An equivariant version of Lehmer's Mahler measure problem

Jan-Willem van Ittersum

Utrecht University Max Planck Institute for Mathematics

What is Lehmer's conjecture on the Mahler measure?

Definition Given

$$f(x) = a_n \prod_{i=1}^n (x - \alpha_i) \in \mathbb{Z}[x] \setminus \{0\},\$$

the Mahler measure of f is given by

$$M(f) = |a_n| \prod_{i=1}^n \max(|\alpha_i|, 1).$$

What is Lehmer's conjecture on the Mahler measure?

What is Lehmer's conjecture on the Mahler measure?

There exists a lower bound $\mu > 1$ such that for all non-zero $f \in \mathbb{Z}[x]$ it holds that

M(f)=1 or $M(f)\geq \mu.$

For simplicity, restrict to f with coprime coefficients.

For simplicity, restrict to f with coprime coefficients. Let $\gamma = \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] \in PGL_2(\mathbb{Q})$, the group of rational Möbius transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$f^{\gamma}(z) := (cz+d)^k f(\gamma z)$$

taking the representative for γ such that f^{γ} has coprime coefficients.

For simplicity, restrict to f with coprime coefficients. Let $\gamma = \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] \in PGL_2(\mathbb{Q})$, the group of rational Möbius transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$f^{\gamma}(z) := (cz+d)^k f(\gamma z)$$

taking the representative for γ such that f^γ has coprime coefficients.

Theorem (vI)

For every finite subgroup $G < PGL_2(\mathbb{Q})$ for which $GS^1 \neq S^1$, there exists a computable $\mu > 1$ such that

$$\prod_{\gamma\in \mathcal{G}} M(f^\gamma) = 1 \quad or \quad \prod_{\gamma\in \mathcal{G}} M(f^\gamma) \geq \mu^k.$$

For simplicity, restrict to f with coprime coefficients. Let $\gamma = \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] \in PGL_2(\mathbb{Q})$, the group of rational Möbius transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$f^{\gamma}(z) := (cz+d)^k f(\gamma z)$$

taking the representative for γ such that f^γ has coprime coefficients.

Theorem (vI)

For every finite subgroup $G < PGL_2(\mathbb{Q})$ for which $GS^1 \neq S^1$, there exists a computable $\mu > 1$ such that

$$\prod_{\gamma\in \mathcal{G}} \mathsf{M}(f^\gamma) = 1 \quad or \quad \prod_{\gamma\in \mathcal{G}} \mathsf{M}(f^\gamma) \geq \mu^k.$$

Example (Zagier) $G = \langle z \mapsto 1 - z \rangle$, then $\mu = \sqrt{\varphi} = \sqrt{\frac{1+\sqrt{5}}{2}}$.