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Abstract

Elliptic equations such as —Au = f and elliptic systems with cooperative
coupling are known to preserve positivity under appropriate boundary condi-
tions or growth conditions near co. Here it is shown that some elliptic systems
on RY with small noncooperative coupling still have a restricted uniform pos-
itivity preserving property similar as in bounded domains. The proofs rely on
optimal estimates for the Newtonian potential with weigths and on correspond-
ing 3G-type theorems.

1 Introduction
Consider the system

—Au = f—pavw on RV,
—Av = bu on RY, (1)

lim, oou(r) = limgv(z) =0,

with 4 € Rt and N > 3. With appropriate conditions on a,b and f we will prove the
following:

There exists . > 0, depending only on a and b, such that
for all p € [0, p.] we have

f>0=u>0.
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For © > 0 and for example a,b > 0 the system is noncooperative and does
not satisfy the conditions in [3]. Note that the system in (1) is cooperative (or
quasimonotone) for 0 # a,b > 0 if and only if u < 0. (Cooperative is also known as
quasimonotone. )

On smooth bounded domains in RY it has been shown in [9] and [12], using
the so-called 3G-theorem of Cranston, Fabes and Zhao [2], that small noncooperative
coupling does not destroy the uniform positivity preserving property whenever f > 0.
A positivity preserving property that depends on f, both for (1) and for the problem
on bounded domains, can be shown by a perturbation argument in x. But for such a
result the critical number p. will depend on f. In this paper we will show that there
is a bound g, > 0 up to where positivity is preserved which does not depend on f.
Such a uniform type of result can be used in semilinear systems.

As a corollary of our result we find a positivity preserving property for a nonho-
mogeneous biharmonic equation which seems to be of independent interest.

We finish with some remarks on the proofs. As in [12] we use two-sided pointwise
estimate for the solution operator G (z,y) (here the Newtonian potential). Instead
of separately estimating the behaviour for G (z,y) for |x — y| — 0 and =,y — OS2, we
have to estimate G (z,y) for |z —y| — 0 and |z|, |y| — co. In general we need, next
to smallness in an appropriate sense, growth conditions on a and b near co.

The spaces that we use come from a paper of Kozono and Sohr ([7]) and also
appear in [1]. The existence follows through the solution operator for the equation
that is used by Weinberger in [14]. Positivity of the solution is a result from the
approximation of the solution with the Green operator, for which it is possible to prove
the positivity preserving property by pointwise estimates. Positivity of this Green
operator is induced by the positivity preserving property of an auxiliary system.

Using Pinchover’s ([10]) equivalence relations for Green functions, one can extend
the results obtained here to a more general class of elliptic operators.

2 Main result

First we will fix the appropriate spaces. As in [1] we define the space D', which will
contain the solutions u, in the following way.

Definition 1 D? = CSO(RN)H'”E, where the closure is with respect to the energy
norm defined by

lullf, = [, 1Vl da.
Remark 1. In [7, Prop. 2.4] it is proven that
D' = {u e L¥=(RY); |Vu| € L*(RY)}.
Hence D2 is a reflexive Banach space and is continuously embedded in L¥~2 (RV).

The weight functions a and b will be in the following type spaces.



Definition 2 Let ¢ > 0. We set
LE®RY) = {a(); (v — (1 +]a])* a(2)) € L2RY)},
and
ce(a) = |1+ ) ar O _+ @+ D" a ()], (2)

where a; =max (a,0) and a = ay —a_.
Remark 2. Note that LF(RY) c LP(RY) whenever p/ > N.

The main result of the paper is the next theorem.

Theorem 3 Let a € LP(RY) and b € LP(RY) with £y, £, satisfying
by+ Ly >4 and by, by >0 and €4, 0, > 4 — N. (3)

Then there exists (ing, s, > 0 such that for all f € LI\?_%(RN) and p with

|/’L| S /’LNyeayeb (C[a (a) C[b (b))_l

the system
{—Au = f—pav onRY,

—Av = bu on RV,
has a unique (weak) solution u,v € D2, Moreover,

f >0 implies u > 0.

Corollary 4 Suppose that N > 5 and that a € L(RN) with £, > 4. Then for all
fe Ll‘?_f?(RN) and p with |p| < pne, o (ce, (@)™ the biharmonic equation
(—AYv+pav=f

1S positivity preserving.

Theorem 3 will be proven in the last section. The corollary follows by taking b = 1
and hence ¢, = 0 and ¢, = 1.

In the rest of the paper we will write LP = LP(RY), C5° = C°(RY) et cetera. We
will also denote [jull, = [lul ., and [[ul| o \pe, = [l g + lJull Lo -

3 The equation

In this section we will be concerned with solving

—Au = f in RY,
{ ool )

for appropriate functions f. As usual u € D'? is called a weak solution of (5) if
[ (Vu-Vv — fo)dz =0 for all v € DY2 The integral is well defined for f € Lvie,

RN



3.1 Solution operator by Weinberger
Define the bilinear form A (-, -) for u,v € C§° by

A (u,v) = (u, —Av), (6)

where (u,v) = [ w(x)v (z)dx. Let us also define the bilinear functional
RN

with u and v as above and f € L}
54] we find the following result.

By an application of Theorem 4.1 in [14, page

loc*

Lemma 5 Let f € L™+, Then the value

pr = sup By (v,v)
veC§e
A(v,v)=1

is attained for some v = ¢ in DY2. Moreover, the operator H : L%z — D2 s well
defined by

Hf = (o5, f) b5 (7)

and one finds that w ="H [ is a weak solution of

—Au=f on RV, (8)

2N
Remark 3. Since DY? C L¥-2 the function u = Hf goes to zero near co in a weak
sense. Hence, by Liouville’s Theorem, such a solution is unique.

Proof. In order to apply Theorem 4.1 of Weinberger we have to check the conditions
in Hypothesis 4.1 of [14]. Set V = C§° and let A be defined by (6). Then V4 = D2
The conditions are as follows.

(a) Let w e V. Then (v,w) =0 for all v € V implies w = 0.
(b) For v,w € C° we find A (v, w) = A (w,v) and A (v,v) = |Jv||3 > 0 for v # 0.
(c) The functional v — (v, f) for v € V is bounded in the following way:

(0, A = U vf da| < loll e [IF]], 22 <

<clollgllfll gy = (A, o) | f] PRy

Here we used the continuous embedding of D2 in L¥ 2.

By Weinberger’s Theorem y; is attained for some ¢y € V4 = D2 and u = Hf
satisfies (8) in the weak sense. O



Lemma 6 One finds that H : L¥+* — D2 defined in (7), is a bounded linear
operator.

Proof. For any f € L™+ we have
1/2

1Hfls =16 DI | [ IVosfde| <

2
< Al 2o Nosllza Norlle < en Mgl 1] 220 -

Since ||¢y||,; = 1 the claim follows. O

Corollary 7 If a € LV/?, then with Hof = H (af) we have that H, is a bounded
linear operator from L¥~2 to DY? (and hence on D2).

2N

Proof. Since D'2 ¢ L¥2 and a € L™/? we find that af € L¥+* and hence that we
may use Lemma 5. O

Lemma 8 If f € L¥+ N LN/ for some £ > 0 then Hf € L™. If moreover f € ).
for some v > 0, then Hf (z) € CLY

loc *

Proof. Since f € LV/?*¢ we get by [1, Theorem 3.1] that Hf € L*°. The regularity
result is a direct consequence of [4, Theorem 9.19]. O

3.2 Solution operator by a Newtonian potential

The Newtonian potential (see [4]), or Green’s function on RY,

. 1 2N . - 27TN/2
G(:L’,y)—N(N_z)WN]x Yl Wltth—il_‘(N/2)
satisfies —A,G (z,y) = 6, (z). We define the operator G, : C5° — L} by
(Guf) (@) = [ G,9)a(y) f () dy. 9)
RN

We will prove that for appropriate a and p this operator can be extended such
that u = G, f with f € LP solves

{ —Au=a f on RY, (10)

lim|z| oo u (7) = 0.



Lemma 9 For all € > 0 we have that Gy : <L%+E HL%’€> — L™ 15 a well defined
bounded linear operator.

Proof. Setp1=%—5,p2=%+sand[%+i=1. Then

| Gaplfwldy=ex| [ + [ =y IF@) dy<

weRN lz—y|>1  |z—y|<1
a1 p1
<cy /!l’—y!‘”@*m dy /!f(y)!pl dy | +
lz—y|>1 lz—y|>1
Y L
92 P2
von| [ =yt ay| | [ @ ay| <
lz—y|<1 lz—y|<1

1

a1
r0(2-N)+N-1 dr) ”f|’L%+a+CN YN (/

)
F@(2-N)+N-1 dr) Il x. <
r<l

gcmN(/

r>1

<one (I g + 11 5-) -

Indeed, since we have that ¢ (2—N)+ N —-1< —-land ¢(2—N)+ N —1> —1,
the last step holds. By «x we denoted the surface of the unit ball in RY. O

Lemma 10 Suppose that f € LP with N/2 < p < oo and assume that we have
a € Ly for some £ >2— N/p.

Then u = Gof, defined in (9), is the unique solution in W,2F of (10). Moreover, there
is Cnyp such that

[u (@) < Cwniep ce(a) (L4 |27 |[f]l,  for all z € RY, (11)

where
. N
My, = Min €—2+?,N—2 )

Remark 4. If a is bounded and has a compact support, then one obtains for p > %N :

[u(2)] < Co (1 +[2))*™ |If|, forallz € RN, (12)

Proof. By a Liouville Theorem (see [4, p. 29]) (10) has at most one solution. If the
integral in (9) converges then this u satisfies the differential equation in (10) and is
in WP, see [4, Th. 9.19]. Hence it is sufficient to show (11). Since for 1—1) + % =1 one
has

[ G@waw)fwdy < Ifl, IG @) al,.

6



we will estimate ||G (z,-) a ()],
For |z| < 1 we find that |z —y| > 2 implies |y| < |y —z| + |z] < 2|y — 2| and
ly| > |z —y| — |z| > 1 and hence

6 (@) a ()t = /|Ga:y )l dy <

<evee@ | [ o+ [ |-y )y <
le—y|<2  |z—y[>2

<eval) | [ fa—y® 0y 20 [Ny | <
lz—y|<2 ly|>1
<y ce(a) Mygg, (13)
for some constant My ,, whenever
(2—N)g+N>0and (2—N—-{4)qg+ N <O0. (14)

The first inequality is satisfied since p > %N ; the second one follows from ¢ > 2 — %.
For |z| > 1 we find

G (@) a ()t = /|G:cy y)ldy <
sevel | [ [+ [ [ el )y <
WI<s  ly—el<jlel  Flal<ly—el<zle]  ly—e>2le|
Y>3 ly|>2 Y>3
<evela) | [ 2 May+ [ eyl ® N al dy +
yI<3 ly—=|<}la|
ly|>5
[ Ry [ ey ey | <
Sle|<ly—z|<2e| ly—a|>2]z|
ly|>4 ly|>5
51zl
< & col@) |wwlal® N qylal [ @ N0 gr 4
r=0
3| 00
_|_,-YN|I.’(27N)Q / p—lat+N-1 dr‘l"}/N / T(2—N—Z)q+N_1 dr | <
r=1 r=2|z|
2



(here we use (14))

< i ea) <|xy<”>q + || BTN | G (7 4 V) 4 yxy@Nf)HN) <

2—N—¢ N 2—N
< cr(a) My, (Jo|® 0N o g &0) (15)

for some My, ..
Together (13)-(15) imply

u (@) < ee(a) My, 1], (14" C=52N) for all 2 € R,

O

Corollary 11 Let p; € <%N, oo}, P2 € (%,oo} and suppose that a € Ly® for some

{>2— pﬂl + pﬂz. Then the operator G, : LP* — LP? is bounded, i.e.: there is cn ¢p, p,
such that

1Gafllp, < cneprpe [1F1l, -

Proof. Let p, < oo. Notice that z — (14 |z|)”™ € L2 if and only if mp, > N.
Hence it is sufficient that (6 -2+ pﬂl) pe > N and (N —2)ps > N. For py = o0 it is
sufficient that £ > 2 — pﬂl. O

4 A formal decoupling

4.1 Nonnegative weights

First we will do a formal decoupling by using a solution operator that we denote by
G. Using this operator G we can replace the system in (1) by

{U = Qf—yg(av), (16)
v = G(bu).
The function u satisfies

u=Gf—pGagu)), (17)

or equally

(Z+pGaGbu=gf.

If the power series converges we can use the expression
u=(T+pGaGb)™Gf= kZZO(—uQ aGb)'Gf=

~ (£ (WG ag ™) (T~ uGaGH)GS.

k=0



By (Z + G a G b)™ we denote the (formal) inverse operator. If a,b > 0 the operator

o

Z (uG a G b)* (18)

is positive whenever it is well defined. Hence, it will be sufficient that
T8 =(ZT-pGagb)g (19)
is a positive operator. This operator corresponds with the following system

—Au = f—pav
-Av = bw in RY,
—-Aw = f

u,v,w — 0 for |z| — oo.

(20)

If 7% is well defined we have that the function u in (20) satisfies u = 7,7 f.
Assuming still that all is well defined we get the following integral representation

77f ()= (T —pG aGb)Gf)(z) =
G (z,w) a(w) G (w,v) b(v) G(v,y) dvdw
f(y) dy.

_ / G (1:’ y) 1—u v,weRN

yeRN

G (z,y)

The operator (Z — uG a G b) G is positive if and only if u < M1, where

// G(z,w) a(w) G(w,v) b(v) G(v,y) dvdw
M =esssup 22
a:,ye]RI\II:) G (:17, y)

Next to showing that this operator is well defined we have to show that M < co.

4.2 Indefinite weights
When a or b changes sign the operator inside (18), (G a G b)*, although having an

0
make an adaptation. First we split a and b in its positive and negative parts. Define

Sc = ga+gb7+ga7gb+,

even power, is not positivity preserving (compare with <? _1) ). We will have to

(21)
S, = Ga,Gb, +Ga Gb_,
and note that S,, — S, = GaGb. We replace (17) by
(I —pSe)u=Gf — pSyu. (22)



Note that for p v (S.) < 1, where v (S.) denotes the spectral radius of S., the inverse
of (I — uS,) is well defined and positive. By similar arguments as before and assuming
convergence of the power series we find that it will be sufficient to have positivity of

(T u(I = uS)™ 8.) (I —pS)™ G
or, due to the fact that (I — ,LLSC)mv G=g¢g (I — ,ugc)mv with

S, = a+gb,g+a,gb+g,

(23)
S, = a+gb+g+a,gb,g,

positivity of '
TE = (T p(I = pS)™ S.)G. (24)

I

Note that when a_ = b_ = 0, hence S, = 0 and S,, = GaGb, the definition of ’Z;G in
(19) and (24) coincide.
The relation between u and f is as follows:

inv

u=(T+p —pS)™ S,)" (I—puS)™ Gf. (25)

We recapitulate the needed results. Let ||-|| denote an appropriate operator norm.

o ||uS.|| < 1 in order that (I —puS.)™ is well defined by a series expansion;
positivity of (I — uS.)"™" follows from the Neumann series;

o L‘,u (I — puS)™ SnH < 1 in order that (I + (I — pS)™ Sn)mv is well defined

V a series expansion;

e Positivity of 77 in (24) in order that positivity of (I +u (I — pS.)™ Sn)mv
follows from the corresponding Neumann series.

The bounds for the operator norms above are related with the first eigenvalues.
The bound to get positivity depends on a 3G-type theorem.

5 3G-type theorems

In this section we will show the result that is related to the 3G-Theorem of Cranston,
Fabes and Zhao on bounded domains ([2]).

Theorem 12 Suppose that a € LY with q > %N and

qg<3 for N=3,
q<oo for N=4, (26)
g<oo for N>5.

10



Then there exists ay,y < oo such that

/ G (z,w) fa(w)] G(w,y)

dw < —y|> N 27
G (z.y) w < ang lla|l [z -yl (27)

weRN

If a € L™ N L2 with q; < %N and qo > %N, we find for some By g, 4, > 0 that

dw < Bn,g 0 ||a”Lquq2 . (28)

/ G (z,w) |a(w)| G(w,y)
G (z,y)

weRN

Remark 5. These results imply that for a € L>° N L? with ¢q € [1, %N ) one finds

/ G (z,w) |a(w)] G(w,y)

dw < min (1] — o[ %
G(J},y) W = YN,q,9 ”afHLqu mln( |J; y|) ( )

weRN
with 0 <9 <2and 9 < N —2.

Proof. As before we estimate

Glay) " [ Claw) law)] Gwy) dv =

weRN

N—2 2-N 2N
= ov o=y [ e—wf N Ja()] -y du.

weRN

We distinguish the areas
Ay

Alz{wGRN;‘w—%(x+y)‘§|x—y|},
Ay ={w e RY;|w —§ (z +9)| > [z — y|}.
For w € A; we find that |w —y| < 2|z —y| and |w — 2| < 2|z — y| holds. And

also for all those w we have either |w —y| > 1|z —y| or [w — 2| > § |z — y|. Hence
the following estimate holds and is optimal in order:

en o=y [ e —wP™ Ja(w)] fw -y dw <

wEA]

Na@) do+ [ fw—yP Y le()] dw| (30)
lw—z|<2[z—y| lw—y|<2[z—y|

<y / w — 2

We find that
w— 2™ Ja(w)| dw <

(w—z|<2|z—y|

11



1/p 1/q
< lw — 2| * P qu la(w)|* dw| <

w—z|<2[z—y| |w—z|<2|z—y|
2-N
<eng le—yP ™Ml (31)
whenever ¢ > N/2. By symmetry we obtain the same bound for the second integral
in (30).

We may obtain an estimate independent of |x — y| by proceeding as in Lemma 9.
For ¢y > N/2 and ¢» < N/2 we find:

2=y [ e —wl™ Ja () -y dw <

weAy
<o w—af ¥ o) dot+ [ =y fa@w)] dv| <
|w—a|<2|lz—y| lw—y|<2|z—y|
< ewan ol + g, llallza (32

Note that (32) may be improved for |z — y| < 1 to
2-N
jw—2z|" 7 a(w)] dw <ceng lal o - (33)
|w—a|<2]z—y|
Now we consider the case w € A,. For w € Ay we find

1

Yw—a| <|w-35@+y)| <2lw-al,
Blw—yl <|w—§@+y)]<2w-y
Hence
2=y [ =P Ja(w)] -y dw <
weA;
<clo—y™? [ ™ fo(utd@+y)| dus
|u|>|z—y|
1/p 1/q
<clo—yN? jul 2P gy [ la@) dw| <
|u|>|z—y| weRN
< eng lz =yl Jall, (34)

12



whenever (4 —2N)p+ N < 0 For N > 5 this bound is satisfied for all p > 1; for
N = 3, resp. 4 we need p > 3 5, resp. p > 1. The restrictions for ¢ by (34) are then

respectively
qe[l,3) for N=3,

q €[l,00) for N =4,
g€ [l,00] for N >5,
which shows that for ¢ = N/2 we have
o=y [ el Ja@)] =y dw < ex fal e

weA

Hence the restrictions for (28) follow from (32).
The restrictions on ¢ by (31)-(34) become the ones that are stated in the theorem,
yielding the result in (27). O

As a consequence of the 3G-result we obtain the following result which could be
called a 4G-Theorem.

Theorem 13 Suppose that a € L7 and b € L7, with
by + 0y >4 and Ly, 0y >0 and £y, 0, >4 — N. (35)

Then there exists Cn g, ¢, > 0 such that

// (z,2)|a(2)| G (z,w)|b(w)| G (w,y) dzdw < Cny,u, ¢, (@) ¢, (D). (36)

z,weRN G (17, y)
12 12 12
10 10 10
8| 8 8
6 | 6 6
4| | 4i. 44,
2 o o
2 4 6 81012 2 4 6 81012 2 4 6 81012

Plot of feasible ¢, ¢ for respectively N =3, N =4 and N > 5.

Remark 6. In fact it will be sufficient that a € L?, with ¢ as in Theorem 12, and
b € L with £, > 4 — N/q. Recalling Remark 2 we have L7° C L? for £ > N/q. In
this case the right hand side of (36) will be replaced by cnqs, ||all ce, (D).

Proof. Fix ¢ > N/2. Since L C L% for ¢ > N/q and LF = L* we find that

llall,« <eng, ¢, (@) whenever

l, > N/q if g < oo,
by, > 0 if ¢ = o0

13



Using (27) of the previous theorem we find

(z,2)|a(2)| G (z,w)|b(w)| G (w,y) B
// G (z.y) dzdw =

z,weRN

N G (z, w) G (z,y) B

weRN \zeRN

- (/ G(w)a<z)G(z,w)dz)c:(x,w)b<w>a<w,y)dw<

/ G (z,w) |z —w™ |b(w)| G (w,y)

G dw (37)

< ang llallL
weRN

for all ¢ > N/2.

Next we have to find the LP-character of w — |z —w|* ™7 |b(w)|. We read
N/qg=0if ¢ =00
By an inequality of Hardy-Littlewood, see [13], we have for f,g > 0 that

/f(y) 9(y) dyé/f* (t) 9" (t) dt,

where f* is the decreasing rearrangement of f :

M) = Mz eRN; f(2) >t}
f*(s) = sup{t >0;Af(t) > s},

with A the Lebesgue measure. Applied to positive decreasing functions f, g : Rt —
R+ we find that

[ =y gUyhay < [ (Fe=-0)"@® (90:D)" @) at
RN 0
Since the rearrangement ( f(lz— ]))* does not depend on z, we have

[ (=)@ (a0:D) @ dr= [ (100=D) @) (9(:D) (1) dt =

= [ 140=yD) gy dy

RN

We will use this inequality for

f (|l =yl) = o =y @9 and g (|y]) = (14 [y)) ™"

14



to find that

Jlz =P b ()

<l =2 e @) (41

L1 L —

<flo— -1 e, ) @41

L1 —

q1

<|w / (rQ*N/q ce, (D) (1+r)‘f”)‘“ N ldr | <engpaa o (B)  (38)

r>0

whenever (2 — N/q — {,) ¢ + N < 0. Since ¢ > N/2 there is no singularity in (38) for
r = 0. In order to apply (28) we need ¢, > 2 — N/q and the existence of a number ¢;

such that
N

6, —2+ N/q

The L% bound with g2 > N/2 is obtained without an extra condition. From (39) it
follows that we need

< q < NJ2. (39)

N
ly—24 N/q

which is ¢, > 4 — N/q. Note that ¢ > N/2 implies that 4 — N/q > 2.
We obtain the following conditions. For ¢ = oo we have

< N/2 (40)

ly >0, €, > 4. (41)

For ¢ < oo we have
l,> N/q, t, >4 — N/q. (42)

Let us denote
K= {(x,y) €R*z > sand y > t}.

If N > 4 we find that we may take N/q € (0,2) to obtain that (42) is equivalent with

(Lo to) € | Kyav. (43)
0<¥<2
:
|
o Neeel LT

K13727 (dark grey) and UO<'(9<2 Kﬁ,glfﬁ (medium grey),
with its reflection (igns grey) in the diagonal

15



If N = 3 we find that we may take N/q € (1,2) to obtain that (42) is equivalent with

(Ea,&,)e U KﬁA,ﬁ. (44)

1<¥<2

If N > 5 we may add to (43) the line
(ba, lp) € {(0,8);t > 4} . (45)

We may interchange the roles of a and b, using

G (2,2)|a(2)| G (z,w) [b(w)| G (w,y) _
// G (z.9) dzdw =

z,weRN

_ / / G (z,w) |b(w)| G (w,y) , G(w,Z)!a(Z)IG(Z,y)dz
G (z,y) G (z,y)

z€RN \weRN

instead of (37). Hence we can add the pairs (¢, ¢,) (with ¢, and ¢, interchanged) that
are in the areas defined in (43)-(44)-(45) above. Hence we find

by >1, by>1, Ly+0,>4 if N =3,
€a>07 €b>07 €a+€b>4 if N:4,
EGEO, gbZO, €a+€b>4 if N > 5.

These inequalities are summarized in the conditions of (35). O

6 The auxiliary system
In this section we will show that for appropriate a,b and p sufficiently small, the

operator T, defined in (24), is positivity preserving for f € LN/?7= 0 LN/2t= We
will proceed by several lemmas.

Lemma 14 Let S, and S. be as in (21) respectively (23) with G the Green operator.
Assume that a € L2, b € L with £y, 4y as in (3). Then for

phi= 1 Ongey (colay)ee(b-) + cola—)ce(bs)) < 1

the operator (I — ugc)mv : LP — LP is well defined for all p € (N/2,00]. Moreover
for all 0 < f € LN/27= 0 LN2+% we have

< _ inuv <
0< (I —pS) A

Ggf
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Remark 7. Note that G (I _ Mgc)inv (- /J&:)mv G.
Proof. From Theorem 13 we find that

uGS. = pS.G = pGa.Gbv_G + pGa_Gb. G <

< W COnytoty (Ce,(ag)ce,(b-) + o, (a)ey, (b4)) G < p*G.
Hence S§.G is well defined for f € LP. By a Neumann series we have

<I _ M§c>inv _

=T+ ud Gay (uGb Gay + uGb.Ga )" Gb +

k=1
+1Y " Ga_ (uGb Gay + pGb,Ga )1 Gb, <
k=1

oo

<T+pu (z (;ﬁ)“) (Ga_Gb, + Ga,Gb_).

k=1
The series converges and is hence well defined when p* < 1. Since Z,Ga,,Ga_,Gb,
and Gb_ are positive operators we obtain (Z — uS.)"" Gf > 0. O

Lemma 15 Let S, S, resp. T,% be as in (21) resp. (24) and a € L, b € L with
ly, by as in (3). Then we find that for all p with

0< 1< (Cnaty) " (Ceu(a))™ (g (0) " (46)
and f € LN/?7= 0 LN/2+= that
f>0=>TFf>0.

Proof. From (46) it follows that ;* defined in Lemma 14 satisfies u* < 1. Then this
lemma implies, using S,,G = GS,,, that

(Z—nI—uS)™ 8.)6f =

1 *Q§n>f=
—p

=(Q—MU—M&WWQQJfZ<Q—u1

= (I—,ul —IM* Sn> Gf.

From Theorem 13 it follows that

(I— ul_;/ﬁ sn> Gf >

> (I 1 Onptaty (cea(ay)ee, (b1) + o, (a—)cq, (b)) ) G
1 —p*
1-— 1% CNZ ¢, Co (CL)Cg (b)
= R - gf>o. 47
T 1 Oy (el (0) + e (0 6:0) ) e
In the last step we used (46). O
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7 The full system

First we show that (1) has at most one solution in D2,

Lemma 16 Let {,, ¢y, satisfy (3) and let f € L¥2. Then with CnN .o, as in Theorem
13 we find that if
1] < (Cvitty €2, (@) 2, (b))

the system in (1) has at most one solution in D2

Proof. Suppose that both (u;,v;) and (ug,vs) are solutions of (1). Then we have
Uy, Us € L%,

—A (ug —ug) = pa (v, — vg)

and
AN (Ul — UQ) = b(ul — UQ) .

We obtain by Theorem 13 that
Jur = ] g, = 1G1aGHGa (11— v2)| s, <

< ul € [Gua (vr —vo)ll g, = Il € [y — sl g .
For
] C* = |u| Cneyp, ce,(a) cg,(b) <1
we find u; = us. O

Proof of Theorem 3: Let x> 0. First we assume that 0 < f € LN/2—=n LV/?+=,
By Theorem 13 it follows that

pSGf < p Cn oy, (con(ay)er, (b-) + o (a)cy, (b4)) G f

When
p= 1 Onpaey (Cen(ag)ce, (b-) + co,(a-)eg, (b1)) <1 (48)
we may use Lemma 14 to find that (I — uS,)"™ Gf is well defined and that

1
1—p*

0< (I —pS)™Gf < Gf. (49)

For
W = 1 Oty (e, (as) + o, (a) (o, (b) + g, (b1)) < 1 (50)

Lemma 15 implies that

(Z— (I = pS)™ S.)Gg > 0.

We use g = (I — ugc)mv f, which is positive and well defined by Lemma 14 for p* < 1.
Hence we obtain

(T—n( = uS)™ 8.) (I —pS.)™ Gf =

18



= (T—p(I—uS)™ 8.)G(I-pS.)" f>0. (51)
Note that p* < p**.
The estimates in (49)-(51) show that for 0 < f € LN/?== N LN/%* and ™ < 1
the solution u of (1) is well defined by

w=(T4+p(—pS)™ 8)" (I —uS)™ Gf (52)

and satisfies u > 0. See also the remarks at the end of section 4,
2N 2N 2N
Since L~ +2 N LN/?*¢ is dense in L™+ we can approximate f € L¥+ by f, €

2N :
L¥+2 N LN/, Since we have for f > 0 that ||f — f7j||L13_$2 <|If - anLﬁ_% , We may

approximate 0 < f € L¥+2 by 0 < f, € L%z N L¥/2+ Moreover, since for || as
in the previous Lemma there is at most one solution for (1), it is defined by (52).
By the continuity of the operators involved it follows that u,, — u in DY? with the
sequence {u,} , defined by

inv

Uy = (I + (I — pS)™ Sn) (I — uS)"™ Gfo.
Since u,, > 0 we find uv > 0. O
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