POSITIVITY PROPERTIES OF ELLIPTIC BOUNDARY
VALUE PROBLEMS OF HIGHER ORDER

HANS-CHRISTOPH GRUNAU{ and GUIDO SWEERSY

tFachgruppe Mathematik, Universitat Bayreuth, D-95440 Bayreuth, Germany; and
1Vakgroep Algemene Wiskunde, Technische Universiteit Delft, Postbus 5031, 2600 GA Delft, The Netherlands.

Key words and phrases: Comparison principles, Green function, Poisson kernel, Hopf lemma.

1. THE PROBLEM

In second order elliptic equations, linear as well as nonlinear, maximum and comparison principles
have proved to be extremely powerful and efficient devices. So, for a better understanding of higher
order elliptic equations (as e.g. the clamped plate equation or quasilinear curvature equations) it is
an obvious step to investigate to what extent similar results do exist there.

As the simple polyharmonic function @ — —|z|*> demonstrates, strong maximum principles are
obviously false in higher order elliptic equations. But it is reasonable to ask whether in the Dirichlet
problem

Lu= fin Q,

o \! (1.1)
<—$) w0 = |0 for j =0,...,m—1,
positive data yield positive solutions. Here 2 C R" is a sufficiently smooth bounded domain with
unit outward normal v.

We only consider operators L, whose principal part is the m-th power of a second order elliptic

operator:

Lu= |- Z aij(x)m u+ Z bo () D%u. (1.2)
i,j=1 v la|<2m—1

The assumptions on the coefficients will be specified when needed. We use the multi-index notation
@
D* =1, (%) , a € Nj. We want to emphasize that the Dirichlet boundary data (1.1.b) prevent

us from writing (1.1) as a system of second order elliptic equations, even if L is simply a power of
second order elliptic operators. As far as we know nothing is known about positivity for general
elliptic operators of order 2m.

Numerous counterexamples (see e.g. [1-9]) show that there is in general no affirmative answer to
our positivity question. For detailed remarks on the context and the history of this problem we refer
to [10].

So the appropriate question is as follows: Are there suitable conditions on the operator L, the
domain €2 and choices of boundary data to be prescribed homogeneously (¢; = 0 for certain j’s) such
that positive data yield positive solutions?

In Section 2 we briefly quote results from [11] on the right-hand side. In the present note we
focus on the role of the boundary conditions, see Sections 3 and 4.



For applications of positivity results to higher order nonlinear equations see e.g. [12-15].
2. THE RIGHT-HAND SIDE

In 1905 Boggio [16] studied the prototype problem
(=A)™u = fin B,

o J
<8_> ul0B=0for j=0,...,m—1,
v

(2.1)

where B C R™ is the unit ball. By calculating explicitly the corresponding Green function G, , he
showed that this problem preserves positivity:

0£f>0inB = wu>0inB.

Except a related paper by Hedenmalm [17] no further affirmative result in this direction (e.g. for
other domains than B or other operators than (—A)™) has been shown up to now.
Basing on Boggio’s formula [16, p.126]
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Gran(,y) = knlt — y[27 " / W2 1) Lyl "y 2.y c B; (2.2)
1

‘Iw\y—ﬁ

m n a known constant, the present authors [11, 10] have proven a perturbation result with respect
to positivity.
We fix some p > 1. For existence and regularity we refer to [18].

THEOREM 2.1. There exists g9 = g9(m,n) > 0 such that the following holds.
We assume,

i. if n = 2: Qis a C*™7-smooth bounded domain. There exists a surjective mapping g : B — €,

€05 [1ballcom) < €0 for |af <2m, ie. Lis close to (—A)™.
i if n > 3: Q= B, aj; = 6ij and |[bal| o) < €0 for [af < 2m.

Then for every f € LP(Q) there exists a solution u € W?2™P(Q) N WP (Q) to the Dirichlet
problem (1.1) with ¢g = ... = ¢,,—1 = 0. Moreover, if 0 # f > 0 then the solution is also positive:
u>0in Q.

3. THE BOUNDARY VALUES, I

In this section we are interested in the role of the Dirichlet datum ¢,, 1 of highest order, while
the other boundary data are prescribed homogeneously: ¢y = ... = ¢p,_o = 0. It seems that this is
the only choice of boundary values for which positivity results analogous to Theorem 2.1 do exist. In
Section 4 we will comment on the role of the Dirichlet datum of lowest order in biharmonic boundary
value problems. There we will have only a relatively restricted perturbation result.

THEOREM 3.1. There exists g = gg(m,n) > 0 such that the following holds.
We assume,



i. if n = 2: Qis a C?"*27-smooth bounded domain. There exists a surjective mapping g :
B — Q, g € C*"*+2(B) such that ||g — id||02m+2(§) < &9. Moreover ||a;; — 5ij||02m+1,7(§) < gy,
[ball e @y < €0 for |af < 2m.

ii. if n > 3: Q= B, a;; = 6;; and ||ba||c|a‘(§) < g for |a] < 2m.

Then for every ¢, 1 € C°(09) there exists a solution u € C™1(Q) N VVIQUZW (Q), p > 1 arbitrary,
to the Dirichlet problem (1.1) with f =0, g = ... = @2 = 0. Moreover, if 0 # ¢,,—1 > 0 then
the solution is positive: u > 0 in €.

Proof. For existence and regularity of the solution we refer to the maximum estimates of Agmon [19]
and to the LP-theory in [18].

First we consider the case @ = B CR", n > 2, a;; = é;;. Due to the assumption that [[ba|| o1l (5),
|a| < 2m, be sufficiently small, we know that the Green function Gy, ,(x,y) of the Dirichlet problem

Lu= fin B, (%)J ul0B =0 for j =0,...,m— 1 exists and is sufficiently smooth with respect to y.

If oo = ... = @m_o =0, then the Poisson kernel corresponding to ¢,,_1 is as follows.
A;n/2GL,n(:1?,y), if m is even,

3.1

‘a%/Az(/m_l)/ 2Grn(e,y), if mis odd, (3.1)

x € B,y € 0B. Moreover from [11] we know that G, ,, behaves like the Green function Gy, of
(—A)™, if g9 is small enough:

1
EGm,n(:pay) S GL,n(xay) S CGm’n(.’L', y)a fL',y € B
The Green function Gy, ,, is positive [16] and vanishes on 0B precisely of order m. That means for
fixed € B and y — OB one has:

2 (1= 1g)™ < Gne,y) < Coll = )™

T

With Taylor’s formula and the homogeneous boundary conditions of Gy, this yields the positivity
of the Poisson kernel (3.1) for z € B, y € 0B.

To show the more general claim in two dimensions n = 2 we apply the same procedure as in
[10], where the corresponding step from lower order perturbations to highest order perturbations
has been carried out for the right-hand side. The essential devices are conformal mappings, their
characterization by means of Green functions for the Laplacian and reduction to canonical form.

If m =1 we recover a special version of the well known strong maximum principle. We have also
a “dual” result which could be viewed as generalization of the Hopf boundary lemma.

THEOREM 3.2. There exists g9 = g9(m,n) > 0 such that the following holds.

We assume that (2, a;; and b, satisfy the smoothness and smallness conditions of Theorem 2.1.
Let f€C%Q), o1 =...=@n 1 =0and let u € W?™P(Q)NC?*™1(Q), p > 1 arbitrarily large, be
the corresponding solution to the Dirichlet problem (1.1).

Then, if 0 £ f > 0, we not only have that v > 0 in €0, but furthermore, that (—a%)mu > 0 on
0.



Proof. As above we first assume that Q@ = B C R", n > 2, a;; = 6;;. Let G, denote the
corresponding Green function:

u(x) = /B Gra(r.y)f(w)dy, =€,

(%)mu(m) -/ (— aiw)mGL,n@,y)f(y) dy, ©€0B.

The continuity of the coefficients b, ensures the necessary differentiability of G, ,, with respect to .
Next we follow the proof of Theorem 3.1: For every y € B, G, ,(.,y) vanishes precisely of order m
on 0B. Hence

<_8(Z > Grn(z,y) >0forx € 0B,y € B.

The two dimensional result again follows by the same reasoning as in [10]. [ |
4. THE BOUNDARY VALUES, II

As mentioned above positivity results with respect to boundary values other than ¢,, 1 cannot
be expected and are even false in general. But still something can be done in fourth order equations
with respect to the lowest order datum ¢g.

To begin with we consider the prototype problem (clamped circular plate)

A%u=01in B,
ou (4.1)
u|E)B = &0, %K)B = 0,

where B C R™ again is the unit ball. The corresponding Poisson kernel, which we denote by K,,,
U,({E) = 5 Kn(xay)SDO dW(y), T e B)
JOB

can be calculated from (2.2) by K,(x,y) = %Angm(m‘,y). An explicit expression for K, is also
given in [20, p. 34]:

1 (1—Jz?)? 2
Kn(fﬂay)=ﬂm{n(1—$'y)—(n—2)|x—y| }, xeB, yedB,

wy, denotes the surface area of the unit ball. If n > 5 then K,, changes sign, but if n < 4 we have the
following estimates.

LEMMA 4.1. For n <4, x € B, y € 0B we have K, (z,y) > 0. Moreover, on B x 9B there holds,

ifn=1,23:
<o —y[ A= [a))?,
Kn(z,y) { . ) (4.2)
= o —y| (1= Jz])7,

and if n = 4:
Kn(x,y) ~ |z —y|70(1 — |z])®. (4.3)

For f,g: M C R¥ — Rt we have used the notation:

frg & 3C>0YzeM: éf(m)gg(m)g(}’f(m),
fRg & IC>0VeeM: f(x)<Cg(x).



Proof of Lemma 4.1. If n < 3 the claim follows from %|x —yP<l—z-y=y-(y—2a)<l|ly—a| If
n = 4 we have Ky(v,y) = wy (1 — |z|?)3|z — y|C. ]

We observe that we have a mild degeneracy from below for n = 1,2, 3, a strong degeneracy from
above and below near 0B for n = 4 and change of sign for n > 5. We believe that also in the
perturbation results above (right-hand side and Dirichlet datum of highest order) the transition to
change of sign occurs via a degeneracy on the boundary.

Here we also want to perturb the prototype (4.1). As can be seen from [11], cf. also the references
therein, for this purpose “3-G-type” results are essential. In this direction we have the following.

LEMMA 4.2. Let n € {1,2,3}. On B x 9B x B we have:

{1, if |o| <3 —n,

|D§‘G27n(m,z)|Kn(z,y) =<
|z — 2Pl oy — 2Pl i o) > 4 — .

K (x,y) - (44

Remark. For n = 1,2,3, |a| < 2 these estimates are uniformly (in x,y) integrable with respect to
z € B. If n = 4 one obtains estimates for the quotient in (4.4) with ﬁ as a factor. Due to this
unbounded factor we are not able to prove perturbation results like Theorem 4.3 below for the case
n=4.

Proof of Lemma 4.2. To simplify notation, set d(z) := 1 — |z| for x € B. We refer to the estimates
for Gy and |D*Gp, | in [11, Proposition 2.3 and 2.4]. Moreover we use the technical Lemma 3.2
of [11]. We observe that y € 9B and that in particular d(z) < |y — z|.

The case: n=1,3 and |o| <4 —mn, orn=2 and |a| <4 —n=2.

Here we use (8) of [11].

_n _n_jal - d(@)™/2d(z)"/? d(z)?
|D§‘G27n(:p,z)|Kn(z,y) . d(m)2 2d(z)2 5l |m1n{17 ( )|x—z?") } (=)

lz—y|" !
K, (z,y) - d(x)?
lz—y["
" " d ﬂd n
< d(a)"3d(2)"~5 " min {1, %} [y =2l (= 2" + by~ 2I")

< d(2) Ny — 2 d() Bd(z)t R (%) gt

= d(2)" ol — 2| ()l — 2 <y 2Pl

The case: n =2 and |a| =4 —n = 2.

d(x) . d(z)? d(2)?
|D2Gop(2,2)| Ka(z,y) _ 108 (24 ) min {1, 52 } 25

KQ(xay) N %—Ey%
x x)?
=< d(x)2%d(z)? (1 + %) min {1, |j(_?2|2} ly — 2|72 (Jo = 2* + |y — 2|*)
- d(x)? - - d(x)\* -
=< d(x)2%d(z)? P ly — 2| 73|z — 2|* + d(2x)~2d(2)* <%> ly — 2|1
B i M VR o PR

|x — 2| |x — 2|



+d(2)~%d(2)?

d(z) d(z) -1
|z — 2| d(2)

d(z)*
ly — 2|3
The case: n=1,2,3 and |a| >4 — n.
In particular we have |a| > 2.

d
dz) <z -z |y — 27

ly —z| —

+ly — 2|+ |z — 2

o _ S4—n—|a| i d(x)? d(z)
| DG, 2)| Kn(2,y) ~ |z — 2| mm{l, |x_z|2}

Kn(2,y) - A
2
< da) (el — ol = o i {1, S (o 2y = o)
d 2
< (o) (e = ey - 2
d 2
() 2Pl -y - 2 G
< 2l — 27— 2ty o)
< ’:L,_Z|3—n—|a\ + |y_z|3—n—\a|.

THEOREM 4.3. Let n = 1,2 or 3. Then there exists ¢g = ep(n) > 0 such that the following holds.
If ||ba||C|a‘(§) < g for |a| < 2, then for every g € C1(0B) the Dirichlet problem

APu+ Z bo(x)D%u =0 in B,
jar|<2 5 (4.5)
u
uldB =0,  —5-|0B =0,

has a solution u € W/li’f (B) N CY(B), p > 1 arbitrary. Moreover, if 0 # ¢¢ > 0, then the solution is
positive: w >0 in B.

Proof. For existence and regularity we refer to [19] and [18]. First we assume additionally that ¢g €
C*(0B). Then Knpo(z) := [, Kn(®,y)¢0(y) dw(y) maps K, : C*7(0B) — C*(B) — W*F(B),
p > 1 arbitrary, see [18]. We write A := 3, 5 ba(.)D% The solution u of (4.5) is given by
u = —GonAu + Knpo or (Z+GopnA)u = Knpo. Here T + Gy, A is a bounded linear operator in
W4P(B), which for sufficiently small ey is invertible. Hence

U= (I + QQ,WA)_I ICTL(PO = ICnSOO + Z (_g2,n-/4)i ICnSOO
=1

For ¢ > 1 we integrate by parts. As A is of order < 2 no additional boundary integrals arise. By
means of Fubini-Tonelli we obtain for x € B:

(=Go nA) Konipo(@) = (1 / Gon(w,21) Aey | Gonle1,22) ...
z1€B z0€B

cee Azi,1 G2,n(zi717 Zi)Azi Kn(zi7 y)(p()(y) dw(y)dzz .. le
z,€B ycdB



= (1 / (G 2) / (Gl )

: / (A Ganlinn, ) [ Kalesplen(dotuds...do
z,€EB

yeoB

_ / //63 5 Gan(w,21)) (AL, Gan(z1,22)) -

GQn(zz 1721))K (Zuy) (y)dw( )d(zlv"'7zi)'

Here A*. = Z‘a|§2(—1)‘o‘|Da(ba . ) is the (formally) adjoint operator of the perturbation .A. By
virtue of Lemma 4.2 we find:

e A G 2] (o)
= g2n ) Kol )‘ = ./(9B./B ./BKH( ) K, (x,y)
_‘Azszm«(’Zle?)‘ Kn(227y) )
Ky (21,9)
A Gon(zio1, 2 2,
Rt e ‘y)K D o) d, .., 25)dly)
< (@) [ Kuelen(s) doty) = (Cono) (o) (o)

The constant Cy = Cy(n) does not depend on i. If g = g9(n) > 0 is chosen sufficiently small, we
come up with

1
u > c Krneo > 0. (4.6)
The general case ¢y € C1(OB) follows from (4.6) with help of an approximation argument, the
maximum estimates of [19] and local LP-estimates [18]. |
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