An equivariant version of
 Lehmer's Mahler measure problem

Jan-Willem van Ittersum

Utrecht University

Max Planck Institute for Mathematics

What is Lehmer's conjecture on the Mahler measure?

Definition Given

$$
f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in \mathbb{Z}[x] \backslash\{0\},
$$ the Mahler measure of f is given by

$$
M(f)=\left|a_{n}\right| \prod_{i=1}^{n} \max \left(\left|\alpha_{i}\right|, 1\right)
$$

The roots of f

What is Lehmer's conjecture on the Mahler measure?

Definition Given

$$
f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in \mathbb{Z}[x] \backslash\{0\}
$$

the Mahler measure of f is given by

$$
M(f)=\left|a_{n}\right| \prod_{i=1}^{n} \max \left(\left|\alpha_{i}\right|, 1\right)
$$

Example
$f(x)=x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$
$M(f)=1.1762808 \ldots$

The roots of f

What is Lehmer's conjecture on the Mahler measure?

Definition Given

$$
f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in \mathbb{Z}[x] \backslash\{0\}
$$

the Mahler measure of f is given by

$$
M(f)=\left|a_{n}\right| \prod_{i=1}^{n} \max \left(\left|\alpha_{i}\right|, 1\right)
$$

Example
$f(x)=x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$
$M(f)=1.1762808 \ldots$

The roots of f
Conjecture (Lehmer, 1933)
There exists a lower bound $\mu>1$ such that for all non-zero
$f \in \mathbb{Z}[x]$ it holds that

$$
M(f)=1 \quad \text { or } \quad M(f) \geq \mu .
$$

An equivariant version of Lehmer's conjecture

For simplicity, restrict to f with coprime coefficients.

An equivariant version of Lehmer's conjecture

For simplicity, restrict to f with coprime coefficients.
Let $\gamma=\left[\left(\begin{array}{lll}a & b \\ c & d\end{array}\right)\right] \in \operatorname{PGL}_{2}(\mathbb{Q})$, the group of rational Möbius
transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$
f^{\gamma}(z):=(c z+d)^{k} f(\gamma z)
$$

taking the representative for γ such that f^{γ} has coprime coefficients.

An equivariant version of Lehmer's conjecture

For simplicity, restrict to f with coprime coefficients.
Let $\gamma=\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right] \in \mathrm{PGL}_{2}(\mathbb{Q})$, the group of rational Möbius
transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$
f^{\gamma}(z):=(c z+d)^{k} f(\gamma z)
$$

taking the representative for γ such that f^{γ} has coprime coefficients.

Theorem (vl)
For every finite subgroup $G<\mathrm{PGL}_{2}(\mathbb{Q})$ for which $G S^{1} \neq S^{1}$, there exists a computable $\mu>1$ such that

$$
\prod_{\gamma \in G} M\left(f^{\gamma}\right)=1 \quad \text { or } \quad \prod_{\gamma \in G} M\left(f^{\gamma}\right) \geq \mu^{k}
$$

An equivariant version of Lehmer's conjecture

For simplicity, restrict to f with coprime coefficients.
Let $\gamma=\left[\left(\begin{array}{lll}a & b \\ c & d\end{array}\right)\right] \in \operatorname{PGL}_{2}(\mathbb{Q})$, the group of rational Möbius
transformations, act on $f \in \mathbb{Z}[x]$ of degree k by

$$
f^{\gamma}(z):=(c z+d)^{k} f(\gamma z)
$$

taking the representative for γ such that f^{γ} has coprime coefficients.

Theorem (vl)

For every finite subgroup $G<\mathrm{PGL}_{2}(\mathbb{Q})$ for which $G S^{1} \neq S^{1}$, there exists a computable $\mu>1$ such that

$$
\prod_{\gamma \in G} M\left(f^{\gamma}\right)=1 \quad \text { or } \quad \prod_{\gamma \in G} M\left(f^{\gamma}\right) \geq \mu^{k}
$$

Example (Zagier) $G=\langle z \mapsto 1-z\rangle$, then $\mu=\sqrt{\varphi}=\sqrt{\frac{1+\sqrt{5}}{2}}$.

