll7:" -

a

Proof of Proposition 6: We will use u,v and F as in (19). Now we have p%l > 1

and hence ;%’1’ > 0. In the estimate from above we apply that for a,b > 0 (see Lemma
B):
1 1 1 2—p 1
(@ +b)rT —ar T <251 (aﬁb—l— bﬁ) .

Indeed, for 0 < F'(t) we have

& (F () +2]gll ) — o™ (F (1) <

1 2-p 1
<277 (2llglls (F (1) + 2llgll)77) <



2 2-p P
<27 (P O)FF Lol + 10157 (20
For F'(t) > 0 we can use (46) from Lemma B to find that for any 6 > 0

2— _ 2=p _ -1 1
(F @O < (07 gl ™ + (07 glls) ™ (F @) (21)
Since F'(t) > 0 for x < xy we get by (20-21) that

v(z) —u(z) <
= /_i (6 (F (8) +2lgll 1) — ¢ (F (1)) dt <
<ot [ (@) gl + lET ) <

< 2m/ (5 (F(t))77 + (1+5—ﬁ’) ngz?) dt =

1
= 271 (5 u(x) + (1 + 5‘1%7) lgllze™ (1 + ﬂf)) : (22)
For x > z; we find similarly by using (11) that
v(z) —u(z) <
< 27T (5 u(z) + (1 + 5—ﬁ) lgll ™ (1 — x)) .

Now we will use that f is such that (9) holds. From (12) in Lemma 3 we find that
for z € [—1,x4] :
v(z) —u(z) <

< 25T (5u(a:)+ (1+075%) ngfl(uxf)u(x)). (23)

and for x € [z, 1] :

< 271 (5u(a:)+ (1+075%) ngfla—xf)u(x)). (24)



Combining (23) and (24) yields
v(z) —u(r) < 2T (5 +2 (1 + 5—5—3"%) ngz?) u(z).
)
By setting § = 27—1¢ and fixing € € (0, 1] we find that
2 2—p _ 4 2—p
25T .9 (1 + 5‘5) < 2 P et
which shows

G, (f +9) (x) — Gy () () < ( P ng;ﬁ) G, (f) (@).

Set m = ||G), (f)]|, - Without rescaling we find

G (7 +9) @) -Gy (D =m (6, (L) -6, (5 ) @) <

mp—1 mp—1
_1
Sm(€+2<pfl>§a‘f’_:‘? ; p_l)Gp( ; )(:B)Z
mpP~—Lll mp—1
_1
—a 2 |lgllpy’
< le+20-0e vt ——2_ | G,(f)(x)
Gy (Dl | "

which completes the estimate from above.

For the estimate from below we use that for a,b > 0 (see Lemma B) holds:

) . 1 2— 1
inv o _ 4inv > p—1 =1
i (a— b) — i (a) > p_1<ba_2+b )

which implies instead of (20) that

& (F (1) = 2lgll2) — o™ (F (1) =

271 2y .
z ——— | (E@®) gl +llgllz ) -
p
We may continue as in the part where we estimated from above and since
1
2r-1 907
< zp-1

p—1

we find (15).

10
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5 Positivity for the auxiliary system

Lemma 8 There exists Ay, > 0 such that for all A € [O, )\;) the operator T}, » defined
in (8) satisfies for all f € C'[—1,1] :

f>0="T,,\(f)>0.
Remark 6: In the proof we will obtain rough estimates from below for A7. We find

A
A

(3%)1)_11 for p> 2,
(%)F for pe(1,2).

(AVARV]
C»—‘n|,_. N

These estimates for A* are rather small. For p = 2 one finds A\j = 3.

Remark 7: The number )} is estimated from above by (A1,p)” where Ay, is the first
eigenvalue of the Dirichlet problem for the p-laplacian:

{_APSO = Agp(p) in (=1,1),

e =0 on {—1,1}. (26)

Let @1, denote the first eigenfunction of (26). For A > (\;,)° = (%”)27), with 7,
defined in [5], one uses f = ¢, (1) to find a non-positive u = T, x (f) . Indeed one
finds ,

u= 6" (Al = A) Ap) 1

From [5] one can obtain
m=E)" )T L) D)) (27)
+ 2% = 1 and I' is denoting the usual gamma function. For comparison:

L —6.088... .

.
16

where

(A1)

|| SR

Proof for p > 2: For p > 2 we have by Proposition 5 that

HTp,A (f) - Gp (f)”cl <

<4|AgpoGyro oGy (f)HZlTl =4 AT [|Gpo ¢y o Gy (f)|ppr <
<4 (2077 [|Gpogpo Gy (f)llen <
(again using Proposition 5)

<16 (2077 [[dpo Gy (N5 =16 2N 7T |Gy ()]l s <

11



<16 (4N7T (|G, (f)]]

oo *

We may assume that (9) holds. Then with A € [O, : (3%)2’_1) we find for x € (—1,1)
that

Ton () (2) = Gy () () 2 = (L= 2D [[To 0 (F) = Gp (Nl >
> =3 (1= 2D IGy (Hllo = =5 (1 = |z]).
Hence, using (12), we find for = € (—1,1) that
Toa (f) (@) > G, (f) (x) = 53 (1 = |z]) > 0.

The case 1 < p < 2: Again we assume that (9) holds. We find by (16) that
Ton () (2) = Gp (f) (2)] <

< (€+2ﬁ5_’2’%€ [App 0 Gp o ¢y 0 Gy (f)”?) Gy (f) (2) <

< (e 4207 TGy 06,0 Gy () ) Gy () (2) = ()

By Holder’s inequality we have (p%l > 1) that
|Gy o ¢p (W)l = sup

z o
e[-1,1] /_1 " (/t bp (w (s)) ds) dt' <

1 Ty
< / / jw ()P ds
—1 t
1 2 p Ty
g/ 2m/ o (s)] ds
—1 t

Hence we may continue by
4 2 _2-p . _1_
() < (e 4257 P A6, (D)) G, () (@) <

p—1

dt <

dt < 2777 ||w]] (28)

< (e 42w FT I ) 6, (1) (0).

4
Take € = % We have for A € [O, % (%) P‘l) that
Tp,/\(f)_Gp(f) > _Gp(f)
and hence that T}, y preserves positivity. O
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6 A positive solution for the main system

Existence of a positive solution follows by an application of Schauder’s Fixed Point
Theorem. Let us denote

0,Gp (f)] ={ueCy[-1,1];0 <u(z) <G, (f) (z) forall x € [-1,1]}.

Lemma 9 Let f € C[—1,1] with f > 0 and X € [O, )\;) with X as in Lemma 8.
Then (1) has a positive solution (u,v) .

Proof. Let the operator S, s be as in (4). By Lemma 8 we find that
Spas ([0, Gy (H)]) € [0, Gy (F)]-

Since [0, G, (f)] is a convex set in the Banach space C'[—1,1] and S, 5 s is compact,
Schauder’s Fixed Point Theorem gives the existence of a solution w in [0, G, (f)].
From

Spot ([0, Gy (N)]) TG (f = Adp 0 GpodpoGy(f)), Gy (f)]

it follows that « > 0 (and hence v > 0). 0

Lemma 10 There exists A} such that for all X € [O, )\;) , feCl=1,1] with f > 0,
and every solution (u,v) of (1) we have

3Gy (f) (2) S u(w) < Gy (f) (o). (29)

Remark 8: Again we do obtain some rough estimates from below, namely A >

B 1
1 (6i4)p ! when p > 2, and A3 > - (%)P—l when 1 < p < 2.

Proof. We assume (9). Note that u satisfies
w=G,(f = AdpoGpody,(u). (30)
The case p > 2. We find by using (14) that
u(z) = G, (f) ()| =
=[Gy (f = Agp o Gpo ¢y () () — Gy (f) ()] <

<4 N (1—|z])|[ppoGpody (U)Hf <

13



<4 (2077 (1—|a]) [ ¢po Gpo 6y (w)|TT <
<4 207 (1—2]) |Gy o by ()]l <

(now use (13) with f = 0)

<16 N7 (1—|a]) 16, (W)l|7" =16 (A7 (1 — [a]) Jull 1 <

1

<16 (407 (1= |2]) Jull -
And hence by (12)

[u (@) = Gy (f) (@) <32 (N7 [lull, Gy (F) (). (31)

Take \ < 1 (6%1);;—1 . It follows that (we assume (9))

lullo < NGp (Nloe + e = Gp (Nl <1+ 5 llull

implying ||u||_, < 2. Then (31) shows that
u(@) = (1= 3 llulle) Go (f) (x) 2 0 (32)

and

u(@) < (1+ 3 llulle) G (f) (2) < 2G, (f) (). (33)

But for v > 0 we find by (30) and the maximum principle that v < G, (f) holds.
Hence |Jul|,, <1 and from (32) we have (29).

i. The case 1 < p < 2. Now ﬁ > 1. We obtain by (16) that

0 (@) = Gy (1) ()] = |Gy (f — Ay 0 Gy 0.6 () (2) — G () ()] <
< ( £ T AR 9,0 Gy 0 6y <u>r\§1) G, (f) () <

< (e 42T T E R 6,00, W) G () (@) <
(using (28))

LQ"'L _2-p 1
< (g—|-2(p—1) p=loTp=1 \p—1 HuHLl) Gp (f) (3;) <

14



< (427 T AR Jull,) G, () (a) (34)

1

4 2 -p 1
Fixe = i and take A\ € [O, 3% (%)P 1} which yields 9G-0? T T N <
Then

1
[ulloe < llu=Gp ()l + 1Gp (f)lle <
< (3 +ilulle ) 1G (Nl < §+ 7 llulls
and we find that |[uf] _ < 2. If |u/l, < 2 then we find from (34) that
[u(z) = Gy (f) (@) < (54 73) Go (f) (2) = 3G, (f) (@)

Hence we have

3Gy (f) (2) < u(x) < 3G, (f) (@)
If w > 0 then u (z) < Gp, (f) (x) which implies that ||ul| <1 and shows that

u(2) = G, (f) (@) < (3 + 1) Gp () () = 3G, (f) (2).

The estimate in (29) follows. 0

Proof of the main result. Set A\, = min ()\;, )\;) . The lemmas 9 and 10 give the

result of the Theorem 1. O

7 Some remarks on uniqueness

Uniqueness for the p-laplacian is in general much harder to prove. We recall that for
the Dirichlet problem —Aju = A, (u) + f with p > 2 and 0 < A < A, ; there are f
(with sign change) such that there is no unique solution. This in contrary to the case
p = 2. See the paper by Del Pino e.a., [5].

A similar problem appears for systems. In the case of the cooperative system that
is studied by Fleckinger e.a. in [2], uniqueness of the positive solution has not been
shown. And also we are not able to prove that there exists a unique solution for the
problem we study. The only rather incomplete result we obtain, is the following.

Proposition 11 Let p > 2 and assume that X € [0, \,]. Assume that f € C'[-1,1].
There cannot exist solutions (uy,v1) and (uz,vs) such that either

{z e[-1,1];u1 () =uz (z)} or {z €[-1,1];v1 (z) =ve ()} (35)

18 finite.

15



Proof. We will proceed by contradiction. Suppose that there exist two solutions
(u1,v1) and (ug, v2) with both the sets in (35) being finite. Let us denote U = uy — us
and V = v; — vy. Note that U,V € C'[-1,1].

i) U cannot be of fived sign. Suppose that u; > us. Then the maximum principle
used for the second equation of (1) implies that v; > ve. The maximum principle used
in the first equation shows that u; < us, a contradiction. Similarly one finds that v,
and v9 are not ordered.

We will study the set of zeros of U (and of V') where a sign change occurs. Let us
denote

Zy = {—1, 1} U {Oé S (—1, 1) ;Ve > 0 dxq, 2o with
a—e<m<a<zry<a+te
such that U (x1) U (x2) < 0}
and similarly Zy .
it) Between two consecutive zeros of U, the function V' has opposite sign some-

where. Let a1, as € [—1,1] with oy < g denote two consecutive zeros of U. Without
loss of generality we may assume that U = u; — us > 0 on (aq, as). We find that

—p (u))' + by (up)" = =X (d (v1) — by (v2)) .

Multiplying both sides by u; — us we obtain, after an integration by parts and using
the fact that ¢, is strictly increasing, that

o< [ " (60 (1) — 8y (1) (e — u) i =

1

[ oY 6y ) (1 = ) =

1

= [ 0 0) = 6, (02) a1~ )

1

Since ug —ug > 0 on (a1, ap) we find that there is some x € (aq, az) with ¢, (v1 (z)) —
op (v2 () < 0 and hence V' (z) = v () —v2 () < 0.

ii1) Between two consecutive zeros of V., the function U has the same sign some-
where. The argument is similar as above. Let 3; < (32 be two consecutive zeros of V.
We use

—®p (Ui)/ + ¢p (Ué)/ = ¢p (u1) — ¢p (u2),
multiply by v; — v9 and integrate by parts to find

B2
/ (¢p (u1) — Op (u2)) (v1 — v2) dz > 0.

16



iv) Elements of Zy and Zy keep alternating. Set
Zy = {oi=0,1,2,..},
Zy = {Bii=0,1,2,...},

with
-1 = <o <ay<...

-1 = ﬂ0<ﬁ1<ﬂ2<...

and suppose without loss of generality that
signU = (—1)" on (o, i) - (36)

Note that by i) both Zy and Zy contain at least three elements.
First assume that

signV = (=1)" on (8, Bi41) (37)
which implies with 4i) that
—12502040 <ﬁ1 < oq. (38)
We will prove that
ﬁi—l <o < ﬁz <o <1 (39)

implies that there exist 3;11 and ;11 with
Bi <a; < Biy1 <1 < L (40)

For i =1 (39) is satisfied by ¢) and (38).

Since (;, o < 1 there exist §;11,a;41 < 1. Now suppose that (40) does not hold.
Then either o; > (11, or Bix1 > i1, or o <fFiy1 < a1 = 1. Note that we will
have §; < a;. '

If a; > Biyq1 we have o; 1 <f; < Biv1 < . It follows that signU = (—1)1_1 =
—signV on (f;, Bi+1) which contradicts ). '

If ﬁi—kl Z (678N then we have ﬁz S o < Qi S ﬁi—kl implying that signU = (—1)Z =
sign V on (o, a11) which contradicts ).

If o <ﬁi+1 <Oiy1 = 1 then there exists ﬁi+2 and «; < ﬁi—kl < ﬁi+2 < Qjp] = 1,
and again a contradiction by ).

We have proven that (39) implies (40). A similar argument, with «; and [
interchanged, holds when we assume that

sign V = (=1)'"" on (8, Bi11) -

iv) Finitely many zeroes isn’t possible. The previous argument shows that Zy or
Zy cannot have finitely many elements. Hence U and V' have at least infinitely many
zeros, a contradiction. O
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Remark 9: We cannot prove uniqueness when for two solutions either u; — uy or
v1 — v2 has an infinite number of zeros. Hence there is at least one accumulation point
& of zeros, both of u; — uy and v1 — va. As a result (uq,v1) and (ug,ve) satisfy the
same initial value problem at &. We may rephrase the system of differential equations

to
2 -t
u/ — ¢ZTL'U Z7
W= =0, (w), )
o= g (w).

If the right hand side of (41) is Lipschitz at &, there is a unique solution to the initial
value problem. Since we have proven that «' and v’ are nonzero at the boundary the
right hand side of (41) satisfies the Lipschitz-condition at the boundary for p > 2.
Hence in that case no accumulation of zeros of u; — ug (or vy — vy) can occur at
—1 and 1. Similarly, for p < 2 such an accumulation of zeros can only occur at the
boundary since the Lipschitz-condition for (41) only fails when u = 0 or v = 0.

A Appendix: the strong maximum principle

The strong maximum principle in one dimension is a straightforward exercise. For
the sake of easy reference we state and prove it.

Proposition A Letp € (1,00). If f,g € C[—1,1] with f < g and f # g, then there
is ¢ > 0 such that for all x € [—1,1] we have

Gy (9) (2) = Gy (f) () 2 (1 = |z]). (42)
Proof. Set u =G, (f) and v = G, (g) and note that u,v € C'*' [-1,1] . We also define
h(z) = ¢p (V' (2)) = ¢p (v ()

Since b’ = f —¢g < 0 it follows that h is decreasing. Since u # v and u (x) = v (z) =0
for |z| = 1 there exists an extremum point for u—v, say £. Since v’ (§) = u’ (§) implies
h(€) = 0 one finds that A(—1) > 0 and h(1) < 0. These inequalities are strict:
h(—1) = 0 would imply A = 0 on [—1,&] and hence u (§) = v (£), a contradiction.
One finishes by observing that signh = sign (v — /). O

B Appendix: some inequalities

We have used the following elementary inequalities.

Lemma B For all a,b > 0 we have:
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. ifp>2

(a+0b)7T < amT 4 b7 (43)
i ifl<p<2:
6 (a+b) = 95 (@) < 2777 (b art 4577 ), (44)
inv inv 1 2-p 1
6 (a) = 0" (a = b) < 54 (b vt 4677, (45)
2-p 2-p .
ar-1 <br-1 407" arT. (46)
Proof. We will prove the last three. Hence we have that ;;%1 > 1. First we assume

that b < a and denote z = 2. Since x € [0, 1] we find that (44), (45) follow from
(1+2)77 — 1< 277g < 2771 (a:+a:ﬁ) for 0 <z <1

respectively

(1—:5)#—12—2)%1:52—1%1 (.CB—}-.CBIﬁ) for 0 < z.

If b > a then

Oy (a+b) = ¢ (a) < 6" (a+b) < 27 Tb7T

and ' ' ) ) )
o (a—0b)— ¢ (a) = —(b—a)pr T —arT > —brT.

p p

Inequality (46) is immediate by distinguishing a > b and a < b. a

Acknowledgement: We would like to thank the referee for a shorter proof of Propo-
sition A as well as for some comments that improve our presentation.
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