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Abstract. Let Q be a bounded Lipschitz domain in R"™ with n > 3. We prove
that the Dirichlet Laplacian does not admit any eigenfunction of the form u(z) =
o(z') + P(zn) with 2 = (z1,--+,Zn—1). The result is sharp since there are 2-d
polygonal domains in which this kind of eigenfunctions does exist. These special
eigenfunctions for the Dirichlet Laplacian are related to the existence of uniaxial
eigenvibrations for the Lamé system with Dirichlet boundary conditions. Thus, as
a corollary of this result, we deduce that there is no bounded Lipschitz domain in
3 —d for which the Lamé system with Dirichlet boundary conditions admits uniaxial
eigenvibrations.
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1. Introduction and main result

Let  be a bounded Lipschitz domain in R™ with n > 2.
We consider the Dirichlet eigenvalue problem

—Au=~u in ),
{ u=20 on 0f). (1.1)

We are interested in the existence of eigenfunctions w of (1.1) of the

particular form
u(@) = o(a) — ¥ (an) (1.2)
with o’/ = (x1,---,2,_1) € R* L.

In 2 dimensions, i.e. when n = 2, it is easy to see that this kind of
eigenfunctions does exist for some particular domains. It is sufficient to
consider

u(xy, x2) = cos(2mkxy) — cos(2mkxa) (1.3)
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2 Sweers and Zuazua

for any k£ € N in the square domain
Q:{(xl,x2)€R2:|:131|—1<:1:2<1—]x1|}. (1.4)

Our main result asserts that this can not be the case in dimensions
n > 3:

THEOREM 1.1. Assume that n > 3. If Q is a bounded Lipschitz
domain of R™, then the Dirichlet eigenvalue problem (1.1) does not
admit any non-trivial eigenfunction of the form (1.2).

As indicated above, the result is false when n = 2 and (1.3)-(1.4)
provides a counterexample.

The first step of the proof of Theorem 1.1 is to reduce the n-
dimensional problem to the following (n — 1)-dimensional one. Given
any bounded domain w C R" ! n > 3, show that there is no non-
constant solution of

—Alp = in w,

p =1 on Ow,

¢ € C@), (1:5)
—-1<p<1

In (1.5) A’ denotes the (n — 1)—dimensional Laplacian in the variables
x = (‘/L‘l) T 7‘/1"71—1)-

When a non-constant solution ¢ = ¢(z') of (1.5) exists one sees that
the n—dimensional domain

Q= {(a/,2,) : 2’ € w,—arccos(p(z)) < \/yx, < arccos(p(z'))}
(1.6)

is such that the function

u=@(a') — cos (v/7zn) (1.7)

solves (1.1), u being of the form (1.2).

When n = 2, the counterexample (1.3)-(1.4) can in fact be built
since non-constant solutions of the corresponding 1-d problem (1.5)
do exist. It is easy to see that ¢(x1) = cos(2mkx;) satisfies (1.5) in
w = (—=1,1) for v = 4mw2k?.

Most of this paper is devoted to the proof of the fact that when
n > 3, the only solution of (1.5) is the constant one:

THEOREM 1.2. Assume that n > 3 and that w is a bounded domain
of R, Then, the only solution of (1.5) withy > 04sy =0 and ¢ = 1.
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2. Application to the Lamé system

Before getting into the proof of these results let us point out that the
problem under consideration is related to the existence of particular
eigenfunctions of the Lamé system:

{—qu—()\—l—,u)Vdivw:fyw in Q,

w =0 on 0. (2.1)

More precisely, let us analyze the existence of uniaxial eigenvibra-
tions for system (2.1). Assume, for instance, that the eigenfunction

w = (wy,+ -+, Wp—1,wy) of (2.1) is of the form

w = (0,wn), (2.2)
ie. w; = -+ = wp_1 = 0. Then w solves (2.2) if and only if u = w,
solves

_ ly, 2, :
{ pA'w — (N4 2p)05u =yu in (2.3)

u=20 on 0f,

being of the form (1.2).

Indeed, the first (n—1)-equations of (2.1) reduce to 90wy, = 0 with
k=1,...,n—1 yielding 0w, = ¢(xy,). Hence wy,(z) = ¢(z’) — ¥(xy,)
for some functions ¢ and .

By means of a change of variables, system (2.3) may be reduced to
(1.1). According to the counterexample (1.3)-(1.4), when n = 2 non
trivial eigenfunctions of (2.2) of the form (2.3) may exist in suitable
polygonal domains. However, due to Theorem 1.1, this cannot be the
case when n > 3. More precisely, the following holds:

THEOREM 2.1. Let Q2 be a bounded Lipschitz domain of R™ with
n > 3. Then the unique solution w of the Lamé eigenvalue problem
(2.1) of the form

is the trivial one.
In other words, if w solves (2.1) being of the form (2.4), then nec-
essarily w = 0 in dimensions n > 3.

According to [5], the analysis of the existence of solutions of the form
(2.2) for the time-dependent Lamé system for ¢ € (0,7), T > 0 being
large enough, may be reduced to the study of the eigenvalue problem
(2.1)-(2.2). Therefore, Theorem 1.1 provides a negative answer to the
existence of such solutions for the evolution problem when n > 3 (we
refer to [5] for a discussion of the evolution problem). In [5], section
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7.2, the existence of 3-dimensional domains with non-trivial solutions
for (2.1)-(2.2) was claimed. However, the eigenfunctions in [5] do not
satisfy the Dirichlet boundary conditions. Thus the example in [5] is
incomplete and actually, as shown in Theorem 1.1 above, such domains
do not exist.

The question whether or not uniaxial eigenvibrations exist for the
Lamé system arises naturally when analyzing the asymptotic behavior
of solutions of the system of magnetoelasticity in bounded domains (see
[4]).

Explicit bounds on the first eigenvalue of the Lamé-system have been
obtained by Kawohl and coauthor in [2]. When doing that for n = 2
one finds an eigenfunction as in (2.2) in Lemma 5 of [2].

The rest of the paper is devoted to the proof of Theorem 1.1. In
section 3 we reduce the problem to the existence of solutions of (1.5).
In section 4 we prove Theorem 1.2.

3. Reduction to the (n — 1)-dimensional problem

In this section we reduce the proof of Theorem 1.1 to that of Theorem
1.2.

First of all we observe that, since u solves (1.1) and €2 is Lipschitz,
then it follows that u € C(Q). According to this and in view of the
decomposition (1.2), we deduce that both ¢ and v are continuous in
the orthogonal projection of Q to 2/ € R"! and z,, € R that we shall
denote by 7, 1(€2) and 71(€2) respectively.

Combining (1.1)-(1.2) we deduce that

~Np—yp=-0%) -y =cinQ

where ¢ € R is a constant. Thus, adding the constant ¢/ to both ¢
and ¥ we may assume that ¢ = 0. Thus

—A'p =y in m,_1(Q) (3.1)

while
¢($n) = (xCOoS (ﬁxn + 6)

for suitable constants o, € R. Without loss of generality we may
rescale both the function as well as the domain and with an additional
translation we may assume o =y = 1, 8 = 0 and hence we obtain

u(z) =¢ (') — cos () . (3.2)

In view of (3.2) the fact that €2 is bounded implies |[¢||,, < 1. Indeed,
if ¢ (2') > 1 for some (2/,x,) € Q, then uw > 0 on QN {2’} x R and

lame-fin.tex; 10/09/1998; 13:23; p.4



Non-existence of special eigenfunctions for the Lamé system 5!

u € Cp (Q) implies {2} x R C Q, which shows that  is unbounded. A
similar argument applies if ¢ (') < —1 for some (2/, z,,) € Q.

Next we will show that ¢ = 41 on the boundary of an appropriate
set in R" 1.

LEMMA 3.1. There exists a bounded, nonempty and open set w C

R™ 1 such that w C 7,1 () and either p = —1 on dw or ¢ = 1 on
ow.

PROOF. Suppose that for some Z € €2 we have u () > 0. Assuming
that Z,, € (0,27) we find ¢ (2') > cos (zy,) for x € {Z'} x [Ty, 7] and
{&'} x [&, 7] C Q. Define

w={a'; (2, 7) € Q}.

We have ¥’ € w and since 2 is open and bounded we find that w
is open and bounded. Moreover, if 2’ € Jw then (2/,7) € 9 and
¢ (2') =cos(m) +u(a,m) = —1.

Supposing u () < 0 for some Z € 2 and &,, € (—m,7) one proceeds
by w = {(2/,0) € 2} to find w is open and bounded with ¢ (z') =1 on
ow.

The following has been proved. There exists a nonempty open cross
section w of §2 parallel to z,, = 0 such that

¢ =1o0n dw, or ¢ = —1 on Jw.
In addition to this, as we have seen previously,

—Alp=7p in w,

p € Cw),

¢ llo= 1.
When ¢ = 1 on 0w, ¢ solves problem (1.5) and the proof of Theorem
1.1 reduces to the proof of Theorem 1.2. By the contrary, if ¢ = —1 on

Ow it is sufficient to observe that ¢ = —¢ satisfies (1.5). We are again
in face of a solution of system (1.5).

4. Proof of the (n — 1)-dimensional result
This section is devoted to the proof of Theorem 1.2. Here and the

sequel, to simplify the notation, we denote 2/ by x and A’ by A. We
keep in mind however that, we are in dimension n — 1, n > 3.
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We first observe that, necessarily, ¢ changes sign, or, in other words

min p(z) < 0. (4.1)

TEW

Indeed, in order to see (4.1) it is sufficient to observe that, if meil_a o(x) >
Tew

0, then
—Ap=7¢ >0inw,

since v > 0. Then, by the maximum principle, the minimum of ¢ is
achieved on Ow. Since ¢ = 1 on Ow, this would imply that ¢ > 1.
However, || ¢ ||«o< 1. Then ¢ = 1, which implies v = 0, as we wanted
to prove.

Therefore it is sufficient to consider the case (4.1). We shall see that
(4.1) leads to a contradiction. For that, we use a method developed
in [1] which is based on the application of the maximum principle to
compare ¢ with suitable reflections and translations of it. In order to
illustrate how the method works let us first consider the case where w
is C1*, We then consider the general case.

4.1. THE CASE WHERE Ow 1S C1®

We will proceed by an argument which is known as a ‘sweeping prin-
ciple’. A first reference to such an argument is the paper [3].
We set
p(r) = —p(r) in w.

Given xg € R" ! we define the following translation of @:
Py (@) = P(x — 0), in wWyy = w + 20.

Obviously, if |xp| is large enough the graphs of the functions z €
w — @(r) and x € wy, — P, (x) do not intersect.

We now let x tend to —zg along the segment I = {Azp: —1 <A <
1}. In other words we consider the family of functions ¢,,, defined in

w,\xo.

Figure 1

Let A* be the first value of the parameter A so that the graphs of ¢
and @,,, intersect. The existence of A\* is guaranteed, for instance, by
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taking o on the line connecting the origin with one of the points where

© achieves its minimum. In the sequel, to simplify the notation we shall

use the notation ¢* and w* instead of Yy« 0 and wys,, respectively.
There are two possibilities:

— Case 1: Interior contact.

This is when the graphs of ¢ and ¢* coincide at a point 1 € wNw*
such that z; belongs to the interior of wNw™* and therefore ¢(x;) =

¢*(r1) € (—-1,1).
— Case 2: Extremal contact.

We are now in the situation where the graphs of ¢ and ¢* coincide
at a point x1 € J(w Nw*) where p(z1) = ¢*(x1) = —1. Of course,
this second possibility may not arise when miny > —1, but we
may not exclude it a priori.

Let us see that in any of these two situations we are led to a con-
tradiction. This will imply that the graphs of ¢ and ¢* never intersect,
which is in contradiction with (4.1). In this way we will deduce that
vy=0and p = 1.

Case 1: Note that ¢ > ¢* in the open set w Nw*. On the other hand
“Alp—¢")=1(p—-¢") Z20inwnuw (4.2)

Then, by the maximum principle we deduce that either ¢ — ¢* > 0 in
wNw* or ¢ — " = 0. Obviously ¢ — ¢* > 0 in w Nw* may not hold
since [¢ — ¢*](x1) = 0. Therefore, necessarily,

=" inwnNw". (4.3)

Observe however that ¢ = 1 in J(w Nw*) N Jw and that ¢* = —1
in d(wNw*) N ow*. On the other hand d(w N w*) N dw N Jw* is non
empty. Let x2 be a point in this intersection. We have ¢(x2) = 1 and
¢*(x2) = —1. But, this in contradiction with (4.3).

Case 2. In this second case we also have ¢ > ¢* in w Nw* and (4.3)
holds as well. Then, the argument of Case 1 shows that ¢ > ¢* in wNw*.
On the other hand, we know that for x; € 9 (w Nw*), ¢(x1) = ¢*(x1).
By Hopf’s maximum principle we deduce that d(¢ — ¢*)(x1)/0v < 0,
v being the outward unit normal to w Nw* in x;. Assume for instance
that ¢(x1) = —1. Then, taking into account that ¢ is smooth in the
interior of w and that it achieves its minimum in x; we deduce that
V(x1) = 0. Therefore 0p*(x1)/0v > 0. But then, in a neighborhood
of x1 in w*, we deduce that

o*(x) > —1 + cd(x, Ow*) (4.4)
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for a suitable positive constant ¢ > 0, where d(-,0w*) denotes the
distance to the boundary dw™*.

In view of (4.4) and taking into account that Vy(z1) = 0, ¢(x1) =
—1, we immediately deduce that the intersection of the graphs of ¢
and ¢* occurs before the parameter A reaches the value \*, which is in
contradiction with the definition of \* itself.

The proof is the same when p(z1) = ¢p*(x1) = 1.

Note that in Case 2 the regularity of the domain has been used to
guarantee the applicability of Hopf’s maximum principle.

Note also that both in Case 1 and Case 2 the point of intersec-
tion is not necessarily unique. As we have seen, in order to reach the
contradiction it is sufficient that the contact arises.

4.2. GENERAL w

In order to avoid the difficulties related to the application of Hopf’s
maximum principle we are going to introduce a radially symmetric
function that will play the role of ¢ in the arguments above.

We assume that 0 € w and let B the smallest ball of R"~! having 0
as center containing w. We introduce the functions

of'(2) = p(Rx), Vo € w = R 1w, (4.5)
for any rotation R in R™!,
We then set
p(x)= min  pf(z), V2B (4.6)
R=rotation

The function ¢, the minimum of all the rotated functions f, is ra-
dially symmetric and it is defined on B. Note that, for any * € B
the minimum in (4.6) has to be taken over the rotations R such that
Rx c w.

Taking into account that (* solves

—Apf = ypf in W

for all rotation R, one deduces as in [1] that ¢ is a supersolution in
distributional sense of the same problem in B:

/ (=AY ¢ — v ¢) dox > 0 for all v € DT (B), (4.7)
JB
where DT (B) = {¢ € C§° (B) ;¢ > 0} . Note also that
¢ €C(B),
¢ =1 on 0B, (4.8)
¢ lloo= 1.
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Thus, ¢ fulfils the same conditions of (1.5) except that the equation
satisfied by ¢ has to be replaced by the inequality (4.7).

We now apply the argument of the previous section to ¢. Again let
¢" being the reflected and translated function of ¢ that intersects ¢ for
the first time, say at o1 € BN B*. We have the following

¢—¢*eC(BNBY),
/ (=AY — ) (¢ — ¢*) dz >0 for all » € DT(BN B*),
BNB* (4.9)
¢p—¢" >0 in BN B*,
(¢ —¢")(x1) =0 for some x; € 0 (BN B*).

As in [1] we may conclude that either ¢ — ¢* > 0 in int(B N B*) or
¢ —¢* =0in BN B*. Notice that we have

¢(x) — ¢*(x) =2 for x € 90BN OB*.

Since 0BNOB* is nonempty (n—1 > 1) one finds that ¢ and ¢* cannot
be identical.
We again distinguish the two cases:

— Case 1: Interior contact, x1 € int(B N B*),

— Case 2: Extremal contact, x; € (0B N B*)U (BN JB).

Let us analyze both cases:

Case 1: The strict inequality in the interior contradicts the assumption
x1 € int(B N B*).

Case 2: In this case we do not have enough regularity of ¢ and ¢* to
apply Hopf’s Lemma directly. Let us consider, for instance, the case
where

¢(x1) = ¢* (1) = —1,
hence x1 € 9B*. Note that ¢ achieves its minimum in x;. Then for
some rotation R; the function ¢ achieves its minimum as well at

x1. This implies, taking into account that ¢! is smooth in z, which
necessarily lies in the interior of w, that

—1§¢R1§—1+c|:1:—x1 |2

in a neighborhood N, of z; for a suitable ¢ > 0. We immediately
deduce that ¢ verifies the same condition, i.e. in the neighborhood N,
of x1, ¢ satisfies

~1<  min @) <eM(x) < —1+c|x—x1 [, Vo € Ny,. (4.10)
R=rotation

lame-fin.tex; 10/09/1998; 13:23; p.9



10 Sweers and Zuazua

Now the strong maximum principle implies that
¢—o¢*>®in BN B* (4.11)

for a suitable ¢ > 0, ®; being the first eigenfunction of —A in H}(BN
B*). Taking into account that (BN B*) is smooth at x1, we also know
that

®y (x) > "d(z,0(B N BY)), Vo € Ny, (4.12)

for a suitable ¢ > 0.
Combining (4.10), (4.11) and (4.12) we obtain immediately a con-
tradiction as in the previous section.

Remark: It is interesting to analyze why the proof of Theorem 1.2
does not work when n = 2. The same ideas can be used. We then reach
the conclusion that ¢ = ¢*. However, when n = 2, w Nw* is just an
interval, whose boundary is constituted by two points. At the left end
both functions ¢ and ¢* take value —1, while, at the right end, they
take the value 1. There is no contradiction since these two extremes
are isolated. The situation is completely different when n > 3 since
J(w Nw™*) contains points where simultaneously ¢ = 1 while ¢* = —1.
In fact, when n = 2, due to the symmetry of the function p(x;) =
cos(2mzy) in the interval w = (—1,0), it is easy to see that ¢ = ¢* in
(—1/2,0) without contradiction.
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