Addendum without Zorn to [DS]

October 16, 1999

Consider

$$\left\{ \begin{array}{rcl} -\Delta u & = & f\left(x,u\right) & \text{in } \Omega, \\ u & = & 0 & \text{on } \partial\Omega, \end{array} \right.$$

with Ω a bounded regular domain and $f \in C(\mathbb{R} \times \bar{\Omega})$. Suppose that $\underline{u} \leq \overline{u}$ are respectively a sub- and a supersolution in appropriate sense. Denote by the set \mathcal{F} all solutions in $[\underline{u}, \overline{u}]$.

Lemma 1 If \overline{u} is a supersolution and $\underline{u} \leq \overline{u}$ is a subsolution then there exists a solution u in between:

$$\underline{u} \le u \le \overline{u}$$
.

Lemma 2 If u_1 and u_2 are supersolutions, then $u(x) = \min(u_1(x), u_2(x))$ is a supersolution.

Lemma 3 The set \mathcal{F} is equicontinuous. The infimum of a totally ordered subset in \mathcal{F} is a solution, that is every totally ordered subset of \mathcal{F} has a minimum.

Proposition 4 There is a minimal solution u_{\min} in $[\underline{u}, \overline{u}]$: for every solution $u \in [\underline{u}, \overline{u}]$ it holds that

$$\underline{u} \leq u_{\min} \leq u \leq \overline{u}$$
.

Proof. By Lemma 21 \mathcal{F} is nonempty. For every $x \in \Omega$ we define $U(x) = \inf\{u_{\lambda}(x); u_{\lambda} \in \mathcal{F}\}$. We will show that $U = u_{\min}$, the minimal solution.

If \mathcal{F} is finite, Lemma 2 implies that the function $\overline{u}^*(x) = \min\{u(x); u \in \mathcal{F}\}$ is a supersolution and Lemma 1 implies the existence of a solution $u_1 \in [\underline{u}, \overline{u}^*]$, that is $u_1 = \overline{u}^* \in \mathcal{F}$ is minimal.

Now suppose that \mathcal{F} is not finite. First we will show that for every $x \in \Omega$ there is $u^x \in \mathcal{F}$ with $u^{x}(x) = U(x)$. Let us fix $x \in \Omega$.

- 1. By the definition of U there exists $\{u_i^x\}_{i\in\mathbb{N}}\subset\mathcal{F}$ such that $\lim_{i\to\infty}u_i^x\left(x\right)=U\left(x\right)$.
- 2. Define a new sequence $\left\{\widetilde{u}_i^x\right\}_{i\in\mathbb{N}}\subset\mathcal{F}$ as follows by iteration:
 - $\begin{array}{ll} i. & \widetilde{u}_0^x = u_0 \text{ for some } u_0 \in \mathcal{F}, \\ ii. & \text{let } \widetilde{u}_{i+1}^x \text{ be a solution in } \left[\underline{u}, \min\left(\widetilde{u}_i^x, u_{i+1}^x\right)\right]. \end{array}$

Note that Lemma 2 implies that min $(\tilde{u}_i^x, u_{i+1}^x)$ is a supersolution and that Lemma 1 gives the existence of a solution \widetilde{u}_{i+1}^x . The set $\{\widehat{u}_i^x\}_{i\in\mathbb{N}}$ is a totally ordered set in \mathcal{F} and hence by Lemma 3 its infimum is a solution. Let us denote this function by \widetilde{u}^x .

- 3. Next let $\{x_i\}_{i\in\mathbb{N}}$ be a countable dense subset of Ω and define a sequence $\{u_i\}_{i\in\mathbb{N}}$ of solutions as follows:

 $\begin{array}{ll} i. & u_0=u_0 \text{ for some } u_0 \in \mathcal{F}, \\ ii. & \text{let } u_{i+1} \text{ be a solution in } \left[\underline{u}, \min \left(u_i, \widetilde{u}^{x_i}\right)\right]. \end{array}$

Proceeding as for the previous sequence one finds that $\{u_i\}_{i\in\mathbb{N}}$ is a totally ordered set and that $u_{\infty}(x) = \lim_{i \to \infty} u_i(x)$ lies in \mathcal{F} .

Since $u_{\infty}(x_i) \leq U(x_i)$ for the dense set $\{x_i\}_{i \in \mathbb{N}}$ and $U(x) \leq u_{\infty}(x)$ for all $x \in \Omega$ we find that $U=u_{\infty}=u_{\min}$.

References

[DS] E.N. Dancer, G. Sweers, On the existence of a maximal weak solution for a semilinear elliptic equation, Differential and Integral Equations 2 (1989), 533-540.