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Introduction

The present manuscript is a more or less verbatim transcript of a series of three one-hour
lectures on classical (elliptic) modular forms that I delivered at the Summer Research
Institute on q-series at Nankai University between 24 July and 15 August, 2018.

Modular forms play a role in so many important branches of number theory, but also
mathematics in general (e.g. (algebraic) geometry, topology, Lie theory, just to name a
few) and also mathematical physics, that it seems more and more valuable to know at least
some basic facts about them. Due to the limited amount of time, it is not possible to do
all of the important aspects of the theory itself, let alone its numerous applications, full
justice, so these notes can give but a glimpse of what is going on with theses functions.

The sections of these notes roughly represent the individual lectures and are organized
as follows: In the first two lectures/sections, I give a brief overview of some basic facts
and definitions of modular forms, focussing on modular forms for the full modular group
SL2(Z) in the first lecture and on the more general setting of modular forms for (congruence)
subgroups, including some examples such as Eisenstein series, the ∆-function, theta series
and eta quotients. I also briefly touch on the less classical theory of Jacobi forms and even
more briefly on singular moduli in the second lecture. The third lecture/section will cover
some particular applications of the theory of modular forms to partitions, namely a sketch
of the proof of Rademacher’s series representation of the partition numbers, a proof of the
famous Ramanujan congruences, and finally a short outline on a general framework for
further congruences of the partition function.

I will give a (also not in the least exhaustive) list of some textbooks and (shorter)
introductory notes on modular forms that the readers of these notes might want to consider
to get a deeper understanding about the details that cannot be conveyed properly here.
Some of the sections in these notes are actually taken rather directly from some of these
sources, in which case I will give the respective reference in the body of the text. For original
references to the results presented here, I refer to the cited textbook and expository sources.

As a last point I would like to point out that these notes have not been proof-read and
hence might contain several typos, which I hope they don’t to too great an extent.

Tianjin, July 2018, Michael H. Mertens
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1 Basics

1.1 The upper half-plane

Throughout, we denote by H the complex upper half-plane,

H = {τ = u+ iv ∈ C : Im(τ) = v > 0}.

This is a model for the hyperbolic plane.
Its group of holomorphic isometries (with respect to the hyperbolic metric) or biholo-

morphic automorphisms is well-known to be isomorphic to PSL2(R). We are actually not
going to worry about the projective group here and consider SL2(R) instead. This group
acts on H via Möbius transformations,(

γ =

(
a b
c d

)
, τ

)
7→ γ.τ :=

aτ + b

cτ + d
.

For this note for instance that

Im

(
aτ + b

cτ + d

)
=

Im(τ)

|cτ + d|2
,

hence the action is well-defined. That we actually have a group action whose core is
generated by

(−1 0
0 −1

)
is an easy direct verification.

It is now a natural question to ask whether there exist holomorphic, say, functions
f : H→ C which are invariant under the action of discrete subgroups of SL2(R), the most
straightforward example of which is probably SL2(Z). Unfortunately, it turns out that the
answer to this question is no, except for constant functions, but it is yes if we relax the
invariance requirement a bit.

Before we get to this, it is worthwhile to look for a fundamental domain of the action
of SL2(Z). It can be seen in an abstract way that such a fundamental domain must exist
through Baire’s category principle, but it can be verified in a much more elementary way,
that an exact fundamental domain of the action of SL2(Z), i.e. a connected domain1

F ⊆ H such that for any τ ∈ H there exists a γ ∈ SL2(Z) such that γ.τ ∈ F and for any
two distinct points τ 6= τ ′ ∈ H there is no γ ∈ SL2(Z) with γτ = τ ′, is given by

F :=

{
τ ∈ H : −1

2
< Re(τ) ≤ 1

2
, |τ | ≥ 1, and |τ | > 1 for Re(τ) < 0

}
,

which is the famous modular triangle. An important fact on its own and also important
in proving that F is indeed a fundamental domain is the fact that SL2(Z) is generated by
two elements,

SL2(Z) =

〈
T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)〉
.

1Actually, the fundamental domain is not open, but its interior is a domain
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Figure 1: Standard fundamental domain of SL2(Z) (Source: wikipedia.org)

The matrices T and S are often referred to as translation and (modular) inversion respec-
tively, which is why in some places in the literature the letter J instead of S is used.

There are two special points in F , as will be important later, namely the points i and

ρ = 1+i
√

3
2 , which are the only points in F which have a non-trivial stabilizer in SL2(Z):

i is fixed by S, which has order 4 and ρ is fixed by U = TS =
(

1 −1
1 0

)
which has order

6. We call such points elliptic fixed points. Note that every other point in F is only fixed
(trivially) by

(−1 0
0 −1

)
.

1.2 Basic definitions and first results on modular forms

Returning to the question whether there are functions (essentially) invariant under SL2(Z),
we define the notion of modular forms.

Definition 1.1. A function f : H → C is called a modular form of weight k ∈ Z for
SL2(Z) if

(i) f is holomorphic on H,

(ii) f is invariant under the weight k Petersson slash operator, that is we have

(f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
= f(τ)

for all γ =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H,
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(iii) f is holomorphic at ∞, i.e. f(iv) is bounded as v →∞.

If we even have that f(iv)→ 0 as v →∞, we call f a cusp form.

In the following remarks we record a couple of elementary observations on modular
forms.

Remark 1.2. Modular forms resp. cusp forms of weight k form a vector space over C
which we denote by Mk resp. Sk. It is clear that products of modular forms are again
modular forms and products of modular forms and cusp forms are again cusp forms, i.e.
we have

Mk ·M` ⊆Mk+` and Sk ·M` ⊆ Sk+`.

Remark 1.3. Since SL2(Z) is generated by the two matrices T and S which map τ ∈ H
to τ + 1 and −1/τ resp., a function f : H → C satisfies the transformation law in (ii) of
Definition 1.1 if and only if we have

f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ)

for all τ ∈ H. In particular the invariance f(τ + 1) = f(τ) implies through a standard fact
of complex analysis that a modular form f ∈Mk has a Fourier expansion of the form

f(τ) =
∑
n∈Z

αf (n)e2πinτ .

The growth condition in (iii) of Definition 1.1 actually yields that actually αf (n) = 0 for
n < 0 for f ∈ Mk and and that we additionally have αf (0) = 0 if and only if f is a cusp
form.

Remark 1.4. Since
(−1 0

0 −1

)
∈ SL2(Z) we find for f ∈Mk that

f = f |k
(−1 0

0 −1

)
= (−1)kf,

hence there are no non-zero modular forms of odd weight.

The following requires a little more work.

Lemma 1.5. There are no non-zero modular forms of negative weight.

Proof. Let k < 0 and f ∈ Mk. It is not hard to see that the non-holomorphic function
f̃(τ) := vk/2|f(τ)| satisfies f̃(γ.τ) = f̃(τ) for all γ ∈ SL2(Z). If k < 0, f̃ is bounded as
v →∞ because f is, so in particular it is bounded for all τ with Im(τ) > ε > 0. Thus we
find for the Fourier coefficients of f that

|αf (m)| =
∣∣∣∣e2πmv

∫ 1

0
f(u+ iv)e−2πimudu

∣∣∣∣ ≤ v−k/2e2πmv

∫ 1

0
f̃(u+ iv) ≤ Cv−k/2e2πmv

for some constant C which doesn’t depend on v. Since the left-hand side of this inequality
doesn’t depend on v, we can take the limit v → 0 which yields αf (m) = 0 for all m, hence
f ≡ 0, so the claim follows.
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One is now inclined to ask whether there actually are any non-trivial examples of
modular forms at all. In fact one can construct very explicit and important examples,
which are actually motivated by the theory of elliptic functions, which we cannot touch on
here.

Example 1.6. We define the Eisenstein series of weight k by

Gk(τ) =
∑

(m,n)∈Z2\{0}

(mτ + n)−k.

One can show that this series is absolutely and locally uniformly convergent on H as soon as
k ≥ 3. Assuming this from now on, we can verify that these functions are indeed modular.
Let γ =

(
a b
c d

)
∈ SL2(Z). Then we have

Gk

(
aτ + b

cτ + d

)
=

∑
(m,n)∈Z2\{0}

(
m · aτ + b

cτ + d
+ n

)−k
= (cτ + d)k

∑
(m,n)∈Z2\{0}

((ma+ nc)τ + (mb+ nd))−k.

Since clearly with (m,n) also (m,n)·
(
a b
c d

)
= (ma+nc,mb+nd) runs through all of Z2\{0},

this yields, as claimed,

Gk

(
aτ + b

cτ + d

)
= (cτ + d)kGk(τ).

It remains to verify that Eisenstein series don’t always vanish identically (which by
Remark 1.4 they do if k is odd). For this we can compute their Fourier expansion.

Theorem 1.7. For even k ≥ 4 we have that

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn,

where ζ(s) denotes the Riemann zeta function, σk(n) :=
∑

d|n d
k denotes the usual divisor

power sum and we use the standard abbreviation q := e2πiτ .
The normalized Eisenstein series are given by

Ek(τ) :=
1

2ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk denotes the kth Bernoulli number (which is always rational and non-zero if k is
even).
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Example 1.8. The first few normalized Eisenstein series are given explicitly by

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn,

E6(τ) = 1− 504

∞∑
n=1

σ5(n)qn,

E8(τ) = 1 + 480
∞∑
n=1

σ7(n)qn,

E10(τ) = 1− 264
∞∑
n=1

σ9(n)qn,

E12(τ) = 1 +
65520

691

∞∑
n=1

σ11(n)qn.

We now want to turn a little more towards the structure of modular forms. For this,
we need the following very important theorem known as the valence formula for SL2(Z).
We are not going to give a proof, but we mention that it actually can be thought of as an
instance of the Riemann-Roch theorem.

Theorem 1.9. Let f : H→ C, f 6≡ 0, be a meromorphic function satisfying f |kγ ≡ f for
some k ∈ Z (note that in this setup, k might very well be negative) and suppose that f has
a Fourier expansion f(τ) =

∑∞
n=n0

αf (n)qn for some n0 ∈ Z with αf (n0) 6= 0. Further
define ord∞(f) := n0. Then we have that

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
w∈F\{i,ρ}

ordw(f) =
k

12
.

It should be remarked that in fact only finitely many terms in the sum over points in the
fundamental domain can be non-zero due to the identity theorem (a non-zero meromorphic
modular form can only have finitely many zeros or poles in the fundamental domain).
Furthermore, the strange looking factors 1

2 and 1
3 in front of ordi(f) and ordρ(f) originate

from the fact that i and ρ are elliptic fixed points whose stabilizers have orders 2 · 2 and
2 · 3.

As a not completely immediate, but not too complicated corollary to the valence for-
mula, one finds the dimension formula for the spaces Mk.

Theorem 1.10. We have

dimCMk =

{
bk/12c if k ≡ 2 (mod 12),

bk/12c+ 1 if k 6≡ 2 (mod 12).
.
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In particular, one finds that M2 = {0}, M4 = CE4, M6 = CE6, M8 = CE8.

Remark 1.11. The finite-dimensionality of Mk is the source of numerous sometimes sur-
prising identities. For instance it follows from Remark 1.2 that E2

4 ∈M8 = CE8, so, since
E2

4 and E8 have the same leading Fourier coefficient, we must have E2
4 = E8. Comparing

the coefficients, one finds the so-called Hurwitz identity for divisor sums,

σ7(n) = σ3(n) + 120
n−1∑
r=1

σ3(r)σ(n− r).

It is interesting to note that this identity can be formulated entirely in terms of elementary
number theory without appealing to modular forms or other advanced mathematics, but an
elementary proof is, to the author’s knowledge, at least very complicated.

The following important result which also can be derived essentially from the valence
formula in Theorem 1.9 is that it is possible to generate all modular forms very easily.

Theorem 1.12. The space

M∗ :=
∞⊕
k=0

Mk

is an infinite-dimensional C-algebra. More precisely, we have that

M∗ = C[E4, E6]

is the free polynomial algebra generated by E4 and E6 (which are easily seen to be alge-
braically independent).

Remark 1.13. In view of the results in Section 2 where modular forms for other groups
than SL2(Z) are considered it is important to point out that it is not always the case that
the algebra of modular forms is isomorphic to a free polynomial algebra. In fact this is
almost never true except for finitely many exceptions. It is always true however that the
algebra of modular forms is a finitely generated C-algebra, but there usually are non-trivial
relations among the generators.

We conclude this subsection by discussing one further example of modular forms, in
fact the first non-trivial example of a cusp form.

Example 1.14. Consider the so-called ∆-function defined by

∆(τ) :=
E3

4 − E2
6

1728
=:

∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 +O(q6) ∈ S12

8



This is a cusp form of weight 12. The coefficients τ(n) are referred to as the Ramanujan
τ -function. We clearly have ord∞(∆) = 1, so the valence formula applied to ∆ yields

1 +
1

2
ordi(∆) +

1

3
ord(∆) +

∑
w∈F\{i,ρ}

ordw(∆) = 1.

Since ∆ is holomorphic on H by definition, we must have ordτ (∆) ≥ 0 for all τ ∈ H, hence
it must be that ∆(τ) 6= 0 for all τ ∈ H. Through a standard fact in complex analysis,
this implies that ∆ must admit an representation as an infinite product. Indeed, one can
show either through the theory of elliptic functions or using properties of the Dedekind eta
function (see Section 2.2.2) that

∆(τ) = q
∞∏
n=1

(1− qn)24.

1.3 Operators

In the previous section, we saw various examples of modular forms. We can construct new
modular forms from these in a fairly general manner. First we extend the definition of
the slash operator to the larger group GL+

2 (Q) of 2× 2-matrices with rational entries and
positive determinant by setting

(f |kγ)(τ) := (det γ)k/2(cτ + d)−kf

(
aτ + b

cτ + d

)
.

Then for f ∈Mk the function f |kγ for any γ ∈ GL+
2 (Q) is again a modular form of weight

k, although usually not for the full modular group SL2(Z), but for the conjugated group
γ−1 SL2(Z)γ ≤ SL2(Q). Since one usually considers modular forms for subgroups of SL2(Z),
one can also view fkγ as a modular form for the subgroup Γ = (γ−1 SL2(Z)γ) ∩ SL2(Z),
which always has finite index in SL2(Z).

Some standard operators on modular forms can be expressed in terms of this generalized
slash operators.

Definition 1.15. For f ∈ Mk and m,N, r ∈ N and χ a Dirichlet character mod N we
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define the operators

f |Vm := m−k/2f |k
(
m 0
0 1

)
f |Um := mk/2−1

m−1∑
j=0

f |k
(

1 j
0 m

)

f |SN,r :=
1

N

N−1∑
j=0

e−2πirj/Nf |k
(

1 j/N
0 1

)

f ⊗ χ :=

N∑
r=0

χ(r)(f |SN,r).

For all these operators it is usually very convenient to consider their action on the
Fourier expansion of a modular form.

Lemma 1.16. Let f ∈Mk be a modular form with Fourier expansion f(τ) =
∑∞

n=0 αf (n)qn.
Then we have in the notation of Definition 1.15

(f |Vm)(τ) = f(mτ) =

∞∑
n=0

αf (n)qmn,

(f |Um)(τ) =
∞∑
n=0

αf (mn)qn,

(f |SN,r)(τ) =
∑

n≡r (N)

αf (n)qn,

(f ⊗ χ)(τ) =

∞∑
n=0

αf (n)χ(n)qn.

Probably the most important operators on modular forms are Hecke operators. In order
to define these, we consider the set

Mm := {M ∈ Z2×2 : detM = m}

for m ∈ N. The group SL2(Z) acts on Mm by left and right multiplication on Mm,

SL2(Z) · Mm =Mm =Mm · SL2(Z).

As one can show without too much difficulty, the set

SL2(Z) :M :=

{(
a b
0 d

)
∈Mm : ad = m, d > 0, b ∈ {0, ..., d− 1}

}
10



is a full set of representatives of SL2(Z) \Mm, which is easily seen to have cardinality

#(SL2(Z) :Mm) = σ1(m),

so in particular, it is finite. With this we can define the following.

Definition 1.17. For m ∈ N and f ∈ Mk we define the mth Hecke operator acting on f
by

f |T (k)
m := mk/2−1

∑
M∈SL2(Z):M

f |kM.

Note that since the weight k is usually clear from context, we often write Tm instead

of T
(k)
m . We now record the action of Hecke operators on Fourier expansions.

Lemma 1.18. Let f ∈Mk with Fourier expansion f(τ) =
∑∞

n=0 αf (n)qn and let g = f |Tm.
Then g has a Fourier expansion with coefficients

αg(n) =
∑

d|gcd(m,n)

dk−1αf (mn/d2) mit n ≥

{
0 if αf (0) 6= 0

1 if αf (0) = 0.
.

From this we can deduce one of the most important properties of Hecke operators.

Theorem 1.19. For f ∈Mk and m ∈ N we have f |Tm ∈Mk. If f ∈ Sk, then so is f |Sk.

Proof. We first verify the transformation property. Since f |kγ = f for all γ ∈ SL2(Z), the
definition of Tm is independent of the choice of representatives and since for M ∈Mm we
also have Mγ ∈Mm, we have that

f |Tm|γ =
∑

M∈SL2(Z):Mm

(f |kM)|kγ =
∑

M∈SL2(Z):Mm

f |k(Mγ)

=
∑

M∈(SL2(Z):Mm)γ

f |kM = f |Tm

since (SL2(Z) :Mm)γ is simply another set of representatives of SL2(Z) \Mm. The claim
on cusp forms follows immediately from Lemma 1.18.

We recored some important facts about the Hecke operators themselves in the following
theorem, which we are not going to prove.

Theorem 1.20. Let m,n ∈ N be coprime, p a prime, r ∈ N, and f ∈ Mk. Then the
following are true.

(i) (f |Tm)|Tn = (f |Tmn), so the Hecke operators are multiplicative in their indices and
in particular, they commute.
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(ii) (f |Tpr)|Tp = f |Tpr+1 + pk−1f |Tpr−1 .

Since the Hecke operators are endomorphisms of the vector space Mk and they all
commute, it makes sense to ask for simultaneous eigenforms under all of them. These are
usually referred to as Hecke eigenforms and play a very important role in the theory, which
we cannot really go into here. We just record the following fact.

Theorem 1.21. Let f ∈Mk be not a constant with Fourier expansion f(τ) =
∑∞

n=0 αf (n)qn.
Then the following are equivalent.

(i) f is a simultaneous eigenform for all Tm, m ∈ N.

(ii) f is a simultaneous eigenform for all Tp, where p is prime.

(iii) αf (1) 6= 0 and for any coprime m,n ∈ N we have αf (m)αf (n) = αf (1)αf (mn), so
the Fourier coefficients of Hecke eigenforms are (essentially) multiplicative functions.

Remark 1.22. The multiplicativity of the Fourier coefficients of Hecke eigenform is an
extremely important property, for example when one talks about their L-functions (naively
speaking, one replaces qn in the Fourier expansion of a modular form by n−s for some
s ∈ C with Re(s) sufficiently large). This multiplicativity then translates to the fact that
these L-functions have so-called Euler products. A toy example of this is the Riemann zeta
function which for Re(s) > 1 can be written as

ζ(s) =

∞∑
n=1

n−s =
∏

p prime

(1− p−s)−1.

L-functions of modular forms have played a central role in the past century of number
theory, for example in the proof of Fermat’s Last Theorem or the Birch and Swinnerton-
Dyer Conjecture.

We note one important corollary of Theorem 1.21, which had been conjectured by
Ramanujan after he had computed about 30 values of the Ramanujan τ -function (i.e.
Fourier coefficients of the cusp form ∆) and first proven by Mordell, some 15 years before
Hecke set up his general theory of operators.

Corollary 1.23. The Ramanujan τ -function is multiplicative.

Proof. The space S12 is one dimensional, hence, since Hecke operators map cusp forms to
cusp forms, ∆ must be a simultaneous Hecke eigenform, so by Theorem 1.21 its Fourier
coefficients are multiplicative.
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2 More advanced theory

2.1 More general settings for modular forms

As we have already seen above, one can produce modular forms for subgroups of SL2(Z)
from those for the full modular group by slashing with matrices in GL+

2 (Q). We now give
a general definition of such forms.

Definition 2.1. Let Γ ≤ SL2(Z) be a finite-index subgroup of SL2(Z). Then a function
f : H→ C is called a modular form of weight k ∈ Z for Γ if

(i) f is holomorphic on H,

(ii) f |kγ ≡ f for all γ ∈ Γ,

(iii) f is holomorphic at the cusps, which means that for all γ ∈ SL2(Z) we have (f |kγ)(iv)
is bounded as v →∞.

If f satisfies instead of (iii) the stronger condition that (f |kγ)(iv)→ 0 as v →∞, we call
f a cusp form for Γ. We denote the spaces of weight k modular forms resp. cusp forms by
Mk(Γ) resp. Sk(Γ).

Remark 2.2. It should be remarked that since Γ has finite index in SL2(Z), one just needs
to check condition (iii) in Definition 2.1 for a finite set of representatives of SL2(Z)/Γ.
Note however that this is not always trivial to do in practice. Also, one cannot see in
general if f is a cusp form just by looking at its Fourier expansion.

It often happens in applications that one wants to relax Definition 2.1 even further by
requiring instead of (ii) the weaker condition that

f |kγ = ε(γ)f

for a certain type of function ε : Γ → C called a multiplier system. We won’t define this
term in full generality, one should essentially think of a one-dimensional representation of
Γ which (for convenience) should satisfy that there is some N ∈ N with ε(γ)N = 1 for all
γ ∈ Γ. The corresponding spaces are denoted by Mk(Γ, ε) resp. Sk(Γ, ε).

Remark 2.3. Note that if
(−1 0

0 −1

)
/∈ Γ, there might very well be modular forms of odd

weight for Γ (but none for negtive weight). If
(−1 0

0 −1

)
∈ Γ, then Mk(Γ, ε) can only be

non-trivial if ε(
(−1 0

0 −1

)
) = (−1)k.

There are the following very important subgroups of SL2(Z). For this let N ∈ N be
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some positive integer.

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

The group Γ(N) is called the principal congruence subgroup of level N . We also give the
indeces of these groups here.

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
,

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
.

Sometimes one also wants to consider modular forms of half-integral weight. Essen-
tially because the complex square-root function is inherently multivalued, this cannot be
achieved by simply allowing half-integer powers in the automorphy factors. Instead one is
essentially required to consider a different group under which these functions are invariant,
the metaplectic group. One can however circumvent this using the following definition.

Definition 2.4. A function f : H → C is called a modular form of weight k ∈ 1
2 + Z for

Γ0(4N) if

(i) f is holomorphic on H,

(ii) we have

(f |kγ)(τ) :=
( c
d

)(−4

d

)k
(cτ + d)−kf

(
aτ + b

cτ + d

)
= f(τ)

for all γ ∈ Γ0(4N) and all τ ∈ H, where here
(
a
b

)
denotes the Jacobi symbol and

we choose the principal branch of the square-root, which is positive for positive real
arguments,

(iii) f is holomorphic at the cusps.

Note that by choosing an appropriate multiplier system it is possible to have different
kinds of half-integer weight modular forms, as we see for instance in the context of the
Dedekind eta function in Section 2.2.2.
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Even though we have now relaxed the notion of modular form quite considerably, we
still have the following result.

Theorem 2.5. For any subgroup Γ ≤ SL2(Z) of finite index, multiplier system ε and
weight k ∈ 1

2Z, the space Mk(Γ, ε) is finite-dimensional, more precisely we have

dimCMk(Γ, ε) ≤ C(k + 1)(vol(Γ \ H) + 1),

for some constant C > 0, where vol(Γ\H) denotes the (hyperbolic) volume of a fundamental
domain of Γ.

One of the important appeals of the theory of modular forms is that it is a source
of sometimes surprising identities, which arise by comparing two modular forms. A first
example of this is the Hurwitz identity in Remark 1.11. To do this in general, the following
result often referred to as the Sturm bound, although it is essentially already due to Hecke,
is invaluable.

Theorem 2.6. Let f, g ∈Mk(Γ) for some Γ ≤ SL2(Z) of finite index with Fourier expan-
sions f(τ) =

∑∞
n=0 αf (n)qn and g(τ) =

∑∞
n=0 αg(n). Then we have f(τ) = g(τ) for all

τ ∈ H if and only if

αf (n) = αg(n) for all n ≤
(⌊

k

12

⌋
+ 1

)
[SL2(Z) : Γ].

So comparing two modular forms boils down to checking finitely many of their Fourier
coefficients, even though in many applications, the indeces of the groups involved are so
large that one has to do more or less clever tricks before it is feasible to actually do this in
practice.

2.2 Further examples

In this section, we will discuss some further examples of sources of modular forms.

2.2.1 Theta series

In this section let Q ∈ Zm×m>0 be a positive definite integer matrix whose diagonal entries
are even (one should think of the term even quadratic form here). Then we define the
Theta series of Q by

ΘQ(τ) :=
∑
`∈Zm

q`
trQ`/2 =

∑
n=0

rQ(n)qn,

where we set
rQ(n) := #{` ∈ Zm : `trQ` = 2n}.

These numbers rQ(n) have played an important role in number theory for centuries, dating
back at least to Fermat, possibly even Diophantus, who asked (and partly answered) the

15



question which numbers can be represented for instance as the sum of 2 or 4 squares. In
those cases, Q would just be twice the 2× 2 or 4× 4 identity matrix, so they asked when
rQ(n) 6= 0. It is even more interesting to ask for an (elementary) formula for rQ(n). This
can often be provided through the theory of modular forms by means of the following
important theorem due to Schoeneberg.

Theorem 2.7. The function ΘQ is a modular form of weight m/2 for some Γ0(N) and
some multiplier system which can be determined explicitly. In particular, if detQ = 1, we
have ΘQ ∈Mm/2(SL2(Z)).

The basic idea of the proof is essentially Poisson summation which in its simplest form
states that for a function f : R→ R with sufficiently rapid decay at ±∞ one has∑

n∈Z
f(n) =

∑
m∈Z

f̂(m),

where f̂ denotes the Fourier transform of f . As it turns out, the Fourier transform of
exp(−`trQ`πv) is closely related to exp(−`trQ`π/v), from where Schoeneberg’s theorem
can be inferred.

Example 2.8. It can be inferred from Theorem 2.7 that if detQ = 1, then we must have
8 | m, so the lowest dimension where the second part of that theorem applies is m = 8.
Indeed, there is an 8× 8 matrix with this property,

E8 =



4 −2 0 0 0 0 0 1
−2 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
1 0 0 0 0 0 0 2


So by Schoenebergs theorem, we know that ΘE8 ∈M4(SL2(Z)), which implies immediately,
because this space is one-dimensional, that ΘE8 = E4, so by comparing coefficients we find

rE8(n) = 240σ3(n)

for all n.

2.2.2 The Dedekind eta function

One extremely important modular form that can be used to build a surprisingly large
proportion of modular forms in general is the Dedekind eta function. It is defined by

η(τ) = q1/24
∞∏
n=1

(1− qn).

16



Recall that we already saw that

∆(τ) = q
∞∏
n=1

(1− qn)24 = η(τ)24.

So one may think of the eta function as the 24th root of ∆, which somewhat suggests that
it should be a modular form of weight 12/24 = 1/2 in some sense. Figuring this out in
detail however is not so easy. One has the obvious transformation behaviour

η(τ + 1) = eπi/12η(τ)

under translation. It is a bit less obvious to see that

η(−1/τ) =
√
τ/iη(τ),

where, as always we choose the principal branch of the square-root. So there is a reasonably
transformation behaviour under both generators of SL2(Z) which confirms that η is a
modular form of weight 1/2 with some multiplier system. It is however not at all easy to
figure out the general transformation behaviour of η under a general matrix

(
a b
c d

)
∈ SL2(Z).

This was first done by Dedekind who proved the following result.

Theorem 2.9. For
(
a b
c d

)
∈ SL2(Z) with c > 0 we have that

η

(
aτ + b

cτ + d

)
= exp

(
πi

(
a+ d

12c
+ s(−d, c)− 1

4

))√
cτ + d

i
η(τ),

where for coprime integers h, k, k > 0, we denote by

s(h, k) =

k−1∑
r=1

(
r

k
− 1

2

)(
rh

k
−
⌊
rh

k

⌋
− 1

2

)
the Dedekind sum.

Even though this multiplier system seems rather complicated, it is relatively well con-
trollable. For example we can use this (in principle) to show the following version of Euler’s
famous Pentagonal Number Theorem.

Corollary 2.10. We have

η(24τ) =
1

2

∑
n∈Z

χ12(n)qn
2 ∈ S1/2(576, χ12),

where χ12(n) =
(

12
n

)
.
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One important feature of the eta function is that it can be used to build new modular
forms in pretty easy way.

Definition 2.11. For N ∈ N and integers rd ∈ Z, d | N , we call the expression∏
d|N

η(dτ)rd

an eta quotient of level N .

By investigating the arithmetic properties of Dedekind sums, one can give explicit
criteria when an eta quotient of level N defines e.g. a modular form in Mk(Γ0(N)).
In many cases (but not all), the algebra of modular forms for Γ0(N), M∗(Γ0(N)) =⊕∞

k=0Mk(Γ0(N)), is even generated by such eta quotients.

2.2.3 Poincaré series

An important general way to construct modular forms in Mk(Γ, ε) in an almost completely
general setting is through so-called Poincaré series, which we briefly want to mention in
this section. The idea here is to average some function over the group Γ. More precisely,
let ϕ : H → C be a holomorphic function invariant under the group Γ∞ = StabΓ(∞).
In the case of Γ = Γ0(N) for instance, one has Γ∞ = 〈±T 〉, so that here, ϕ should be
one-periodic. With this, we formally define the series

P(τ) :=
∑

γ∈Γ∞\Γ

ε(γ)(ϕ|kγ)(τ).

It is easy to see that P is holomorphic on H and transforms like a modular form in Mk(Γ, ε),
provided that it converges absolutely and locally uniformly. If ϕ has moderate growth
approaching 0, this is the case as soon as the weight k is sufficiently large.

In many cases, one can give explicit formulas for their Fourier coefficients, often in
terms of infinite sums of so-called Kloosterman sums and Bessel functions, but we refrain
from giving these expressions here.

2.3 Jacobi forms

Jacobi forms are in a sense an amalgam of elliptic functions (i.e. doubly-periodic functions)
and modular forms. They have deep connections to many important types of modular
forms. Even though there are examples dating back to Jacobi (hence the name), their
systematic study originated from certain Siegel modular forms, which are a certain kind of
multivariable modular forms.

Definition 2.12. A function φ : C×H→ C is called a Jacobi form of weight k and index
m if

18



(i) φ is holomorphic on C× H,

(ii) we have

φ(z + λτ + µ, τ) = e−2πim(λ2τ+2λz)φ(z, τ)

for all λ, µ ∈ Z, z ∈ C, τ ∈ H ( elliptic transformation law),

(iii) we have

φ

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ke2πim cz2

cτ+dφ(z, τ)

for all
(
a b
c d

)
∈ SL2(Z), z ∈ C, τ ∈ H ( modular transformation law),

(iv) φ has a Fourier epansion

φ(z, τ) =
∑
n,r∈Z

c(n, r)qnζr,

where ζ = e2πiz with c(n, r) = 0 whenever n < r2/4m.

The space of Jacobi forms of weight k and index m is denoted by Jk,m.

The prototypical examples of Jacobi forms are the Jacobi theta functions

θm,`(z, τ) =
∑
r∈Z

r≡` (2m)

qr
2/4mζr,

which are Jacobi forms of weight 1/2 and index m for some subgroup of SL2(Z).
Here, we introduce the three most direct ways in which a Jacobi form can capture

modular forms. The first such way is through evaluation at so-called torsion points.

Theorem 2.13. Let φ ∈ Jk,m and α, β ∈ Q. Then φ(ατ + β, τ) is a modular form of
weight k for some explicitly known congruence subgroup depending on α, β and m.

Next to the Fourier expansion, a Jacobi form has at least two other important expan-
sion. The first one is discussed in the following theorem.

Theorem 2.14. Let φ ∈ Jk,m be a Jacobi form. Then we can write

φ(z, τ) =
∑

` (mod 2m)

h`(τ)θm,`(z, τ),

which we call the theta expansion of φ. The functions h` are then modular forms of weight
k − 1/2 for some specific subgroup of SL2(Z).

19



Remark 2.15. If one considers the vector ~h(τ) = (h0(τ), ..., h2m−1(τ)), one finds that
this vector transforms indeed like a modular form for the full modular group SL2(Z) for
a certain representation, called the Weil representation, meaning that there is a map ρ :
SL2(Z)→ GL2m(C), such that

~h

(
aτ + b

cτ + d

)
= ρ

((
a b
c d

))(
cτ + d

i

)k−1/2
~h(τ).

The third important expansion of a Jacobi form that yields modular forms is its Taylor
expansion in z = 0.

Theorem 2.16. Define the space of weak Jacobi forms J̃k,m by relaxing condition (iv) in

Definition 2.12 to c(n, r) = 0 whenever n < 0. Then the Taylor coefficients of φ ∈ J̃k,m in
z = 0 are essentially modular forms of even weight for SL2(Z). More precisely, there is an
explicit isomorphism

J̃k,m →

{
Mk ⊕Mk+2 ⊕ ...⊕Mk+2m k even,

Mk+1 ⊕Mk+3 ⊕ ...⊕Mk+2m−3 k odd.

For even weight, the isomorphism is given by

φ(z, τ) 7→

 ∑
` (2m)

[h`(τ), θ(0, τ)]ν

m

ν=0

,

where [•, •]ν denotes the νth Rankin-Cohen bracket, a bilinear differential operator on
modular forms that acts essentially like a product. A similar formula holds also in the case
of odd weight.

2.4 Singular moduli

This sections follows closely the exposition on the subject in Section 6 of [1-2-3].
The subject of singular moduli is certainly one of the most important in the arithmetic

theory of modular forms. Let us motivate it by the following observation that

eπ
√

163 = 262537412640768743.999999999999250072...

is surprisingly close to an integer. Here we would like to briefly outline an explanation for
this phenomenon.

For this we look at Klein’s modular invariant

j(τ) :=
E4(τ)3

∆(τ)
= q−1 + 744 + 196 884q + 21 493 760q2 +O(q3).
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This clearly transforms like a modular form of weight 0, so we have indeed

j

(
aτ + b

cτ + d

)
= j(τ),

but it has a pole at infinity and is therefore not a modular form in our sense, but rather a
modular function, i.e. a meromorphic function transforming like a modular form of weight
0. In a sense, j can be viewed as the most important modular function of them all.

Theorem 2.17. (i) Every modular function for SL2(Z) is a rational function in j.

(ii) Every modular function for SL2(Z) which is holomorphic in H (but may have a pole
at ∞) is a polynomial in j.

(iii) Every modular function for any finite index subgroup of SL2(Z) is an algebraic func-
tion in j.

One can compute several special values of j, e.g.

j(ρ) = 0, j(i) = 1728, j(i
√

2) = 8000, j

(
1 + i

√
7

2

)
= −3375,

j

(
1 + i

√
15

2

)
= −191025 + 85995

√
5

2
, ...

It is a rather striking phenomenon, when a transcendental function evaluated at algebraic
arguments again gives algebraic values. In this case, the reason lies in the following theorem.

Theorem 2.18. For every m ∈ N there is a polynomial Ψm(X,Y ) ∈ Z[X,Y ] of degree
σ1(m) in both variables such that

Ψm(j(M.τ), j(τ)) ≡ 0

for all M ∈Mm with Mm as in Section 1.3.

Sketch of proof. Consider ∏
M∈SL2(Z):Mm

(X − j(M.τ)) =: Ψm(X, j(τ)).

Then this is well defined because j(γ.τ) = j(τ) for all γ ∈ SL2(Z) and we have

Ψm(X, j(γ.τ)) = Ψm(X, j(τ))

because Mm · γ = Mm (recall that we used a similar argument in the context of Hecke
operators). This means that the coefficient of Xr in Ψm(X, j(τ)) is a modular function in
τ for SL2(Z) which has no poles in H (because none of the j(M.τ) do), so each coefficient
is a polynomial in j(τ), which yields the definition of a polynomial Ψm(X,Y ) ∈ C[X,Y ].
For the sake of brevity, we omit the proof that Ψm(X,Y ) has indeed integral coefficients
and the same degree in both variables.

21



This yields the following theorem.

Theorem 2.19. Let z ∈ H be a CM point, i.e. there are A,B,C ∈ Z sucht that Az2 +
Bz + C = 0. Then j(z) is an algebraic integer.

Sketch of proof. The matrix M =
(
B C
−A 0

)
satisfies M.z = z as one immediately checks.

Since detM = AC, we have

ΨAC(j(M.z), j(z)) = ΨAC(j(z), j(z)) = 0.

Remark 2.20. One should say about the above proof sketch that it is not necessarily clear
that Ψm(X,X) is not just the zero polynomial (in fact this can happen). But since one
can redefine Ψm(X,Y ) by dividing out all factors (X − Y ) without changing the important
properties in Theorem 2.18, this can be reconciled.

Remark 2.21. One can in fact show, e.g. by using (iii) of Theorem 2.17, that f(z) is an
algebraic number (not necessarily integral) for every modular function for any finite index
subgroup of SL2(Z) with algebraic Fourier coefficients.

The values j(z) for CM points z play an important role in class field theory, as we shall
explain now. Let Q(X,Y ) = AX2 + BXY + CY 2 =: [A,B,C] ∈ Z[X,Y ] be a binary
quadratic form of discriminant D = B2 − 4AC < 0 and A > 0 and define zQ ∈ H by
Q(zQ, 1) = 0. Also define QD = {[A,B,C] : B2− 4AC = D} as the set of quadratic forms
of discriminant D.

Theorem 2.22. Let D < 0 be a fundamental discriminant, i.e. the discriminant of a
quadratic field, and set

HD(X) =
∏

Q∈SL2(Z)\QD

(X − j(zQ)).

The HD(X) ∈ Z[X] and degHD(X) = h(D), the class number of D. The splitting field
of HD(X) is the so-called Hilbert class field of Q(

√
D), i.e. a Galois extension of Q(

√
D)

whose Galois group is isomorphic to the ideal class group of Q(
√
D).
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3 Applications to partitions

In this section, we explore some applications of the theory of modular forms to partitions.
It is well-known that the generating function of the partition function

p(n) := #{(λ1, ..., λ`) : λ1 ≥ ... ≥ λ` > 0, λ1 + ...+ λ` = n}

has a very simple description as an infinite product,

P (q) =

∞∑
n=0

p(n)qn =

∞∏
n=1

(1− qn)−1 =
q1/24

η(τ)
.

Hence, P (q) is essentially a weakly holomorphic modular form (i.e. it has poles at cusps)
of weight −1/2 with some multiplier system, namely the inverse of that of the Dedekind
eta function. We want to exploit this fact to say something about the numbers p(n).

3.1 Asymptotics

This part of the exposition is essentially a short summary of Chapter 5 of [Apo].
By Cauchy’s Theorem, we have that

p(n) =
1

2πi

∫
C

P (q)

qn+1
dq,

where C is a simple, closed contour inside the unit disk looping around q = 0 exactly once.
From the product expansion we can see that P (q) has a singularity whenever q ap-

proaches a root of unity. The idea now is to choose a special contour C and let it approach
the unit circle form inside in a certain way to be able to replace P (q) in Cauchy’s Theorem
above by a more elementary function plus some (small) error. For this we divide C into
parts Ch,k for coprime h, k with k ≤ N for some previously chosen N ∈ N, which are close
to the roots of unity e2πih/k of order up to N ,

p(n) =
1

2πi

∫
C

P (q)

qn+1
dq =

N∑
k=1

∑
h (k)∗

∫
Ch,k

P (q)

qn+1
dq =

N∑
k=1

∑
h (k)∗

∫
Ch,k

ψh,k(q)

qn+1
dq + “Error”,

where here and from now on,
∑

a (b)∗ means a sum over all a = 0, ..., b− 1 coprime to b.
In order to do this, we require the following lemma which is a convenient reformulation

of Dedekind’s Theorem 2.9.

Lemma 3.1. Let q = exp
(

2πih
k −

2πz
k2

)
, q′ = exp

(
2πiH
k − 2π

z

)
with Re(z) > 0, gcd(h, k) = 1

and hH ≡ −1 (mod k). Further define ω(h, k) = eπis(h,k) and

Ψk(z) = z1/2 exp
( π

12z
− πz

12k2

)
.

Then we have

P (q) = ω(h, k)
Ψk(z)

k1/2
P (q′).
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Next, following Rademacher, we choose a special path of integration. Suppose C is a
circular contour inside the unit disk (in the q-plane). Then this essentially corresponds
to a line-integral from i to i + 1 in the τ -plane. Now we replace this line integral by an
integral along the arcs of so-called Ford circles (see Figure 2). Denote this path by P(N).

Figure 2: Rademacher path P(3) (graphic from [Apo, Figure 5.5]).

By making an appropriate change of variables we can write

p(n) =
1

2πi

∑
C

P (q)

qn+1
dq

=

∫ i+1

i
P (e2πiτ )e−2πinτdτ

=

∫
P(N)

P (e2πiτ )e−2πinτdτ

=

N∑
k=1

∑
h (k)∗

ik−2e−2πinh/k

∫ z2(h,k)

z1(h,k)
e2πnz/k2P

(
exp

(
2πih

k
− 2πz

k2

))
dz,
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where z1(h, k) and z2(h, k) are the images of points where the Ford circles in the path P(N)
touch under the change of variables τ = h

k + iz
k2

which occurred in the last step and the
contour becomes the arc of a circle around 1/2 of radius 1/2 joining these points. Using
Lemma 3.1, one can then write

p(n) =
∑
h,k

ik−5/2ω(h, k)e−2πinh/k(I1(h, k) + I2(h, k)),

where
∑

h,k for the double sum over h and k and we define

I1(h, k) =

∫ z2(h,k)

z1(h,k)
Ψk(z)e

2πhz/k2dz

and

I2(h, k) =

∫ z2(h,k)

z1(h,k)
Ψk(z)

[
P

(
exp

(
2πiH

k
− 2π

z

))
− 1

]
e2πnz/k2dz.

One can show now that |I2(h, k)| ≤ Ck3/2N−3/2 for some constant C > 0, whence∣∣∣∣∣∣
∑
h,k

ik−5/2ω(h, k)e−2πinh/kI2(h, k)

∣∣∣∣∣∣ ≤ CN−1/2.

Therefore we find that

p(n) =
∑
h,k

ik−5/2ω(h, k)e−2πinh/kI1(h, k) +O(N−1/2).

Now letting N → ∞ and evaluating the integral I1(h, k) explicitly one arrives at the
following important theorem due to Rademacher.

Theorem 3.2. For n ∈ N, we have the following formula for p(n),

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)k1/2 d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


with

Ak(n) =
∑
h (k)∗

eπis(h,k)−2πinh/k.

Essentially by specializing to the term k = 1 in the above series for p(n), one recovers
an older result due to Hardy and Ramanujan.
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Theorem 3.3. As n→∞, we have the asymptotic equality

p(n) ∼ 1

4n
√

3
eπ
√

2n/3.

Remark 3.4. Hardy and Ramanujan in fact had a full asymptotic expansion for p(n),
using essentially the argument outlined here, but their expansion does not give a convergent
series. Some 20 years after their work was published, Rademacher realized that the proof
by Hardy-Ramanujan could be modified slightly to yield the convergent series expression in
Theorem 3.2.

It should also be pointed out that there are many much easier ways to obtain just the
main term of the asymptotic expansion given in Section 3.1, one very important one being
to use a so-called Tauberian theorem due to Ingham.

3.2 Congruences

This section is essentially a short summary of parts of Chapter 5 of [Ono].
Many people know the famous Ramanujan congruences,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Over the last 100 years, many proofs of these congruences, both using formal or q-series, but
also modular forms techniques, have been published, also generalizations for congruences
modulo powers of 5, 7, and 11 have been found (some of which have been conjectured by
Ramanujan). In this last section, we want to construct further congruences of the form

p(An+B) ≡ 0 (mod M).

In fact, for any M coprime to 6, there are infinitely many non-nested arithmetic sequences
An+B, such that such a congruence holds. Here are some examples modulo larger primes,

p(17 · 414 + 1122838) ≡ 0 (mod 17),

p(19 · 1014 + 815655) ≡ 0 (mod 19),

p(23 · 54 + 3474) ≡ 0 (mod 23),

...

In this last section, we would like to explain the outline the proof of the following theorem
due to Ahlgren and Ono underlying these and in fact all (known) congruences for p(n).
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For this we define for a prime ` ≥ 5 the set

S` :=

{
β ∈ {0, ..., `− 1} :

(
β − δ`
`

)
∈ {0, ε`}

}
where δ` := `2−1

24 and ε` :=
(−6
`

)
.

Theorem 3.5. Let ` ≥ 5 prime, m ∈ N, β ∈ S`, then a positive proportion of primes
Q ≡ −1 (mod 24`) satisfy

p

(
Q3n+ 1

24

)
≡ 0 (mod `m)

for all n ≡ 1− 24β (mod 24`) and gcd(Q,n) = 1.

The proof of this result hinges on the following one.

Proposition 3.6. Given a prime ` ≥ 5, m ∈ N, β ∈ S`, there exists λ`,m ∈ Z and
F`,m,β ∈ Sλ`,m+1/2(576`5) ∩ Z[[q]] such that

F`,m,β ≡
∞∑
n=0

p(`n+ β)q24`n+24`β−1 (mod `m).

Sketch of proof. The function

E`,t(τ) :=
η(τ)`

t

η(`tτ)

is a modular form of weight (`t − 1)/2 for the group Γ0(`t) with multiplier system χ`,t =(
(−1)(`

t−1)/2`t

·

)
, which follows from Dedekind’s Theorem 2.9. It is almost a cusp form in the

sense that it vanishes at all cusps except∞, i.e. (E`,t|γ)(iv)→ 0 for all γ ∈ SL2(Z)\Γ0(`t)

and we have E`
m−1

`,t ≡ 1 (mod `m).
Next we define

f`(τ) :=
η(`τ)`

η(τ)
=:

∞∑
n=0

a`(n)qn,

which defines a modular form in M(`−1)/2(Γ0(`),
( ·
`

)
). We can also write this as

f`(τ) =
∞∑
n=0

p(n)qn+δ`

∞∏
n=1

(1− q`n)`.

We require the following twisted version of f`,

f̃`(τ) :=

∞∑
n=1

(
1− ε`

(n
`

))
a`(n)qn,
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which through standard theory of modular operators as outlined in Section 1.3 defines a
modular form in M(`−1)/2(Γ0(`3),

( ·
`

)
). Since f̃` vanishes at the cusp ∞ and the function

E`,t defined above vanishes at all other cusps, the function

f`,m′(τ) := E`
m′

`,t (τ)f̃`(τ)

is in fact a cusp form on Γ0(`3) with multiplier system χ`,t
( ·
`

)
with k = m′(`t − 1)/2 +

(`− 1)/2, provided that m′ is sufficiently large. We also have

f`,m′ ≡ f̃` (mod `m)

since E`,t ≡ 1 (mod `m) and ord∞(f`,m′) ≥ δ` + 1 because ord∞(f`) ≥ δ` and by construc-
tion, the leading term in f`(τ) disappears in F̃`(τ). Thus the function

F`,m′(τ) :=
f`,m′(τ)

η(`τ)`

vanishes at infinity and hence is a cusp form if m′ is sufficiently large. By noting that

F̃`,m′(τ) ≡
∑

n≡0 (`)

p(n− δ`)qn−`
2/24 + 2

∑
(n` )=−ε`

p(n− δ`)qn−`
2/24 (mod `m).

Again through application of standard operators, we find that F̃`,m′(24τ) ∈ Sk′(Γ0(576`3))
for m′ sufficiently large for suitable k′. The result now follows by applying an appropriate
sieve operator.

To complete the proof of Theorem 3.5, we need the following general lemma on Hecke
operators for half-integer weight modular forms. For prime index p coprime to 4N , one can
define the Hecke operator Tp2 acting on Sλ+1/2(Γ0(4N)) in terms of the operators defined
in Section 1.3 by

f |Tp2 := f |Up2 +

(
(−1)λ

p

)
pλ−1f ⊗

(
·
p

)
+ p2λ−1f |Vp2 .

Lemma 3.7. Let N ∈ N, λ ∈ N and let f ∈ Sλ+1/2(Γ0(4N)) with integer Fourier co-
efficients. Then for any M ∈ N, a positive proportion of primes p ≡ −1 (mod 4MN)
satisfies

f |Tp2 ≡ 0 (mod 0) (mod M).

If we now apply the above lemma to the cusp form F`,m,β from Proposition 3.6, we find
that for a positive proportion of primes Q ≡ −1 (mod 24`) satisfies

F`,m,β|TQ2 ≡ 0 (mod `m).
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But

F`,m,β(τ) ≡
∞∑
n=0

a`,m,β(n)qn ≡
∑

n≡24β−1 (24`)

p((n+ 1)/24)qn (mod `m).

By looking at the Qnth coefficient of F |TQ2 , one finds that

0 ≡ a`,m,β(Q3n) ≡ p
(
Q3n+ 1

24

)
(mod `m),

which is the claim from Theorem 3.5.
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