Open problems

International Conference on Modular Forms and q-Series, University of Cologne

Organizers: Walter Bridges, Kathrin Bringmann, and Johann Franke
Notes: Jan-Willem van Ittersum

March 14, 2024

Question 0 (Wadim Zudilin). Provide a database of adjectives of modular forms (almost, magnetic, quasi, weakly, ...).

Question 1 (Wadim Zudilin). In Roger-Ramanujan type identities one encounters asymmetric products, rather than modular forms. For example, complement $\left(q ; q^{3}\right)_{\infty}$ to some (adjective) modular form, or prove this is impossible.

Question 2 (Ken Ono). Write $p(m)$ for the number of integer partitions of m.

- Identify an explicit sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, taking distinct values, for which the parity of $p\left(a_{n}\right)$ is known.
- Show there are infinitely many $n \equiv r(\bmod t)$ for which $p(n)$ is even. Bound the smallest one in terms of t.
- For square-free $D \equiv 23(\bmod 24)$, show that there is an $m<12 h(-D)+2$ with

$$
p\left(\frac{D m^{2}+1}{24}\right) \text { is odd. }
$$

This is equivalent to the existence of infinitely many such m.

- Find explicit examples of "linear dependencies" given by [11, Theorem 1.2]. For example, explicitly determine when t is large enough for

$$
S_{t}:=\left\{D_{1}=23, D_{2}=47, D_{3}=47, \ldots, D_{t}\right\} .
$$

Question 3 (Kağan Kurşungöz). Is there an operator, similar to the MacMahon Omega Operator Ω_{\geq}, which eliminates all the negative coefficients, along with "practical" rules like the one for Ω_{\geq}. Possible application in linked partition ideals.

Question 4 (Larry Rolen). Write $\partial \mu_{s}$ for the measure $\frac{\partial x \partial y}{y^{s}}$ and let

$$
A^{s}(\mathbb{H}):=L^{2}\left(\mathbb{H}, \partial \mu_{s}\right) \cap\{\text { Holomorphic functions on } \mathbb{H}\} .
$$

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$. We say a function $f \in A^{s-2}(\mathbb{H})$ is a tracelike vector if

$$
\left.\sum_{\gamma \in \Gamma}|f| \gamma\right|^{2}=C y^{-s},
$$

and a wandering vector if

$$
\langle f \mid \gamma, f\rangle=0
$$

for all $\gamma \in \Gamma \backslash\{\operatorname{Id}\}$. Here, $\langle\cdot, \cdot$,$\rangle denotes the L^{2}$-norm with respect to $\partial \mu_{s}$.
Let $s_{0}=\frac{4 \pi}{\operatorname{Cov}(\Gamma)}+1\left(=13\right.$ for $\left.\operatorname{PSL}_{2}(\mathbb{Z})\right)$. A theorem by Jones states [7]

1) Tracelike vectors exist if and only if $s \leq s_{0}$,
2) Wandering vectors exist if and only if $s \geq s_{0}$,
3) If $s=s_{0}$, a vector is tracelike if and only if it is wandering.

Problem: Write down an explicit function for $s=s_{0}$ satisfying either of these conditions (this is [7, Problem 1]).

Question 5 (Ken Ono). Obtain Erdös-Lehner type distributions [6] for statistics in generalizations of Roger-Ramanujan-type identities, in particular, for the CMMP conjectures [5]. That is, obtain the distribution of lengths of CMMP-partitions of n as $n \rightarrow \infty$.

Question 6 (Ken Ono, inspired by a talk of Bernhard Heim). Define polynomials in z as the coefficients of q^{n} in $\prod_{m \geq 1}\left(1-q^{m}\right)^{-z}$. What can be said about the zeros of such polynomials, and of similarly defined polynomials associated to CMMP partitions, etc. Is there a Riemann hypothesis?

Question 7 (William Craig). The explanation of Ramanujan's congruences for $p(n)$ by cranks is equivalent to the divisibility of crank polynomials by cyclotomic polynomials [4]. Does there exist other partition polynomials having a different kind of canonical factor?

Question 8 (Nikolas Smoot). TBA
Question 9 (Shashank Kanade). Consider the identity in [1]

$$
\sum_{i, j, k, \ell \geq 0} \frac{q^{4 i^{2}+12 i j+8 i k+4 i \ell+12 j^{2}+16 j k+8 j \ell+6 k^{2}+6 k \ell+2 \ell^{2}}}{\left(q^{2} ; q^{2}\right)_{i}\left(q^{2} ; q^{2}\right)_{j}(q ; q)_{k}(q ; q)_{\ell}}=\left(q^{2}, q^{3}, q^{4}, q^{10}, q^{11}, q^{12} ; q^{14}\right)_{\infty}^{-1}
$$

Note that the right-hand side occurs in the first identity of Nandi (for $A_{2}^{(2)}$ of level 4). Why does the above quadruple sum count partitions in Nandi's identity?

Question 10 (Walter Bridges). Provide a Bressoud-type combinatorial proof [3] of Kurşungöztype manifestly positive series $[8,9,10]$.

Question 11 (Siu Hang Man (Gordon)). What is the "algebraic structure" for (generating series of) partitions over totally real number fields? What are the indecomposable integers (analogues of 1 ?

Question 12 (Jan-Willem van Ittersum). Given a q-series $f=\sum_{n \geq 0} a_{n} q^{n}$, a weight k and a prime p, the action of the p th Hecke operator on f is given by

$$
T_{p}(f):=\sum_{n \geq 0}\left(a_{n p}+p^{k-1} a_{\frac{n}{p}}\right) q^{n},
$$

where $a_{\frac{n}{p}}=0$ if $p \nmid n$. The Hecke theory on modular forms extends to quasimodular forms.

Let \mathscr{P} be the set of partitions. Given a function $f: \mathscr{P} \rightarrow \mathbb{Q}$, define the q-bracket of f by

$$
\langle f\rangle_{q}=\frac{\sum_{\lambda \in \mathscr{P}} f(\lambda) q^{|\lambda|}}{\sum_{\lambda \in \mathscr{P}} q^{|\lambda|}} \in \mathbb{Q} \llbracket q \rrbracket .
$$

For many (algebras of) functions on partitions, the q-bracket of f is a quasimodular form $[2,13,12]$. In particular, this is the case for the subalgebra of shifted symmetric function Λ^{*}, generated by the shifted symmetric functions $(k \geq 1)$

$$
p_{k}(\lambda)=\sum_{i=0}^{\ell(\lambda)}\left(\left(\lambda_{i}-i+\frac{1}{2}\right)^{k}-\left(-i+\frac{1}{2}\right)^{k}\right)
$$

Moreover, there exist an operator \mathcal{D} on Λ^{*} such that $\langle\mathcal{D} f\rangle_{q}=q \frac{d}{d q}\langle f\rangle_{q}$ for all $f \in \Lambda^{*}$.
Problem Define Hecke operators \mathcal{T}_{p} on Λ^{*} such that

$$
\left\langle\mathcal{T}_{p} f\right\rangle_{q}=T_{p}\langle f\rangle_{q}
$$

for all $f \in \Lambda^{*}$, or prove that such operators do not exist.

References

[1] Katherine Baker, Shashank Kanade, Matthew C. Russell, and Christopher Sadowski. Principal subspaces of basic modules for twisted affine Lie algebras, q-series multisums, and Nandi's identities. Algebr. Comb., 6(6):1533-1556, 2023.
[2] Spencer Bloch and Andrei Okounkov. The character of the infinite wedge representation. Adv. Math., 149(1):1-60, 2000.
[3] David M. Bressoud. An analytic generalization of the Rogers-Ramanujan identities with interpretation. Quart. J. Math. Oxford Ser. (2), 31(124):385-399, 1980.
[4] Kathrin Bringmann, Kevin Gomez, Larry Rolen, and Zack Tripp. Infinite families of crank functions, Stanton-type conjectures, and unimodality. Res. Math. Sci., 9(3):Paper No. 37, 16, 2022.
[5] Stefano Capparelli, Arne Meurman, Andrej Primc, and Mirko Primc. New partition identities from $C_{\ell}^{(1)}$-modules. Glas. Mat. Ser. III, 57(77)(2):161-184, 2022.
[6] Paul Erdös and Joseph Lehner. The distribution of the number of summands in the partitions of a positive integer. Duke Math. J., 8:335-345, 1941.
[7] Vaughan F. R. Jones. Bergman space zero sets, modular forms, von Neumann algebras and ordered groups. Enseign. Math., 69(1-2):5-36, 2023.
[8] Kağan Kurşungöz. Andrews-Gordon type series for Capparelli's and Göllnitz-Gordon identities. J. Combin. Theory Ser. A, 165:117-138, 2019.
[9] Kağan Kurşungöz. Andrews-Gordon type series for Kanade-Russell conjectures. In George E. Andrews - 80 years of combinatory analysis, Trends Math., pages 481-534. Birkhäuser/Springer, Cham, [2021] (C)2021. Reprint of [4039566].
[10] Kağan Kurşungöz and Halime Ömrüuzun Seyrek. Construction of evidently positive series and an alternative construction for a family of partition generating functions due to Kanade and Russell. Ann. Comb., 26(4):903-942, 2022.
[11] Ken Ono. The partition function modulo 4. ArXiv e-prints:2212.06935, 2022.
[12] Jan-Willem M. van Ittersum. A symmetric Bloch-Okounkov theorem. Res. Math. Sci., 8(2):19, 2021.
[13] Don Zagier. Partitions, quasimodular forms, and the Bloch-Okounkov theorem. Ramanujan J., 41(1-3):345-368, 2016.

