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Preface

The aim of this book is to introduce Brownian motion as cdmtibect of probability theory
and discuss its properties, putting particular emphasgaomple path properties. Our hope
is to capture as much as possible the spirit of Paul Lévy’'sstigations on Brownian
motion, by moving quickly to the fascinating features of Bmwnian motion process,
and filling in more and more details into the picture as we naleag.

Inevitably, while exploring the nature of Brownian path®@ncounters a great variety
of other subjects: Hausdorff dimension serves from earlinghe book as a tool to quan-
tify subtle features of Brownian paths, stochastic intlgnalps us to get to the core of the
invariance properties of Brownian motion, and potentialtty is developed to enable us
to control the probability the Brownian motion hits a givest.s

An important idea of this book is to make it ageractiveas possible and therefore
we have included more than 100 exercises collected at thefezath of the ten chapters.
Exercises marked with the symbblhave either a hint, a reference to a solution, or a full
solution given at the end of the book. We have also marked sbew@ems with a star to
indicate that the results will not be used in the remainde¢hefbook and may be skipped
on first reading. At the end of the book we have given a shdrbfiselected open research
problems dealing with the material of the book.

This book grew out of lectures given by Yuval Peres at theSied Department, Uni-
versity of California, Berkeley in Spring 1998. We are gfakteo the students who at-
tended the course and wrote the first draft of the notes: D@&gyaia, Yoram Gat, Diogo
A. Gomes, Charles Holton, Frédéric Latrémoliére, Wei LinBéorris, Jason Schweins-
berg, Bélint Virag, Ye Xia and Xiaowen Zhou. The first draftloése notes, about 80 pages
in volume, was edited by Balint Virag and Elchanan Mossel ainithis stage corrections
were made by Serban Nacu and Yimin Xiao. The notes were lalist¢d via the internet
and turned out to be very popular — this demand motivated egpand these notes to a
full book hopefully retaining the character of the origimates.

Peter Morters lectured on the topics of this book in the Gasel&chool in Mathemat-

ical Sciences at the University of Bath in Autumn 2003, tteaake due to the audience,
and in particular to Alex Cox and Pascal Vogt, for their ciinitions. Yuval Peres thanks

viii



Preface iX

Pertti Mattila for the invitation to lecture on this matdré the joint summer school in
Jyvaskyla, August 1999, and Peter Mdrters thanks Michaet@&zow for the invitation to
lecture at the Berlin graduate school in probability in Buad, April 2003.

When it became clear that the new developments around theestiicL oewner evolu-
tion would open a new chapter in the story of Brownian motiendiscussed the inclusion
of a chapter on this topic. Realising that doing this rigatgun detail would go beyond
the scope of this book, we asked Oded Schramm to provide amdpydescribing the new
developments in a less formal manner. Oded agreed and iratedétarted designing the
appendix, but his work was cut short by his tragic and prereadi@ath in 2008. We are
very grateful that Wendelin Werner accepted the task of detimg this appendix at very
short notice.

Several people read drafts of the book at various stageplisdps with helpful lists
of corrections, and suggested or tested exercises anémefs. We thank Anselm Adel-
mann, Tonci Antunovic, Christian Bartsch, Noam Bergem Iiéng, Uta Freiberg, Nina
Gantert, Subhroshekhar Gosh, Ben Hough, Davar Khoshmewiahard Kiefer, Achim
Klenke, Michael Kochler, Manjunath Krishnapur, David LievNathan Levy, Arjun Mal-
hotra, Jason Miller, Asaf Nachmias, Weiyang Ning, Marceigi&se, Ron Peled, Jim Pit-
man, Michael Scheutzow, Perla Sousi, Jeff Steif, Kamil 8got, Ran Tessler, Hermann
Thorisson, and Brigitta Vermesi.

We also thank several people who have contributed pictnsesely Ben Hough, Mar-
cel Ortgiese, Yelena Shvets and David Wilson. The cover sleoplanar Brownian motion
with points coloured according to the occupation measure shall neighbourhood, we
thank Raissa d’'Souza for providing the picture.

Peter Morters
Yuval Peres



Frequently used notation

Numbers:
[z] the smallest integer bigger or equakto
|z the largest integer smaller or equahto

Re(z),Im(z) thereal, resp. imaginary, part of the complex number

i the imaginary unit

Topology of Euclidean spaceR?:

R¢ Euclidean space consisting of all column vectors (z1,...,z4)T

| -] Euclidean normz| =

B(x,r) the open ball of radius > 0 centred inx € RY,
i.e. B(x,r) ={y e R%: |z —y| <r}

U closure of the sel/ ¢ R?
ou boundary of the set’ ¢ R?

B(A)  the collection of all Borel subsets of C R?

Binary relations:

aNb the minimum ofa andb

aVvb the maximum ot andb

x<y the random variableX andY” have the same distribution
X, 4 x the random variableX,, converge taX in distribution,

see Section 12.1 in the appendix

a(n) < b(n) the ratio of the two sides is bounded from above and below
by positive constants that do not dependnon

a(n) ~ b(n) the ratio of the two sides converges to one

Vectors, functions, and measures:
15 d x didentity matrix

14 indicator function withl 4 (z) = 1 if z € A and0 otherwise



Frequently used notation Xi

O Dirac measure with mass concentratedwon
i.e.0,(A) =1if z € Aand0 otherwise
fr the positive part of the functiof, i.e. f™(x) = f(z) V0
f- the negative part of the functiofy i.e. f~(z) = —(f(z) A 0)

Ly or L Lebesgue measure @

O r (d — 1)-dimensional surface measure @8(z,r) C R?
if x =0,r =1 we also writes = 0¢ 3

Ox,r

W uniform distribution or9B(z, r), w,,, = o PBE)

if z =0,r =1 we also writecw = @ ;
Function spaces:

C(K) the topological space of all continuous functions on the gachk C R¢,
equipped with the supremum nofiif|| = sup,cx | f(2)]

L?(u)  the Banach space of equivalence classes of funciiomish finite LP-norm
1/
151 = ([ 7)1 0 = £ we wrienr (),

DJ[0,1] the Dirichlet space consisting of functiofise CJ0, 1] such that
for somef € L2[0,1] and allt € [0, 1] we haveF(t) = fot f(s)ds.

Probability measures andos-algebras:

P, a probability measure on a measure spdzeA) such that
the procesg B(t): ¢ > 0} is a Brownian motion started in

E. the expectation associated with

p(t,z,y) the transition density of Brownian motion
P.{B(t) € A} = [, p(t,2,y)dy
FO(t) the smallest-algebra that makegB(s): 0

< s < t} measurable
Fr(t) the right-continuous augmentatidfit () = (., F°(s).

Stopping times:

For any Borel setsl;, A, ... C R? and a Brownian motio3 : [0, c0) — RY,
7(A7) :=1inf{t > 0: B(t) € A1}, the entry time inta4,,

4) inf{t > 7(Ay1,...,An_1): B(t) € A,}, if7(41,...,Ap_1) < 00,
T o, otherwise.

the time to enter; and then4, and so on until4,,.



Xii Frequently used notation
Systems of subsets iR

For any fixedd-dimensional unit cub€ube = x + [0, 1]% we denote:

9, family of all half-open dyadic subcubds = = + Hle [kiQ*k, (k; +1)2~

ki €{0,...,2F — 1}, of side lengtr2=*
©  all half-open dyadic cube® = J;-, Dy, in Cube

¢, family of all compact dyadic subcubé3 = x + Hf-l:l [1@2"“, (ki +1)2~

ki €{0,...,2F — 1}, of side lengtr2—*
¢  all compact dyadic cubes = | J;- , € in Cube.
Potential theory:

For a metric spacéF, p) and mass distribution on E:

dalx) the a-potential of a point: € E defined ag, (z) = [ pf(lg(,j))a :
I () the a-energy of the measuredefined ad,, (1) = [/ d“p((zx ‘;“(” ,

k) C Rd,

k} C Rd,

Cap,(E) thea-capacity ofE defined asCap,, (E) = sup{lo (1) *: p(E) = 1}.

Fora general kerndl: E x E — [0, o0]:
U,(x) the potential of: atz defined ad/,,(z) = [ K(z,y) du(y),

Trc () K-energy ofu defined ad i (1 ffK (x,y) du(z) duly),
Capg (E) K-capacity ofE defined aCap i (E) = sup{Ix(u) ™ : u(E) =
If K(z,y) = f(p(z,y)) we also write:
If(p) instead ofl i (1),
Cap,(E) instead ofCapy (E).
Sets and processes associated with Brownian motion:

For a linear Brownian motiofiB(t): ¢t > 0}:

{M(t):t >0} the maximum process defined BY(t) = sup,, B(s),
Rec the set of record point& > 0: B(t) = M (¢)},
Zeros the set of zero§t > 0: B(t) = 0}.
For a Brownian motio{ B(¢): t > 0} inR% ford > 1
Graph(A) the graph{(t, B(t)): t € A} C R4*1,

Range(A) therange(B(t): t € A} C R

1.

Occasionally these notions are used for functign§), co) — R? which are not necessar-
ily Brownian sample paths, which we indicate by appendinglarglexf to the notion.



Motivation

Much of probability theory is devoted to describing thmacroscopic pictureemerging
in random systems defined by a hostroicroscopic random effectsBrownian motion
is the macroscopic picture emerging from a particle movewgdomly ind-dimensional
space without making very big jumps. On the microscopicllexeany time step, the
particle receives a random displacement, caused for exabypbther particles hitting it
or by an external force, so that, if its position at time zexdy, its position at timen is
given asS,, = Sy + Z?Zl X, where the displacemenfs;, X5, X3, ... are assumed to
be independent, identically distributed random variablih values inR¢. The process
{Sn: n > 0} is arandom walk, the displacements represent the micrasitgguts. When
we think about the macroscopic picture, what we mean is guessuch as:

e DoessS,, drift to infinity?

e DoesS, return to the neighbourhood of the origin infinitely often?

What is the speed of growth afax{|S1|,...,|S,|} asn — cc?

What is the asymptotic number of windings{d,,: n > 0} around the origin?

It turns out that not all the features of the microscopic ispeontribute to the macro-
scopic picture. Indeed, if they exist, only theeanand covarianceof the displacements
are shaping the picture. In other words, all random walkssghdisplacements have the
same mean and covariance matrix give rise to the same mapiogzocess, and even the
assumption that the displacements have to be independéndemtically distributed can
be substantially relaxed. This effect is callediversality and the macroscopic process is
often called auniversal object It is a common approach in probability to study various
phenomena through the associated universal objects.

If the jumps of a random walk are sufficiently tame to beconwigible in the macro-
scopic picture, in particular if it has finite mean and vacrany continuous time stochas-
tic process B(t): t > 0} describing the macroscopic features of this random walkisho
have the following properties:

(1) foralltimes0 < t; <t2 < ... < t, the random variables
B(tn) — B(tn—1), B(tn—1) — B(tn—2), ..., B(ta) — B(t1)

are independent; we say that the procesdidependent increments



2 Motivation

(2) the distribution of the incremei(¢ + h) — B(t) does not depend anwe say that
the process hastationary increments
(3) the proces$B(t): t > 0} has almost surely continuous paths.

It follows (with some work) from the central limit theoremaththese features imply that
there exists a vectgr € R? and a matrix. € R?*9 such that

(4) for everyt > 0 andh > 0 the incremen3(¢ + h) — B(t) is multivariate normally
distributed with mear . and covariance matrixx- ™.

Hence any process with the features (1)-(3) above is clarset! by just three parameters,

e theinitial distribution, i.e. the law ofB(0),
¢ thedrift vector p,
¢ thediffusion matrixX.

The proces$B(t): t > 0} is called aBrownian motion with drify, and diffusion matrix..
If the drift vector is zero, and the diffusion matrix is theidity we simply say the process
is aBrownian motionIf B(0) = 0, i.e. the motion is started at the origin, we use the term
standard Brownian motian

Suppose we have a standard Brownian moff@h(¢): ¢ > 0}. If X is a random
variable with values ifR¢, 1, a vector inR? andX ad x d matrix, then it is easy to check
that{B(t): t > 0} given by

B(t) = B(0) + ut + £B(t), fort > 0,
is a process with the properties (1)-(4) with initial distriion X, drift vectory and diffu-

sion matrixX. Hence the macroscopic picture emerging from a random wilk fimite
variance can be fully described by a standard Brownian motio

Fig. 0.1. The range of a planar Brownian motipB(¢): 0 < ¢ < 1}.



Motivation 3

In Chapter 1we start exploring Brownian motion by looking at dimensiba: 1. Here
Brownian motion is a random continuous function and we asduglis regularity, for
example: For which parametessis the random functior3: [0,1] — R «-H6lder con-
tinuous? Is the random functiaB: [0,1] — R differentiable? The surprising answer to
the second question was given by Paley, Wiener and Zygmub@38: Almost surely, the
random functionB: [0, 1] — R is nowheredifferentiable! This is particularly interesting,
as itis not easy to construct a continuous, nowhere diffelele function without the help
of randomness. We give a modern proof of the Paley, WieneZggchund theorem, see
Theorem 1.30.

In Chapter 2we move to general dimensian We prove and explore the strong Markov
property, which roughly says that at suitable random timesvBian motion starts afresh,
see Theorem 2.16. Among the facts we derive from this prp@esd that the set of all
points visited by a Brownian motion i@ > 2 has area zero, but the set of times when
Brownian motion ind = 1 revisits the origin is uncountable. Besides these samiilte pa
properties, the strong Markov property is also the key toesémscinating distributional
identities. It enables us to understand, for example, tbegas{M (t): t > 0} of the
running maximal/(t) = maxogs<: B(s) of Brownian motion ind = 1, the process
{T,: a > 0} of the first hitting timesT,, = inf{t > 0: B(t) = a} of level a of a
Brownian motion ind = 1, and the process of the vertical first hitting positions eflihes
{(z,y) € R?: x = a} by a Brownian motion inl = 2, as a function ofi.

In Chapter 3we explore the rich relations of Brownian motion to harmaanalysis.
In particular we learn how Brownian motion helps solving tfessicaDirichlet problem

Fig. 0.2. Brownian motion and the Dirichlet problem

For its formulation in the planar case, fix a connected opefl se R? with nice boundary,
and lety: OU — R be continuous. The harmonic functiofis U — R on the domair/
are characterised by the differential equation

o f 0% f

aTC%(I) + 87:3(95) —0 foralzcU.
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The Dirichlet problem is to find, for a given domaih and boundary date, a continu-
ous functionf: U U 90U — R, which is harmonic oV and agrees witlp on 9U. In
Theorem 3.12 we show that the unique solution of this probtegiven as

f(x) =E[e(B(T))| B(0) = z], forz € U,

where{B(t): t > 0} is a Brownian motion and” = inf{t > 0: B(t) ¢ U} is the first
exit time fromU. We exploit this result, for example, to show exactly in whitmensions
a particle following a Brownian motion drifts to infinity, s&heorem 3.20.

In Chapter 4we provide one of the major tools in our study of Brownian rontithe
concept of Hausdorff dimension, and show how it can be agypti¢he context of Brownian
motion. Indeed, when describing the sample paths of a Binwniotion one frequently
encounters questions of the size of a given set: How big is¢hef all points visited by a
Brownian motion in the plane? How big is the set of doubleawof a planar Brownian
motion? How big is the set of times where Brownian motiontsisi given set, say a
point? For an example, I€tB(t): ¢ > 0} be Brownian motion on the real line and look
at Zeros = {t > 0: B(t) = 0}, the set of its zeros. Although— B(t) is a continuous
function, Zeros is an infinite set. This set Isig, as it is an uncountable set without isolated
points. However, it is alsesmallin the sense that its Lebesgue measure is zero. Indeed,
Zeros is a fractal set and we show in Theorem 4.24 that its Hausdorfénsion isl /2.

In Chapter 5we explore the relationship of random walk and Brownian pratiWe
prove a theorem which justifies our initial point of view tiBabwnian motion is the macro-
scopic picture emerging from a large class of random walkg:DBnsker’s invariance
principle one can obtain Brownian motion by taking scaled copies ohdam walk and
taking a limit in distribution. This result is called an imiance principle because all ran-
dom walks whose increments have mean zero and finite variessamntially produce the
same limit, a Brownian motion. Donsker’s invariance pnieiis also a major tool in
deriving results for random walks from those of Brownian imiof and vice versa. Both
directions can be useful: In some cases the fact that Browniztion is a continuous time
process is an advantage over discrete time random walksexXaonple, as we discuss be-
low, Brownian motion has scaling invariance propertiesiciwitan be a powerful tool in
the study of its path properties. In other cases it is a majeaatage that (simple) ran-
dom walk is a discrete object and combinatorial argumemnisbeathe right tool to derive
important features. Chapter 5 offers a number of case sttdidiehe mutually beneficial
relationship between Brownian motion and random walks. d&dyDonsker’s invariance
principle, there is a second fascinating aspect of theiogiship between random walk and
Brownian motion: Given a Brownian motion ih = 1, we can sample from its path at
certain carefully chosen times, and thus construct evergam walk with mean zero and
finite variance. Finding these times is called Bleorokhod embedding problesind we
shall give two different solutions to it. The embedding gdenb is also the main tool in our
proof of Donsker’s invariance principle.

In Chapter 6we look again at Brownian motion in dimensidn= 1. For a random
walk on the integers running for a finite amount of time, we dafine a ‘local time’ at a
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point z € Z by simply counting how many times the walk visitsCan we define an anal-
ogous quantity for Brownian motion? In Chapter 6 we show thiatis possible, and offer
an elegant construction of Brownian local time based on daanwalk approximation. A
first highlight of this chapter arises when we aim to descitigdocal times: If a Brownian
path is started at some positive lewet- 0 and stopped upon hitting zero, we can describe
the process of local times inas a function ofz, for 0 < = < a. The resulting process is
distributed like the square of the modulus of a planar Brewmhotion. This is the famous
Ray—Knight theoremThe second highlight of this chapter is related to the matdilocal
time at a fixed point. The Brownian local time:inis no longer the number of visits to the
point z by a Brownian motion — ifz is visited at all, this number would be infinite — but
we shall see that it can be described as the Hausdorff meaftive set of times at which
the motion visitse.

Because Brownian motion arises as the scaling limit of atgradety of different
random walks, it naturally has a number of invariance priogger One of the most im-
portant invariance properties of Brownian motiorcanformal invariancewhich we dis-
cuss inChapter 7 To make this plausible think of an angle-preserving lineapping
L: R? — R?, like a rotation followed by multiplication by. Take a random walk started
in zero with increments of mean zero and covariance matexdbntity, and look at its
image underL. This image is again a random walk and its increments areitalistd
like LX. Appropriately rescaled as in Donsker’s invariance ppleiboth random walks
converge to a Brownian motion, the second one with a sligliffgrent covariance matrix.
This process can be identified as a time-changed BrowniaiompB (a?t): ¢t > 0}. This
easy observation has a deeper, local counterpart for pBamian motion: Suppose that
¢: U — V is a conformal mapping of a simply connected donfaic R? onto a domain
V c R2. Conformal mappings are locally angle-preserving and tieen&nn mapping
theorem of complex analysis tells us that a lot of such dosaint mappings exist.

Fig. 0.3. A conformal mapping of Brownian paths

Suppose thafB(t): ¢t > 0} is a standard Brownian motion started in some poimt U
andr = inf{t > 0: B(t) ¢ U} is the first exit time of the path from the domdih Then
it turns out that the image proce$s(B(t)): 0 < ¢t < 7} is atime-changedrownian
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motion in the domairl/, stopped when it leavels, see Theorem 7.20. In order to prove
this we have to develop a little bit of the theory of stochasttegration with respect to a
Brownian motion, and we give a lot of further applicationghaé tool in Chapter 7.

In Chapter 8we develop the potential theory of Brownian motion. The peobwhich
is the motivation behind this is, given a compactdet R<, to find the probability that a
Brownian motion{ B(¢): ¢t > 0} hits the set4, i.e. that there exists > 0 with B(t) € A.
This problem is answered in the best possible way by Theor@d &hich is a modern
extension of a classical result of Kakutani: The hittinghability can be approximated by
the capacity ofd with respect to the Martin kernel up to a factor of two.

With a wide range of tools at our hand, @hapter 9we study the self-intersections of
Brownian motion: For example, a pointc R? is called a double point of B(¢): t > 0}
if there exist timed) < t; < t2 such thatB(¢1) = B(t2) = z. In which dimensions
does Brownian motion have double points? How big is the sdbable points? We show
that in dimensiong > 4 no double points exist, in dimensieh= 3 double points exist
and the set of double points has Hausdorff dimension onenadichensiond = 2 double
points exist and the set of double points has Hausdorff dam@rtwo. In dimensiod = 2
we find a surprisingly complex situation: While every paint R? is almost surely not
visited by a Brownian motion, there exist (random) pointshie plane, which are visited
infinitely often, even uncountably often. This result, Trexa 9.24, is one of the highlights
of this book.

Chapter 10deals with exceptional points for Brownian motion and Haufdimen-
sion spectra of families of exceptional points. To explaireaample, we look at a Brow-
nian motion in the plane run for one time unit, which is a contius curve{B(t): t €
[0,1]}. In Chapter 7 we see that, for any point on the curve, almaslysuthe Brow-
nian motion performs an infinite number of full windings intbalirections around this
point. Still, there exist random points on the curve, whiclé exceptional in the sense
that Brownian motion performs no windings around them at ahis follows from an
easy geometric argument: Take a poinfRif with coordinategz;,z2) such thatr; =
min{z: (z,z2) € B|0,1]}, i.e. a point which is the leftmost on the intersection of the
Brownian curve and the ling(z,y): z € R}, for somez, € R. Then Brownian motion
does not perform any full windings aroufwd, , 2 ), as this would necessarily imply that it
crosses the half-ling(x, x2): © < z2}, contradicting the minimality of;. One can ask
for a more extreme deviation from typical behaviour: A paint B(t) is ana-cone point
if the Brownian curve is contained in an open cone with tigcig= (z1, z2), central axis
{(z1,z): * > x2} and opening angle. Note that the points described in the previous
paragraph arm-cone points in this sense. In Theorem 10.38 we showdkaine points
exist exactly ifa € [, 27], and prove that for every sueh almost surely,

. . 2
dim {z € R?: z is ana-cone point} = 2 — il
[0

This is an example of a Hausdorff dimension spectrum, a twhich has been at the centre
of some research activity at the beginning of the currenemiium.
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Brownian motion as a random function

In this chapter we focus on one-dimensional, or linear, Briew motion. We start with
Paul Lévy's construction of Brownian motion and discuss fwodamental sample path
properties, continuity and differentiability. We thenaliss the Cameron—Martin theorem,
which shows that sample path properties for Brownian motigh drift can be obtained
from the corresponding results for driftless Brownian roofi

1.1 Paul Lévy’s construction of Brownian motion
1.1.1 Definition of Brownian motion

Brownian motion is closely linked to the normal distributidrecall that a random variable
X is normally distributed with meapn and variance? if

(u=—pm)?
202

P{X >z} = du, forall z € R.

1 o]
V2ro? /z ‘
Definition 1.1. A real-valued stochastic proce¢®(¢): ¢ > 0} is called a(linear)
Brownian motion with start inz € R if the following holds:

e B(0) =z,

¢ the process hasdependent incrementsi.e. for all times) < ¢; <t < ... <t, the
incrementsB(t,,) — B(tn—1), B(tn—1)— B(tn—2), ..., B(t2) — B(t;) are independent
random variables,

e forallt > 0andh > 0, the increment®B(¢ + h) — B(t) are normally distributed with
expectation zero and varianke

e almost surely, the function— B(t) is continuous.

We say thaf B(¢): t > 0} is astandard Brownian motion if z = 0. ©

We will address the nontrivial question of tlegistenceof a Brownian motion in Sec-
tion 1.1.2. For the moment let us step back and look at sontitesd points. We have
defined Brownian motion as stochastic proces§B(t): ¢ > 0} which is just a family
of (uncountably many) random variables— B(t,w) defined on a single probability
space (2, A, P). At the same time, a stochastic process can also be intedmstaandom
functionwith the sample functions defined by~ B(t,w). Thesample path propertiesf

a stochastic process are the properties of these randotidiagicand it is these properties
we will be most interested in in this book.



8 Brownian motion as a random function

V‘“‘

08l o
g " \p
wv’r' ¥ vy / \ th
A %:n;")"k‘«:‘ Wy W b,

P
\”’Al 'u./ V‘"w‘ ; /«,, W A
!

B(t) 0.2 A

il
‘ P
W'V

el

My
P A N
ol FV g

Fig. 1.1. Graphs of five sampled Brownian motions

By thefinite-dimensional distributions of a stochastic proced$3(¢): ¢ > 0} we mean
the laws of all the finite dimensional random vectors

(B(t1), B(t2),...,B(ty)), forall 0 < t; <o < ... <ty
To describe these joint laws it suffices to describe the jaintof B(0) and the increments
(B(t1) — B(0), B(tz) — B(t1),...,B(tn) — B(tn—-1)), forall0 <t; <ty < ... <ty

This is what we have done in the first three items of the dedimjtivhich specify the
finite-dimensional distributions of Brownian motion. Howee, the last item, almost sure
continuity, is also crucial, and this is information whiobag beyond the finite-dimensional
distributions of the process in the sense above, techpibaltause the sdtv € Q: t —
B(t,w) continuou$ is in general not in ther-algebra generated by the random vectors
(B(t1), B(t2),...,B(tn)),n € N.

Example 1.2Suppose thaf B(¢): ¢ > 0} is a Brownian motion and@ is an independent
random variable, which is uniformly distributed @ 1]. Then the procesgB(t): t > 0}

defined by B(t) ift#U
BU)Z{O if t — U,

has the same finite-dimensional distributions as a Browmiation, but is discontinuous if
B(U) +# 0, i.e. with probability one, and hence this process is not@MBian motion. ¢

We see that, if we are interested in the sample path propetia stochastic process, we
may need to specify more than just its finite-dimensiondirithistions. Suppos& is a
property a function might or might not have, like continuityfferentiability, etc. We say
that a proces$X (¢) : t > 0} has property X almost surelyif there existsA € A such
thatP(A) = 1 andA C {w € Q: ¢ — X(¢,w) has propertyt }. Note that the set on the
right need not lie inA.
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1.1.2 Paul Lévy’s construction of Brownian motion

It is a substantial issue whether the conditions imposedhefinite-dimensional distribu-
tions in the definition of Brownian motion allow the processhiave continuous sample
paths, or whether there is a contradiction. In this sectierstwow that there is no contra-
diction and, fortunately, Brownian motion exists.

Theorem 1.3 (Wiener 1923)Standard Brownian motion exists.

We construct Brownian motion as a uniform limit of contingdunctions, to ensure that it
automatically has continuous paths. Recall that we negdammistruct astandardBrow-
nian motion{B(t): t > 0}, asX(t) = x + B(t) is a Brownian motion with starting
pointz. The proof exploits properties of Gaussian random vectengh are the higher-
dimensional analogue of the normal distribution.

Definition 1.4. A random vectotX = (X1,..., X,) is called aGaussian random vector
if there exists am x m matrix A, and am-dimensional vectob such thatX™ = AY + b,
whereY is anm-dimensional vector with independent standard normalestr o

Basic facts about Gaussian random variables are collectégpendix 12.2.

Proof of Wiener’s theorem.  We first construct Brownian motion on the interyal 1]

as a random element on the sp&j®, 1] of continuous functions ofd, 1]. The idea is to

construct the right joint distribution of Brownian motiotep by step on the finite sets
D, ={L£:0<k<2"}

o

of dyadic points. We then interpolate the valuesignlinearly and check that the uniform
limit of these continuous functions exists and is a Browniaation.

To do this letD = ;- , D,, and let((2, A, P) be a probability space on which a collec-
tion {Z;: t € D} of independent, standard normally distributed randomaldes can be
defined. LetB(0) := 0 andB(1) := Z;. For eachn € N we define the random variables
B(d), d € D,, such that

(1) forallr < s < tin D, the random variablé(¢) — B(s) is normally distributed
with mean zero and varian¢e- s, and is independent d¥(s) — B(r),
(2) the vectorgB(d): d € D,,) and(Z;: t € D\ D,,) are independent.

Note that we have already done this B = {0,1}. Proceeding inductively we may
assume that we have succeeded in doing it for samel. We then defineB(d) for
d € D, \ Dy,—1 by

B(d—-2"")+B(d+27") Z4
B(d) = 2 + o(n+1)/2 "

Note that the first summand is the linear interpolation oftilaes ofB at the neighbouring
points ofd in D,,_;. ThereforeB(d) is independent ofZ;: t € D \ D,,) and the second
property is fulfilled.
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Moreover, as;[B(d+27")— B(d—2~")] depends only ofZ; : t € D,,_1), itis indepen-
dent of Z,/2("+1)/2, By our induction assumptions both terms are normally ithisted
with mean zero and varian@ (1), Hence their sunB(d) — B(d — 2~") and their
differenceB(d + 2 ") — B(d) are independent and normally distributed with mean zero
and varianc@~" by Corollary 12.12.

Indeed, all increment®(d) — B(d — 2~™), ford € D, \ {0}, are independent. To see
this it suffices to show that they are pairwise independerti@vector of these increments
is Gaussian. We have seen in the previous paragraph thatBai) — B(d — 27"),
B(d 4+ 2™™) — B(d) with d € D, \ D, are independent. The other possibility is
that the increments are over intervals separated by sbraeD,,_;. Choosed € D;
with this property and minimaj, so that the two intervals are containeddn— 277, d],
respectivelyd, d + 277]. By induction the increments over these two intervals oftbn
277 are independent, and the increments over the intervalsgfi@ —" are constructed
from the independent incrementyd) — B(d — 277), respectivelyB(d + 277) — B(d),
using a disjoint set of variabld<, : ¢t € D,,). Hence they are independent and this implies
the first property, and completes the induction step.

Ry(t) FRy(t) + Fi(t) Fo(t) + Fa(t) + Fa(t)

rol—
o
e

Fig. 1.2. The first three steps in the construction of Brownian motion

Having thus chosen the values of the process on all dyaditgaie interpolate between
them. Formally, define
71 fort =1,
Fo(t)=4 0 fort =0,
linear in between,

and, for eactn > 1,

2-(nD/27, fort € D, \ Dp_1
EF,(t)y=41 0 fort € D,_1
linear between consecutive pointsi,.

These functions are continuous [Bn1] and, for alln andd € D,,,
B(d) =) Fi(d) =) Fid), (1.1)
i =0

=0
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see Figure 1.2 for an illustration. This can be seen by indaoctlt holds forn = 0.
Suppose that it holds for — 1. Letd € D,, \ D,,—1. Since for0 < i < n — 1 the function
F;islinearond —27™,d + 27 "], we get

o S Rd-2) + Fd+2)  B(d—2")+ B(d+277)
ZZ:% Fi(d) = ; 5 = 5 .

SinceF, (d) = 2~ (»+1/2 7, this gives (1.1).

On the other hand, we have, by definition4f and by Lemma 12.9 of the appendix, for
¢ > 1and largen,

—Cc'n
P{|Za| > v} < exp (5 ).

so that the series

> P{there existsl € D, with | Zy| > ev/n} < > > P{|Z4| > ev/n}

n=0 n=0deD,
= —c?n
< ZO(Q”+1) exp( 5 ),
n=

converges as soon as> /2log2. Fix such ac. By the Borel-Cantelli lemma there
exists a random (but almost surely finit®¥)such that for allh > N andd € D,, we have
|Z4| < cy/n. Hence, for allh > N,

[ Flloo < cv/n27™/2. (1.2)

This upper bound implies that, almost surely, the series
B(t) =Y Fu(t)
n=0

is uniformly convergent of0, 1]. We denote the continuous limit §yB(¢): ¢t € [0, 1]}.

It remains to check that the increments of this process Haweight finite-dimensional
distributions. This follows directly from the propertiet B on the dense s€® C [0, 1]
and the continuity of the paths. Indeed, supposetthat t; < --- < t,, are in[0, 1]. We
findty , <top < -+ <ty in D with limgyo ¢, = t; @and infer from the continuity of
Bthat,forl <:<n—-1,

B(tiv1) — B(t:) = ngrglo B(tit1x) — B(tix) -
As limy oo E[B(tit1,6) — B(ti k)] = 0 and
Illglo Cov (B(ti+1,k) — Bltik), B(tjt1,6) — B(tx)))

= ]ll{glo Lizjy (tigrn — tin) = Lizjy (tiva — i),

the increment$B(t;+1) — B(t;) are, by Proposition 12.15 of the appendix, independent
Gaussian random variables with meaand variance; ; — ¢;, as required.
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We have thus constructed a continuous procBsg0,1] — R with the same finite-
dimensional distributions as Brownian motion. Take a saqaé,, B, ... of indepen-
dent CJ0, 1]-valued random variables with the distribution of this prss, and define
{B(t): t > 0} by gluing together the parts, more precisely by
lt]-1
B(t) =By (t—[t))+ Y Bi(1), forallt>0.
1=0

This defines a continuous random functiBn [0, c0) — R and one can see easily from
what we have shown so far that it is a standard Brownian motion [

Remark 1.5 If Brownian motion is constructed as a fami{yB(¢): ¢ > 0} of random
variables on some probability spafe it is sometimes useful to know that the mapping
(t,w) — B(t,w) is measurable on the product spdex) x Q. Exercise 1.2 shows that
this can be achieved by Lévy’s construction. o

Remark 1.6 A stochastic procesgY (¢): ¢ > 0} is called aGaussian processif for all
t] < to < ... < t, the vector(Y (¢t1),...,Y(t,)) is a Gaussian random vector. It is
shown in Exercise 1.3 that Brownian motion with startig R is a Gaussian processo

1.1.3 Simple invariance properties of Brownian motion

One of the themes of this book is that many natural sets tiebeaerived from the sample
paths of Brownian motion are in some semaedom fractals An intuitive approach to
fractals is that they are sets which have an interesting geanstructure at all scales.

A key role in this behaviour is played by the very simplmaling invarianceproperty of
Brownian motion, which we now formulate. It identifies a tséarmation on the space
of functions, which changes the individual Brownian randfumctions but leaves their
distribution unchanged.

Lemma 1.7 (Scaling invariance)Suppose B(t): t > 0} is a standard Brownian motion
and leta > 0. Then the proces§X (t): ¢t > 0} defined byX (t) = L1 B(a%t) is also a
standard Brownian motion.

Proof. Continuity of the paths, independence and stationaritg@fricrements remain un-
changed under the scaling. It remains to observextal— X (s) = 2(B(a*t) — B(a?s))
is normally distributed with expectatidnand variancé1/a?)(a’t — a’*s) =t —s. ®

Remark 1.8 Scaling invariance has many useful consequences. As anpéxaieta <
0 < b, and look atT’(a,b) = inf{t > 0: B(t) = a or B(t) = b}, the first exit time of
a one-dimensional standard Brownian motion from the ity b]. Then, withX () =
LB(a’t) we have

ET(a,b) = a*Einf {t > 0: X(t) =1 or X(¢) = b/a} = a*ET(1,b/a),
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which implies thaf£T'(—b, b) is a constant multiple af?. Also
P{{B(t): t > 0} exits[a,b] ata} = P{{X(t): t > 0} exits[1,b/a] at1}

is only a function of the ratid/a. The scaling invariance property will be used exten-
sively in all the following chapters, and we shall often use phrase that a fact holds ‘by
Brownian scaling’ to indicate this. o

We shall discuss a very powerful extension of the scalingriance property, theonfor-
mal invariance propertyin Chapter 7 of the book. A further useful invariance praopef
Brownian motion, invariance under time inversion, can lntdied easily. As above, the
transformation on the space of functions changes the whaaliBrownian random func-
tions without changing the distribution.

Theorem 1.9 (Time inversion)Suppose B(t): ¢ > 0} is a standard Brownian motion.
Then the proces§X (¢): t > 0} defined by

0 fort =0
X(t) = ’
®) { tB(1/t) fort >0,
is also a standard Brownian motion.
Proof. Recall that the finite-dimensional distributiotB(¢1), . . ., B(¢,,)) of Brownian
motion are Gaussian random vectors and are therefore ¢tbasad byE[B(¢;)] = 0 and
COV(B(ti), B(tj)) =1, for 0 < t; < tj.
Obviously,{X (t): t > 0} is also a Gaussian process and the Gaussian random vectors

(X (t1),...,X(t,)) have expectation zero. The covariances,for 0, h > 0, are given
by
Cov(X(t+h),X(t)) = (t+h)tCov(B(1/(t+h)),B(1/t))
1

Hence the law of all the finite-dimensional distributions
(X(tl)7X(t2)7 .. 7X(tn)>7 foro g tl g e < tn»

are the same as for Brownian motion. The paths ef X (¢) are clearly continuous for
allt > 0 and int = 0 we use the following two facts: First, as the §e0f rationals is
countable, the distribution dfX (¢): ¢ > 0,¢ € Q} is the same as for a Brownian motion,
and hence

ltifng(t) = 0 almost surely.
teQ

And secondQ N (0, oo) is dense in0, co) and{X (¢): ¢t > 0} is almost surely continuous
on (0, 00), so that
0= lttlér(rél X(t) = ltllrng(t) almost surely.

Hence{X (¢): t > 0} has almost surely continuous paths, and is a Brownian motiam
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Remark 1.10 The symmetry inherent in the time inversion property becomere ap-
parent if one considers th@rnstein—Uhlenbeck diffusiopX (¢): ¢ € R}, which is given

by
X(t)=e"B(e*) forall t € R.

This is a Markov process (this will be explained properly iha@ter 2.2.3), such that
X(t) is standard normally distributed for afl It is a diffusion with a drift towards
the origin proportional to the distance from the origin. ielBrownian motion, the
Ornstein—Uhlenbeck diffusion is time reversible: The timeersion formula gives that
{X(t): t > 0} and{X(—t): t > 0} have the same law. Femear—oco, X (t) relates to

the Brownian motion near time 0, and fonearco, X (¢) relates to the Brownian motion
nearoo. S

Time inversion is a useful tool to relate the properties avigrian motion in a neighbour-
hood of timet = 0 to properties at infinity. To illustrate the use of time irsien we
exploit Theorem 1.9 to get an interesting statement abeubtig-term behaviour from an
easy statement at the origin.

B(t)

Corollary 1.11 (Law of large humbers) Almost surelyl,‘lim — = 0.

Proof. Let{X(t):t > 0} be as defined in Theorem 1.9. Using this theorem, we see
thatlim; .. B(t)/t = lim;_ X (1/t) = X(0) = 0 almost surely. [

In the next two chapters we discuss the two basic analytipgstis of Brownian motion
as a random function, itontinuityanddifferentiability properties.

1.2 Continuity properties of Brownian motion

The definition of Brownian motion already requires that tample functions are contin-
uous almost surely. This implies that on the inteff@all] (or any other compact interval)
the sample functions are uniformly continuous, i.e. thediste some (random) function
¢ with limy, o ¢(h) = 0 called amodulus of continuity of the functionB : [0,1] — R,
such that

limsup sup |Bt+h) — BO)|

< 1. 1.3
hl0  0<t<1l—h @(h) 3

Can we achieve such a bound with a deterministic funatipne. is there a nonrandom
modulus of continuity for the Brownian motion? The answeyés, as the following
theorem shows.

Theorem 1.12There exists a constant > 0 such that, almost surely, for every sufficiently
smallh >0andall0 <t <1—h,

|B(t + h) — B(t)| < C\/hlog(1/h).
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Proof. This follows quite elegantly from Lévy’s construction of ®@vnian motion.
Recall the notation introduced there and that we have repted Brownian motion as a
series

= Z Fn(t)
n=0

where eachF), is a piecewise linear function. The derivative Bf exists almost every-
where, and by definition and (1.2), for any> /21og 2 there exists a (randomy € N
such that, for alh > N,

2 Fn oo
2Fnlle 2—7‘1‘ < 2ev/n2?

Now for eacht,t + h € [0, 1], using the mean-value theorem,

4 9]
|B(t+h) — ZIFn (t+h) = Fu@ < D BlIF e+ Y 2/ Fullo-
n=0

n=4~+1

[F5 oo <

Hence, using (1.2) again, we get for &l N, that this is bounded by

N
hy_|F, ||oo+2ch2f2”/2+20 Z Nre)
n=0

n=~0+1

We now suppose thdt is (again random and) small enough that the first summand is
smaller thany/h log(1/h) and that/ defined by2—¢ < h < 27/*! exceedsV. For this
choice of¢ the second and third summands are also bounded by constétijl@suof
\/hlog(1/h) as both sums are dominated by their largest element. Henaeivd.3)

with a deterministic functiop(h) = C'\/hlog(1/h). [

This upper bound is pretty close to the optimal result. Thieiong lower bound confirms
that the only missing bit is the precise value of the constant

Theorem 1.13For every constant < +/2, almost surely, for every > 0 there exist
0 < h <eandt € [0,1 — h] with

|B(t+ h) — B(t)| = cy/hlog(1/h).
Proof. Letc < v/2 and define, for integers, n > 0, the events
A = {B((k+1)e™) = Blke™) > ev/ne /2],
Then, using Lemma 12.9, for arky> 0,

f 1 7c2n/2
n+1 271 '
By our assumption on, we have:"P(Ay, ,,) — coasn | oo. Therefore, using—xz < e~
for all z,

P(Apn) = P{B(e™) > ev/me™/?} = P{B(1) > ev/n} >

le"—1]
M Ai) = (1= P(A0n)*" < exp(—e"P(do,n)) — 0.
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By consideringh = e~™ one can now see that, for any> 0,
P{|B(t + h) — < cy/hlog(1/h)Vh € (0,¢),t € [0,1 —h]} =0. |

One can determine the constantn the best possible modulus of continuipf(h) =
cy/hlog(1/h) precisely. Indeed, our proof of the lower bound yields a gaific = /2,
which turns out to be optimal. This striking result is due tuPLévy.

Theorem* 1.14 (Lévy’s modulus of continuity (1937)) Almost surely,

B(t+h)— B(t
limsup sup B+ h) ()‘:

hl0  o<t<i—h  +/2hlog(1/h)

Remark 1.15We come back to the modulus of continuity of Brownian motinrCihap-
ter 10, where we prove a substantial extension, the speatfuiast times of Brownian
motion. We will not use Theorem 1.14 in the sequel as Theord i$ sufficient to dis-
cuss all problems where an upper bound on the increase ofvenigne motion is needed.
Hence the proof of Lévy’s modulus of continuity may be skigpa first reading. o

In the light of Theorem 1.13, we only need to prove the uppaembo We first look at
increments over a class of intervals, which is chosen to bessp but big enough to ap-
proximate arbitrary intervals. More precisely, given matutnumbers:, m, we letA,,(m)
be the collection of all intervals of the form

[(k—140b)27" (k+b)27""],

fork e {1,...,2"},a,b € {0, 2 m=13} We further define\(m) := J,, An(m).

,m,...7

Lemma 1.16For any fixedm andc > /2, almost surely, there exists, € N such that,
for anyn > ny,

|B(t) — B(s)| < cy/(t—s) logﬁ for all [s,t] € A, (n).

Proof. From the tail estimate for a standard normal random varidhleee Lemma 12.9,
we obtain

IP’{ sup sup
ke{l,....2"} abef0,L .. m=1}

Ym0 m

|B( (k= 146)27") — B((k 4 )27"%)| > ¢/2-7+a 1og(2n+a)}
"m ]P{X > c¢+/log(2") }

7271(1 Cz/2)
«/1og (2n) V271

and as the right hand side is summable, the result follows fhe Borel-Cantelli lemmaa
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Lemma 1.17Givene > 0 there existsn € N such that for every intervgk, ¢t] C [0, 1]
there exists an intervdk’, ¢'] € A(m) with |t — /| <e(t —s)and|s — s'| < e (t — s).

Proof. Choosem large enough to ensure thatm < /4 and2Y/™ < 1 4 ¢/2.
Given an intervals,¢] C [0,1], we first pickn such tha2=" < t — s < 27", then
a €{0,1/m,...,(m —1)/m} such thaR—"+* < t — s < 27"Fe+l/m Next, pickk €
{1,...,2"} such thatk — 1)27 "% < s < k27"*% andb € {0,1/m,...,(m —1)/m}
suchthatk—1+b)27""% < s < (k—14+b+1/m)27""* Lets’ = (k—1+b)2~" % then

|s —s'| < a7t L2t L2 (¢ — ).

Choosingt’ = (k + b)2~ " ensures thats’, t'] € A,,(m) and, moreover,
=] < s =8| +](t—8) = (' = ) < § (= 5) + (27F41/m — 7k
SE(t—s)+527" et —s),
as required. [ |

Proof of Theorem 1.14. Givenc > /2, pick0 < ¢ < 1 small enough to ensure that
¢:=c—e>+/2andm € NasinLemma 1.17. Using Lemma 1.16 we choggec N
large enough that, for all > ny and all intervalds’, ¢'] € A,,(m), almost surely,

B() = B(s")| <&,/ — ') log il

Now let[s,¢] C [0, 1] be arbitrary, witht — s < 27" A ¢, and pick[s’,¢'] € A(m) with
[t —¢'| <e(t—s)and|s —s'| <e(t—s). Then, recalling Theorem 1.12, we obtain

|B(t) — B(s)| < |B(t) — B(t")| + |B(t') = B(s')| + | B(s") — B(s)|

< C\/|t—t’|logﬁ +E\/(t’ —s’)logﬁ +C \8—8’|10g7‘5,15,|
< (10VE + & /(T +26)(1 — log(1 — 26))) /(£ — ) log 1.

By makinge > 0 small, the first factor on the right can be chosen arbitraibse toc.
This completes the proof of the upper bound, and hence ohtrwrém. [ |

Remark 1.18The limsup in Theorem 1.14 may be replaced by a limit, seedised.7.c

Definition 1.19. A function f: [0,00) — R is said to bdocally a-Hoélder continuous at
x > 0, if there existg > 0 andc > 0 such that

[f(z) = f)l < clz —yl?, forally > 0 with |y — z| <e.
We refer toa > 0 as theHolder exponentand toc > 0 as theHolder constant. o
Clearly, a-Holder continuity gets stronger, as the exponergets larger. The results of

this chapter so far indicate that, for Brownian motion, ttamsition between paths which
area-Holder continuous and paths which are not happens-atl /2.
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Corollary 1.20 If a < 1/2, then, almost surely, Brownian motion is everywhere lgcall
a-Hoélder continuous.

Proof. Let C > 0 be as in Theorem 1.12. Applying this theorem to the Brownian
motions{B(t) — B(k): t € [k, k + 1]}, wherek is a nonnegative integer, we see that,
almost surely, for every: there existsh(k) > 0 such that for alt € [k, k + 1) and
0<h<(k+1-t)Ah(k),

|B(t+ h) — B(t)| < Cy/hlog(1/h) < Ch*.

Doing the same to the Brownian motiof8(t): t € [k, k + 1]} with B(t) = B(k + 1 —
t) — B(k + 1) gives the full result. [

Remark 1.21This result is optimal in the sense that, for> 1/2, almost surely, at every
point, Brownian motion fails to be locallg-Hdlder continuous, see Exercise 1.9. Points
where Brownian motion is locally/2-Holder continuous exist almost surely, but they are
very rare. We come back to this issue when discussing ‘sldntgi@f Brownian motion

in Chapter 10. o

1.3 Nondifferentiability of Brownian motion

Having proved in the previous section that Brownian mot®samewhategular, let us
see why it iserratic. One manifestation is that the paths of Brownian motion hawe
intervals of monotonicity.

Theorem 1.22AImost surely, for alD < a < b < oo, Brownian motion is not monotone
on the intervala, b].

Proof. Firstfix a nondegenerate interJal b}, i.e. an interval of positive length. Ifitis an
interval of monotonicity, i.e. ifB(s) < B(t) forall « < s < t < b, then we pick numbers
a=a; < ... <apty1 = banddividea, b] inton sub-intervalga,, a;+1]. Each increment
B(a;) — B(a;+1) has to have the same sign. As the increments are indepetusritas
probability2-2~", and taking: — oo shows that the probability thét, b] is an interval of
monotonicity must be zero. Taking a countable union givas #imost surely, there is no
nondegenerate interval of monotonicity with rational emidfs, but each nondegenerate
interval would have a nondegenerate rational sub-interval [ |

In order to discuss differentiability of Brownian motion weake use of théme inversion
trick, which allows us to relate differentiability at= 0 to a long-term property. This
property is a complementary result to the law of large nustb@/hereas Corollary 1.11
asserts that Brownian motion grows slower than linearly,rtext proposition shows that
the limsup growth of3(t) is faster than/t.



1.3 Nondifferentiability of Brownian motion 19

Proposition 1.23Almost surely,
B(n)

B
liﬂs;p\ﬁg) = +o0, and hﬂi@%f n = —00. (1.4)
For the proof of Proposition 1.23 we use the Hewitt—Savadel®~ for exchangeable
events, which we briefly recall. Readers unfamiliar with thsult are invited to give a
proof as Exercise 1.10.

Definition 1.24. Let X, X5, ... be a sequence of random variables on a probability space
(©, F,P) and consider a set of sequences such that

{X1,Xs,...€ A} € F.
The event{ X, X», - -- € A} is calledexchangeabléf
{X1,Xy,...€e A} C {X5,, X,,... € A}

for all finite permutationg : N — N. Herefinite permutatiormeans that is a bijection
with o,, = n for all sufficiently largen. o

Lemma 1.25 (Hewitt—Savage 0-1 law)f E is an exchangeable event for an independent,
identically distributed sequence, thB(E) is 0 or 1.

Proof of Proposition 1.23. We clearly have, by Fatou’s lemma,

P{B(n) > c¢y/n infinitely often} > limsup P{B(n) > cv/n}.

By the scaling property, the expression in i sup equalsP{B(1) > c}, which is
positive. LetX,, = B(n) — B(n — 1), and note that

{B(n) > c¢y/n infinitely often} = {ZX]- > cy/n infinitely often}

j=1
is an exchangeable event. Hence the Hewitt—Savage 0-1 \a8 that, with probability
one,B(n) > cy/n infinitely often. Taking the intersection over all positiveegersc gives
the first part of the statement and the second part is provadgously. [ |

Remark 1.26 1t is natural to ask whether there exists a ‘gauge’ functian[0, co) —
[0,00) such thatB(t)/¢(t) has alimsup which is greater thad® but less tharo. An
answer will be given by the law of the iterated logarithm ie thist section of Chapter&.

For a functionf, we define thaipper andlower right derivatives

ft+h) - f(t)

D f(t) = 11121801110 A ,
and
D.f(t) = liminfw.

h10 h
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We now show that for any fixed timealmost surely, Brownian motion is not differentiable
att. For this we use Proposition 1.23 and the invariance undey itiversion.

Theorem 1.27Fix t > 0. Then, almost surely, Brownian motion is not differentiaslt.
Moreover,D*B(t) = +oo and D, B(t) = —oc.

Proof. Given a standard Brownian motidhwe construct a further Brownian motidt
by time inversion as in Theorem 1.9. Then
XL —X(0 B
D*X(0) > limsup M > limsup\/ﬁX(%) = limsup (n)7
n—oo ; n—oo n—oo \/ﬁ

which is infinite by Proposition 1.23. Similarly). X (0) = —oo, showing thatX is not
differentiable at 0. Now let > 0 be arbitrary and B(¢): ¢t > 0} a Brownian motion.
ThenX(s) = B(t + s) — B(t) defines a standard Brownian motion and differentiability
of X at zero is equivalent to differentiability @ att. [ |

While the previous proof shows that everis almost surely a point of nondifferentiability
for the Brownian motion, this does®ot imply that almost surelgveryt is a point of non-
differentiability for the Brownian motion! The order of tlygiantifiersfor all ¢ andalmost
surelyin results like Theorem 1.27 is of vital importance. Heredtatement holds for all
Brownian paths outside a set of probability zero, which megehd ort, and the union of
all these sets of probability zero may not itself be a set obpbility zero.

To illustrate this point, consider the following examplehelargument in the proof of
Theorem 1.27 also shows that the Brownian mofioorosses 0 for arbitrarily small values
s > 0. Defining the level setg(t) = {s > 0 : X(s) = X (t)}, this shows that every
t is almost surely an accumulation point from the right #ft). But not every point
t € [0,1] is an accumulation point from the right faf(¢). For example the last zero of
{X(t): t > 0} before time 1 is, by definition, never an accumulation paiotf the right
for Z(t) = Z(0). This example illustrates that there can be randoeeptional timest
which Brownian motion exhibits atypical behaviour. Thegees are so rare that any fixed
(i.e. nonrandom) time is almost surely not of this kind.

Remark 1.28 The behaviour of Brownian motion at a fixed time> 0 reflects the be-
haviour attypical timesin the following sense: Supposgis a measurable event (a set of
paths) such thafB(¢): t > 0} € X almost surely. By stationarity of the increments this
impliesP{{B(t + s) — B(t): s > 0} € X} = 1 for all fixed¢ > 0. Moreover, almost
surely, the set of exceptional timés : {B(t +s) — B(t): s > 0} ¢ X} has Lebesgue
measure zero. Indeed, using the joint measurability meation Remark 1.5 and Fubini’'s
theorem,

E/Ool{t: {B(t+s) — B(s): s}O}g{%}dtz/wP{{B(s): s>0} ¢ X}dt=0.
0 0

For example, the previous result shows that, almost sutredypath of a Brownian motion
is not differentiable at Lebesgue-almost every time o
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Remark 1.29Exercise 1.11 shows that, almost surely, there exist time$ < [0, 1) with
D*B(t*) < 0andD. B(t.) > 0. Hence the almost sure behaviour at a fixed pginthich
is described in Theorem 1.27, does not hold at all points kémeously. o

Theorem 1.30 (Paley, Wiener and Zygmund 1933)Almost surely, Brownian motion is
nowhere differentiable. Furthermore, almost surely, fihrta

either D*B(t) =+4+occ0 or D.,B(t)=—occ orboth.

Proof. Suppose that there ista € [0, 1] such that-co < D, B(ty) < D*B(tg) < oo.
Then
lim sup |Blto + 1) = Blto)| < 00,
h10 h

and, using the boundedness of Brownian motiori0o@], this implies that for some finite

constant) there existg, with
B(to+h) — B(t
sup |B(to + h) (0)|<M.
hel0,1] h

It suffices to show that this event has probability zero for #h From now on fixM. If ¢
is contained in the binary intervilk —1) /2™, k/2"| forn > 2, thenforalll < j <2"—k
the triangle inequality gives

B ((k+5)/2") =B ((k +j —1)/2")|
< [B((k+4)/2") = Blto)| + |B(to) = B((k +j —1)/2")|
< M(25+1)/2".
Define events
Qe = {[B((k+7)/2") = B ((k+j = 1)/2") | < M(2] +1)/2" for j = 1,2,3}.
Then by independence of the increments and the scaling pyofier 1 < £ < 2" — 3,
3
P(Qr) < [TP{B ((k+3)/2") = B((k+j—1)/2") | < M(2j +1)/2"}
j=1
3
<P{|BO)| <TM/VZT}
which is at most7M2-"/2)3, since the normal density is bounded by 1/2. Hence
2" -3
P ( U Qn,k> < 2M(TM272)3 = (TM)327 /2,
k=1
which is summable over atl. Hence, by the Borel-Cantelli lemma,

. . B(t h) — B(t
P{ there isty € [0,1] with sup [B(to + 1) = Bto)|
hel0,1] h

<M}

2" -3
<P ( U ©n. for infinitely manyn> = 0. n
k=1
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Remark 1.31The proof of Theorem 1.30 can be tightened to prove thatfpna> 35 1 the
sample paths of Brownian motion are, almost surely, nowloeadly o-Hélder contmuous,
see Exercise 1.9. o

Remark 1.32There is an abundance of interesting statements aboutghedérivatives
of Brownian motion, which we state as exercises at the enbdeo€hapter. As a taster we
mention here that Lévy [Le54] asked whether, almost sullB(t) € {—o0, 0} for
everyt € [0,1). Exercise 1.13 shows that this is not the case. ©

Another important regularity property, which Brownian mootdoesot possess is to be of
bounded variation. We first define what it means for a functioime of bounded variation.

Definition 1.33. A right-continuous functiory: [0,¢] — R is a function ofbounded
variation if

(1) *bup2|f (tj—1)| < oo,

where the supremum is over &lle N and partition®) = tg <1 < - <tp_1 <tp =t.
If the supremum is infinitgf is said to be ofinbounded variation. o

Remark 1.341t is not hard to show thaf is of bounded variation if and only if it can be
written as the difference of two increasing functions. o

Theorem 1.35Suppose that the sequence of partitions

(n)
<ty k(n

0=1tg" <t < - <t

k(n)— )y =1

is nested, i.e. at each step one or more partition points daed, and thenesh

A(n):= sup {t(") t(")l}
1<j<k(n)

converges to zero. Then, almost surely,
k(n)
2

T 3" (B - BU) =1,

j=1

and therefore Brownian motion is of unbounded variation.

Remark 1.36For a sequence of partitions as above, we call

Jm Y (B) = B’

Jj=1
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the quadratic variation of Brownian motion. The fact that Brownian motion has finite
quadratic variation will be of crucial importance in Chap?e however, the analogy to
the notion of bounded variation of a function is not perfdct:Exercise 1.15 we find a
sequence of partitions

0=t <" < v SHLy 1 S Ky =t
with mesh converging to zero, such that almost surely
k(n)
lim su t(” t(") ? = .
mow 3 (B07) Bl

In particular, the condition that the partitions in Theor&i85 are nested cannot be dropped
entirely, though it can be replaced by other conditions Fsexcise 1.16. o

The proof of Theorem 1.35 is based on the following simplentem

Lemma 1.37If X, Z are independent, symmetric random variable&fy then
E[(X+2)*|X*+ 2% = X*+ Z°.
Proof. By symmetry ofZ we have
E[(X+2)?|X?+ 2% =E[(X — 2)*| X* + 7).
Both sides of the equation are finite, so that we can take ffexelice and obtain
E[XZ|X*+2Z°] =0,
and the result follows immediately. [ |
Proof of Theorem 1.35. By the Hdlder property, we can find, for anye (0,1/2), an
n such thaiB(a) — B(b)| < |a — b|* forall a, b € [0,¢] with |a — b] < A(n). Hence

k(n) k(n)

DoIB(EY) = B > A 3 (B(”) — B(t™)"

1

—~

j=1

<.
Il

Therefore, once we show that the random variables
k(n)

=3 (B7) - ()

converge almost surely to a positive random variable ibfesl immediately that Brownian
motion is almost surely of unbounded variation. By insertements in the sequence, if
necessary, we may assume that at each step exactly onegaittted to the partition.

To see thaf{ X,,: n € N} converges we use the theory of martingales in discrete g,
Appendix 12.3 for basic facts on martingales. We denot€& byhe o-algebra generated
by the random variableX,,, X,,11,.... Then

Goo = )Gk C++- CGup1 CGn C--- CGi.
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We show thaf X, : n € N} is a reverse martingale, i.e. that almost surely,
X, =E[X,-1]|Gn] foralln > 2.

This is easy with the help of Lemma 1.37. Indeed; & (¢1,t2) is the inserted point we
apply it to the symmetric, independent random variatiés) — B(t1), B(t2) — B(s) and
denote byF thes-algebra generated Wy3(s) — B(t1))? + (B(t2) — B(s))?. Then

E[(B(t2) - B(t1))"| F] = (B(s) = B(t1))” + (B(t2) - B(s))”,

and hence
E[(B(ts) — B(t1))* — (B(s) — B(t1))’— (B(t2) — B(s))*| F] =0,

which implies that{ X, : n € N} is a reverse martingale.
By the Lévy downward theorem, see Theorem 12.26 in the append

liTm X, =E[X1]|Go] almost surely.

The limit has expectatioR[X;] = ¢ and, by Fatou’s lemma, its variance is bounded by

k(n)
liminf B[(X,, — EX,,)2] = lminf3 S (£ — ¢ ) < 3t liminf A(n) = 0.
lnTclxz [( ) ] lnTclxz j; ( J J_l) nToo ( )

HenceE[ X, | Go,] = t almost surely, as required. ]

1.4 The Cameron—Martin theorem

In the previous two sections we have obtained results abewlmost sure behaviour of a
Brownian motior{ B(t): ¢t > 0} without drift. In this section we ask whether these results
hold as well for a Brownian motion with driftB(¢) + pxt: ¢ > 0} or, more generally, for
which time-dependent drift functions the procesg B(¢) + F(¢): t > 0} has the same
behaviour as a Brownian motion path. This section can bepskiijpn first reading.

We denote byl the law of standard Brownian motiofB(¢): ¢ € [0,1]}, and for a
function F': [0,1] — R write Ly for the law of { B(t) + F(t): t € [0,1]}. We ask, for
which functionsF any set4 with Ly(A) = 0 also satisfied.z(A) = 0, in other words,
for which F' is L absolutely continuous with respectltg?

Clearly, necessary conditions are continuitybdndF'(0) = 0. However, these conditions
are not sufficient. Denote HY[0, 1] the Dirichlet space

D[0,1] = {F € CJ0,1]: existsf € L?[0, 1] such thatF"(t) = /t f(s)ds ¥t € [0, 1]} .
0

Given F' € DJ0, 1] the associated is uniquely determined as an elemenfl&f0, 1], and
is denoted by, the derivative of.
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Recall that for two nonzero measurgsand v on the same space we write | v, and
say thaty andv aresingularif there exists a Borel set with p(A4) = 0 andv(A°) = 0.
Otherwise, we say that they aegjuivalentif they are mutually absolutely continuous,
ie. if y < vandv < p.

Theorem 1.38 (Cameron—Martin) Let F' € C|0, 1] satisfyF'(0) = 0.

(1) If F ¢ D[0,1] thenLp L L.
(2) If F € D[0,1] thenLr andL, are equivalent.

Remark 1.39 As a consequence we see tlaaty almost sure property of the Brownian
motion B also holds almost surely faB + F, whenF € DJ0,1]. Conversely, when
F ¢ DIJ0,1] somealmost sure property of Brownian motion fails f& + F, see also
Exercise 1.18. o

Before proving the theorem we make some preparations. FFer C[0,1] andn > 0,

denote
on

QuiF) =2 Y[R () - F(ih)]

Jj=1

Lemma 1.40Let F' € C[0, 1] satisfyF'(0) = 0. Then{@,,(F): n > 1} is an increasing
sequence, and

F € D[0,1] <= sup @Qn(F) < .
Moreover, if ' € D[0, 1], thenQ,,(F) — ||F'||3 asn — oo.

Proof. The general inequalitja + b)? < 2a® + 2b? gives
. . 2 . . 2 . . 2
[Fh) - )] < 2P - PR+ 2P () - P ]

Summing this inequality ovef € {1,...,2"} yields thatQ,,(F) is increasing im. For
F € DJ0, 1] with F” = f, we can write, using Cauchy—Schwarz,

2 20 a2t
pa) <3 [ pa= .
j=1 (j-12="

Assume now thatup,, @, (F) < co. For anyt € [0, 1] that is not a dyadic rational and for
eachn > 1, there is a unique interval of the forfh-t, £] (for some integek > 0), to
which ¢ belongs. Denote this interval By, (t) = [ay, b,] and observe that faruniformly
distributed in[0, 1], givenIy (t), ..., I,(¢), the intervall, () is equally likely to be each

of the two halves of, (¢). This implies that

Yo (t) = 2"[F(bn) — F(an)],

on jo2

Q) =23 ([

j=1 (j-12-"

defines a martingale with respect to the filtrat{etiZ,,): » = 0, 1,...). Furthermore,

i
Bvz =23 LP(k) - (5] = 0ur).
k=1
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Hence{Y,,: n = 0,1,...} is amartingale bounded ia*>. By the convergence theorem for
L2-bounded martingales, see Theorem 12.28 in the appendix, ikha random variablé
in L2[0, 1] such thafy,, — Y almost surely and ifi.?. For fixed; andm we have that

F(#):/0 Yn(t)dt—>/0 Y(t)dt asn — oo.

LetG(z) = [ Y (t)dt. SinceF (54 ) = G(3k) for anyj andm andF, G are continuous,

we deduce thaF'(z) = G(x) for all z € [0, 1]. ThereforeF' € DJ0, 1] andF’ = Y almost
everywhere. AEY,2 — EY 2 we conclude tha®),,(F) — || F’[|3. ]

We use the result of Lemma 1.40 to construct a very basic astichintegral with respect
to Brownian motion.

Lemma 1.41 (Paley—Wiener stochastic integral)et { B(¢): t > 0} be standard Brow-
nian motion, and supposé € D[0, 1]. Then the sequence

n

=22 [F(#) ()] [B() - ()]

J=1

converges almost surely andix¥. We denote the limit af, by fol F'dB.

Proof. Recall from Lévy’s construction of Brownian motion that

B(34) = §|B(%2)+B(E)| + ouz (%) (15)

whereo,, = 2= (*+1/2 and Z(t), for ¢ binary rational, are i.i.d. standard normal random
variables. Therefore

2n—1
6=t =20 3 (2P (35 - FOR2) - F(3D) | 2(52)

j=1

This implies that{¢,,: n > 1} is a martingale. The definition &, readily yields that
E&2 = Q,(F). SinceF € D|0, 1], Lemma 1.40 implies thatip,, E¢2 is bounded, and
thus the convergence theorem Iot-bounded martingales concludes the proof. [ |

Remark 1.42Denote byD,, = {j27": j =0,...,2"} the dyadic partition of the interval
[0,1]. Let F,, be thes-algebra inC|0, 1] determined by the restriction map 1,. Then
theo-algebrag F,,: n > 1) generate the Boret-algebra inC|0, 1]. o

Proof of Theorem 1.38. For anyz € C[0, 1] andn > 0, we write
Vil =a(d) -2 (%),

271, 27L
sometimes dropping the superindex wheis fixed. Forz € CJ[0, 1], we write
on on

Ha(w) =27 [ SOV F)2 =23 902 v F|.

Jj=1 Jj=1
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When we look at the finite-dimensional distributiondlgf andLL on a finite set of times
such agD,,, the Radon—-Nikodym derivativé%bn is the ratio of the two Lebesgue den-
sities, provided they exist. Hence we obtain

on

dL -V J@ —Hu(z
F‘D (@) = [Jexp{ - T exp { G2} — () (1.6)
o

dLo

By Theorem 12.32 (a) the process given%ﬁ\pﬂ = e~ H» s a nonnegative martingale
with respect tdLy. (This can also be checked directly, see Exercise 1.17 helefore
convergedlg-almost surely to a nonnegative finite limit, and heriég convergesl-
almost surely, possibly teo. We have

i, = [ Hae)dLo(e) = 3Qu(F),

and
Vary, H,, = Q.(F).

Thus, by Chebyshev’s inequality, we get
Pr, {H, < 1Qu(F)} < =10
Qn(F)
If FF ¢ D[0,1], then Lemma 1.40 implies that,-almost surelyH,, — oco. By Theo-
rem 12.32 of the appendix, we conclude that | L.
For the converse, suppose tliae DJ[0, 1]. By Lemma 1.41, we have

1 1
H,(z) — 5||F’||§ —/ F'dB Lo-almost everywhere.
0

We conclude by (1.6) and Theorem 12.32 (iii) thigt < L. To finish the proof of the
theorem, observe thaty < Ly if and only if Lo < L_F. [ ]

Remark 1.43The proof of Theorem 1.38 and an easy scaling also show tiranf/t > 0
andF € DJ0, t], the density ofL r with respect td_ is given as

dLp

1 t t
—(B) = eXp{ - —/ F'(s)*ds +/ F’ dB} for Lo-almost everyB € CJ0, ¢].
dLo 2 Jo 0

ChoosingF'(s) = us and applying Brownian scaling we obtain that the density rafh-

ian motion with drifty, with respect to a driftless Brownian motion @0, ¢] is
dLp 1,2
E(B) =exp{ —gu°t+uB(t)} forL-almosteveryB € C[0,1]. o
0

We now have a second look at the construction of Browniananadind the Cameron—
Martin theorem, now from a Hilbert space perspective.
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Let {¢,: n = 0,1,...} be an orthonormal basis &[0, 1]. For example we may take the
trigonometric basis

{on:n=0,1,...} = {1} U{V2cos(mnt): n = 1,2,...}, (1.7)
or theHaar basis
{on:in=0,1,..} = {1} U{pmi : m>1 andl <k <27 '}, (1.8)
wheren = 2m~1 — 1 + k and

Om k= \/27717*1(]_[22@’7:2’%] — l[gk—l 2k ) , (1.9)

PR

see Exercise 1.20. Consider the Dirichlet spaf 1] endowed with the inner product
<F7 G>D[O,1] = <F/7G/>L2[0,1} .
Define{®,,: n=0,1,...} by
t
B, (£) = / on(s)ds
0

As this integration is an isometry from?[0, 1] to D0, 1], we deduce tha{®,,: n =
0,1,...} is an orthonormal basis f@|0, 1]. Furthermore, by Cauchy—Schwarz,

[ rras = [ as| <1 gl

therefore, ifF,, — F in D[0, 1] thenF,, — F uniformly. Thus for anyF’ € DJ0, 1], the
series

F=> {pn.F)2®p =Y (P, F)p Oy,
n=0 n=0

converges iD[0, 1] and uniformly.

Let{®,: n =0,1,...} be an orthonormal basis D0, 1], where®,,(t) = fot ©n(s)ds,

and let{Z,: n = 0,1,...} be ii.d. standard normal random variables. For each fixed
t € [0,1], we have

oo

Z (I)?z(t) = Z<1[0,t]a99n>%2[0,1] = H]-[O,t]H% =1

n=0 n=0

by Parseval's identity. Therefore, for fixegdthe series
W(t) =Y Z,®n(t) (1.10)
n=0

converges almost surely andlif, since the partial sums form &#-bounded martingale.
However, the series almost surely does not convergB[inl] since) ° Z2 = oo
almost surely; we show below that it almost surdlyesconverge uniformly inCJ0, 1]
for a suitable choice of®,,: n = 0, 1,...}. Almost sure uniform convergence of (1.10)
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implies that the sum is a standard Brownian motiorioii], since it is continuous and has
the correct covariance. Namely,

o0 t s
EZ ZZ/O on(u) du/o on(u) du
n=0

= ) (g n){psen) = (Lpglios) = sAt,

n=0

Cov(W (1), W(s))

where the convergence of (1.10)Iid is used to interchange summation and integration.

Proposition 1.44For the Haar basis (1.8), the series (1.10) converges unifgin C|0, 1]
with probability one.

Proof. We can write the series (1.10) more explicitly using (1.9),
Wt)=tZo+ > Y ZmsPmi(t), (1.11)

whereZ, and{Z,, ;. } are i.i.d. standard normal variables abgl ;, = fot ©m.k(s)ds. The
tail estimate for standard normal distributions, see Lera8 in the appendix, gives

2-m,—1
> P(|Zni| = V2m) < 2me™
k=1

which is summable over. > 1. Thus, almost surely, the boutd,, »| < v/2m holds in
(1.11) with at most finitely many exceptions. Sirjds,, 1 (z)| < 2~™/2 for all 2 € [0, 1],
the series (1.11) converges uniformly with probability one [ |

Remark 1.45For the Haar basis (1.8), the construction of Brownian nmotia the series
(1.11) coincides with Lévy’s construction as given in Thaaorl.3. o

The construction (1.10) yields an alternative proof foribsitive direction of the Cameron—
Martin theorem. GiverF € DJ0, 1], we show thalLy < L. Write

oo oo
F = Zan@n, with Zai < 00,
n=0 n=0

where®,, is the integrated Haar basis (or any other orthonormal ko3>0, 1] for which
the series (1.10) converges uniformly almost surely). Then

W+ F =Y (Zn+an)®y,
n=0
where, as usuakZ,} are i.i.d. standard normal. Proviflg, < Ly is thus equivalent
to proving that the law of the vectdZ,,: n = 0,1,...) is absolutely continuous to the
law of (Z,, + a,: n =0,1,...). To this end we could use Kakutani’'s absolute-continuity
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criterion for product measures, see e.g. 14.17 in [Wi91lyéaer it is also simple to apply
Theorem 12.32 of the appendix directly.

Indeed, letR,, (2o, - . ., 2, ) denote the Radon—Nikodym derivative of the law of the sHifte
Gaussian vectofZ; + a;: j = 0,1, ...) with respect to the law of the standard Gaussian
vector(Z;: j =0,1,...). Then

n e (z-a5)%/2 " "

Ro(z0,.--y20) = H = T oD { Zajzj - Zajz»/2} )
j=0 €’ j=0 §=0
As Y7, a;Z; is a martingale bounded ib” and}~7° ) a% < oo, we conclude that

lim R, (Zo,...,2)

almost surely exists and is positive. Theorem 12.32 (igntimplies thaiLy, < L.

Exercises

Exercise 1.1.Let{B(¢): t > 0} be a Brownian motion with arbitrary starting point. Show
that, for alls, ¢ > 0, we have CoyB(s), B(t)) = s A t.

Exercise 1.28 Show that, in Theorem 1.3, Brownian motion is constructed gsintly
measurable functiofw, t) — B(w,t) on{ x [0, 00).

Exercise 1.38 Show that Brownian motion with start in€ R is a Gaussian process.

Exercise 1.4. Show that, for every point € R, there exists &wo-sided Brownian motion
{B(t): t € R} with B(0) = =, which has continuous paths, independent increments and
the property that, for alt € R andh > 0, the increments3(¢ + h) — B(t) are normally
distributed with expectation zero and variarice

Exercise 1.58 Fix z,y € R. TheBrownian bridgewith start inz and end iny is the
process X (t): 0 < t < 1} defined by
X(t) = B(t) —t(B(1) —y), foro0<t<1,

where{B(t): t > 0} is a Brownian motion started in. The Brownian bridge is an almost
surely continuous process such tBat0) = z and X (1) = y.

(&) Show that, for every boundefl: R™ — R,

X Hp(ti = tie1, i, Tip))P(L — tn, Ty y) doy oy,
i=2

forall0 <t <--- <, <1where

p(t7 x)y) = \/%
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(b) Infer that, for anyt, < 1, the laws of the processds<(¢): 0 < t < tp} and
{B(t): 0 < t < to} are mutually absolutely continuous, and the Radon—Nikodym
derivative evaluated dt)(t): 0 < t < o} is a function ofy(¢).

Exercise 1.68 Prove the law of large numbers in Corollary 1.11 directly.

Hint. Use the law of large numbers for sequences of independentidd#y distributed
random variables to show thiin,, .., B(n)/n = 0. Then show thaB(t) does not oscil-
late too much betweemandn + 1.

Exercise 1.78 Show the following improvement to Theorem 1.14: Almost $yre

. |B(t + h) — B(t)|
lim sup =
h10 o<t<l—h 2hlog(1/h)

Exercise 1.88 Let f: [0,1] — R be a continuous function witli(0) = 0. Then, for a
standard Brownian motiofiB(t): ¢ > 0} ande > 0, we have

P{ sup |B(t)— f(t)| <e} > 0.

0<t<1

Exercise 1.95 Show that, ifa > 1/2, then, almost surely, at every point, Brownian mo-
tion fails to be locallyn-Hélder continuous.

Exercise 1.108 Show that, ifE is an exchangeable event for an independent, identically
distributed sequence, th@{FE) is 0 or 1.
Exercise 1.11.Show that, for a Brownian motiofB(¢): t > 0},

(a) forallt > 0 we haveP{¢ is alocal maximun = 0;
(b) almost surely local maxima exist;
(c) almost surely, there exigt, t* € [0,1) with D*B(¢t*) < 0 andD, B(t.) > 0.

Exercise 1.128 Let f € CJ[0,1] be any fixed continuous function. Show that, almost
surely, the functioq B(t) + f(t): t € [0,1]} is nowhere differentiable.

Exercise 1.138 Show that, almost surely, there exists a titvat whichD* B(t) = 0.

Exercise 1.148 Show that, almost surely,
D*B(to) = —0Q,
wheret, is uniquely determined by

B(ty) = max B(t).

St

Hint. Try this exercisafter the discussion of the strong Markov property in Chapter 2.
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Exercise 1.158
(a) Show that, almost surely, there exists a family
0=t < < o <UL <ty =t
of (random) partitions such that

k(n)
lim (B(t;.”)) - B(t;@l))Q = 0.

nloo
1 1

—~

<.
Il

Hint. Use the construction of Brownian motion to pick a partitiansisting of
dyadic intervals, such that the increment of Brownian motwer any chosen in-
terval is large relative to the square root of its length.

(b) Construct a (nonrandom) sequence of partitions

0 — t(on) g t(ln) g . t(n) t(”)

with mesh converging to zero, such that, almost surely,

hmsupz t(") 15("_’1))2 = 00.

n—oo

Exercise 1.168 Consider a (not necessarily nested) sequence of partitions

t(n)

0=t5" <" < - <, k) =

k(n)—1 =
with mesh converging to zero.

(a) Show that, in the sense &f-convergence,

n n 2
JEECZZ: B(t{") — B(t{")))" =t

(b) Show that, if additionally

oo k(n)

ZZ t(") t(”’ 2 < o0,

n=1 j=1

then the convergence in (a) also holds almost surely.

Exercise 1.178 Using the notation as in Remark 1.42 and below, for a fixed tfanc
F € CJ0,1] and a Brownian motio®3 € CJ0, 1] we denote

2™ 2™

Hy =271 [ S (V) =23 (V5 B) (V)7 F)|.

j=1 =1

Show directly tha{e=» : n > 1} is a martingale with respect to the filtratif,, : n > 1).
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Exercise 1.18. By the Cameron-Martin theorem for a Brownian motidhand F' €
DJ0, 1], the functionB + F' has almost surely finite quadratic variation. Show thatether
exist continuous functiong' ¢ D[0, 1] such thatB + F has infinite quadratic variation
almost surely.

Exercise 1.198 Let F € D[0, 1]. The Cameron-Martin theorem together with the Holder
continuity of Brownian motion implies that' is Holder continuous with exponent for
all « < 1/2. Prove directly thaf” is Holder continuous with exponeif2.

Exercise 1.20. Show that the Haar systefyp,,: n = 0,1,...} constructed in (1.8) is
complete inL?[0, 1].

Hint. It suffices to show that this system spans all step functionerevthe steps are
dyadic intervals of length at lea®t ™. This can be verified by induction on.

Notes and comments

The first study of the mathematical process of Brownian nmotiodue to Bachelier in
[Ba00] in the context of modelling stock market fluctuatioese [DE06] for a modern
edition. Bachelier's work was long forgotten and has onlgergly been rediscovered,
today an international society for mathematical financeaimed after him. The physical
phenomenon of Brownian motion is usually attributed to Big#®r28] and was explained
by Einstein in [Ei0O5], see also [Ei56]. Einstein's explaoatof the phenomenon was
also a milestone in the establishment of the atomistic weidgv of physics. The first
rigorous construction of mathematical Brownian motion ug do Wiener [Wi23], and in
his honour Brownian motion is sometimes called Wiener processMoreover, the space
of continuous function equipped with the distribution afreiard Brownian motion is often
calledWiener spaceThere is also a generalisation of Wiener’s approach todghsteuction
of more general Gaussian measures on separable Banachwpites called the abstract
Wiener space, see Kallianpur [Ka71].

As explained in the introduction, Brownian motion descsiliiee macroscopic picture
emerging from a random walk if its increments are sufficietdime not to cause jumps
which are visible in the macroscopic description. If this\at the case the class bévy
processeand within this class thetable processesffer a macroscopic description. A very
good book dealing with Lévy processes is Bertoin [Be96] aretammended introductory
course in the subject is Kyprianou [Ky06].

There is a variety of constructions of Brownian motion in literature. The approach
we have followed goes back to one of the great pioneers of Bigwmotion, the French
mathematiciarPaul Lévy see [Le48]. Lévy’s construction has the advantage thati-con
nuity properties of Brownian motion can be obtained fromdbestruction. An alternative
is to first show that a Markov process with the correct trémsiprobabilities can be con-
structed, and then to use an abstract criterion, like Kolonogs criterion for the existence
of a continuous version of the process. See, for examplejRa&nd Yor [RY94], Karatzas
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and Shreve [KS91] and Kahane [Ka85] for further alternatoestructions. For the Haar
basis (1.8), the construction of Brownian motion via theese(1.11) is exactly Lévy’'s
interpolation construction, expressed in more fancy laggu Nevertheless, the Hilbert
space point of view is essential in studies of more generak8an processes, see the ex-
cellent book by Janson [Ja97]. For a proof that the seri@é®)tonverges uniformly for the
trigonometric basis (1.7) and more on the Hilbert spacepeets/e, see Kahane [Ka85].

Gaussian processes, only briefly mentioned here, are ohe othest and best under-
stood class of processes in probability theory. Some godereneces for this are
Adler [Ad90] and Lifshits [Li95]. A lot of effort in current@search is put into trying
to extend our understanding of Brownian motion to more gan@aussian processes like
the so-calledractional Brownian motionThe main difficulty is that these processes do not
have the extremely useful Markov property — which we shatdss in the next chapter,
and which we will make heavy use of throughout the book.

The modulus of continuity, Theorem 1.14, goes back to LéwB[Il]. Observe that this
result describes continuity of Brownian motion neamitsrsttime. By contrast, the law of
the iterated logarithm in the form of Corollary 5.3 showd thteatypicaltime the continuity
properties of Brownian motion are better: For every fixecetim> 0 andc > /2, almost
surely, there exists > 0 with |B(t) — B(t + h)| < ¢y/hloglog(1/h) forall |h| < €. In
Chapter 10 we explore for how many times- 0 we are close to the worst case scenario.

The existence of points where Brownian motion is localf{2-Holder continuous is
a very tricky question. Dvoretzky [Dv63] showed that, forfigiently smallc > 0,
almost surely no point satisfi@g2-local Holder continuity with Holder constant Later,
Davis [Da83] and, independently, Greenwood and Perkin8BERlentified the maximal
possible Holder constant, we will discuss their work in Gleafi0.

There is a lot of discussion about nowhere differentiabbstiouous functions in the
analysis literature of the early twentieth century. Exasspre Weierstrass’ function, see
e.g. [MG84], and van der Waerden’s function, see e.g. [Bi®®where differentiability
of Brownian motion was first shown by Paley, Wiener and Zygchiim[PWZ33], but the
proof we give is due to Dvoretzky, Eid and Kakutani [DEK61]. Besides the discussion
of special examples of such functions, the statement thsrime sense ‘most’ or ‘almost
all' continuous functions are nowhere differentiable istigalarly fascinating. A topo-
logical form of this statement is that nowhere differenigbis a generic property for
the spaceC([0, 1]) in the sense of Baire category. A newer, measure theorepi®aph
based on an idea of Christensen [Ch72], which was latercedised by Hunt, Sauer, and
Yorke [HSY92], is the notion of prevalence. A subskof a separable Banach spakeis
calledprevalentf there exists a Borel probability measyr®n X such thapju(z+ A) =1
foranyz € X. A strengthening of the proof of Theorem 1.30, see Exerci$g, shows
that the set of nowhere differentiable functions is prevale
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The timet whereD* B(t) = 0 which we constructed in Exercise 1.13 is an exceptional
time, i.e. a time where Brownian motion behaves differefrtyn almost every other time.
In Chapter 10 we enter a systematic discussion of such tiamelsin particular address the
guestion how many exceptional points (in terms of Hausabnffension) of a certain type
exist. The set of times whet®* B(t) = 0 has Hausdorff dimensiot/4, see Barlow and
Perkins [BP84].

The interesting fact that the ‘true’ quadratic variatiorBsbwnian motion, taken as a
supremum over arbitrary partitions with mesh going to zexrmfinite is a result of Lévy,
see [Le40]. Finer variation properties of Brownian motiavé been studied by Taylor
in [Ta72]. He shows, for example, that tiievariation

k
VY = SUPZ¢(|B(75¢) — B(ti-1)|),
=1
where the supremum is taken over all partitidns= t; < --- < tp = 1, k € N,
is finite almost surely fory;(s) = s?/(2loglog(1/s)), but is infinite for any: with
¥(s)/11(s) — ccass | 0.
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Brownian motion as a strong Markov process

In this chapter we discuss the strong Markov property of Briew motion. We also briefly

discuss Markov processes in general and show that somesges;avhich can be derived
from Brownian motion, are also Markov processes. We thelfoéxthese facts to get finer

properties of Brownian sample paths.

2.1 The Markov property and Blumenthal’s 0-1 law

For the discussion of the Markov property we include higherethsional Brownian mo-
tion, which can be defined easily by requiring the charasties of a linear Brownian
motion in every component, and independence of the comp®nen

Definition 2.1. If By, ..., By are independent linear Brownian motions startechin . . , 24,
then the stochastic procegB(t): t > 0} given by

B(t) = (Bi(t), ..., Ba(t))"

is called ad-dimensional Brownian motionstarted in(x1, . .., z4)". Thed-dimensional
Brownian motion started in the origin is also callstdndard Brownian motion. One-
dimensional Brownian motion is also calléidear, two-dimensional Brownian motion
planar Brownian motion. o

Notation 2.2. Throughout this book we writé,, for the probability measure which makes
the d-dimensional procesgB(t): t > 0} a Brownian motion started in € R?, andE,
for the corresponding expectation. o

Suppose now thgtX (¢): t > 0} is a stochastic process. Intuitively, thearkov property
says that if we know the proce$X (¢): ¢ > 0} on the interval0, s], for the prediction of
the future{ X (¢): ¢t > s} this is as useful as just knowing the endpakts). Moreover,

a process is called @ime-homogeneous) Markov proces§ it starts afresh at any fixed
time s. Slightly more precisely this means that, supposing thegss can be started in any
pointX (0) = = € R?, the time-shifted procedsY (s+t): t > 0} has the same distribution
as the process started ¥i(s) € R¢. We shall formalise the notion of a Markov process
later in this chapter, but start by giving a straight forntiaia of the facts for a Brownian
motion.

36
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Fig. 2.1. Brownian motion starts afresh at time

Note that two stochastic processg¥ (t): ¢ > 0} and{Y (¢): ¢ > 0} are calledin-
dependent if for any setst;,...,t, > 0 andsy,...,s,, > 0 of times the vectors
(X(t1),...,X(tn)) and(Y (s1),...,Y (sm)) are independent.

Theorem 2.3 (Markov property) Suppose tha{B(¢): t > 0} is a Brownian motion
started inz € RY. Lets > 0, then the proces§B(t + s) — B(s): t > 0} is again a Brow-
nian motion started in the origin and it is independent of pihecess{ B(¢): 0 < ¢ < s}.

Proof. It is easy to check thaiB(t + s) — B(s): t > 0} satisfies the definition of
a d-dimensional Brownian motion. The independence statefodotvs directly from the
independence of the increments of a Brownian motion. [ |

We now improve this result slightly and introduce some ugefuminology.
Definition 2.4.

(a) A filtration on a probability spacéQ, F,P) is a family (F(¢): t > 0) of o-
algebras such theft(s) C F(t) C Fforall s < t.

(b) A probability space together with a filtration is callefileered probability space.

(c) A stochastic processX (t): ¢ > 0} defined on a filtered probability space with fil-
tration (F(t): ¢ > 0) is called adapted if X(¢) is F(t)-measurable for
anyt > 0. o

Suppose we have a Brownian moti¢B(¢): ¢ > 0} defined on some probability space,
then we can define a filtratio@°(¢): ¢ > 0) by letting

Fot)=0(B(s): 0 < s < t)

be thes-algebra generated by the random variabl&s), for 0 < s < t. With this
definition, the Brownian motion is obviously adapted to tHediion. Intuitively, this
o-algebra contains all the information available from olks®y the process up to time
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By Theorem 2.3, the proce$®(t + s) — B(s): t > 0} is independent of°(s). In a first
step, we improve this and allow a slightly larger (augmentedlgebraF* (s) defined by

Frs)= (7).
t>s
Clearly, the family(F*(¢): ¢ > 0) is again a filtration and+ (s) > F°(s), but intuitively
F*(s)isabitlarger thaF(s), allowing an additional infinitesimal glance into the fugur

Theorem 2.5For everys > 0 the procesg B(t + s) — B(s): t > 0} is independent of the
o-algebraF*(s).

Proof. By continuity B(t 4+ s) — B(s) = lim, . B(sn, + t) — B(s,) for a
strictly decreasing sequende,,: n € N} converging tos. By Theorem 2.3, for any
t1,...,tm = 0, the vecto B(t1 + s) — B(s), ..., B(tm +5) — B(s)) = lim1c0 (B(t1 +
sj) — B(sj),...,B(tm + sj) — B(s;)) is independent ofF *(s), and so is the process
{B(t+s) — B(s): t > 0}. ]

Remark 2.6 An alternative way of stating this is that conditional it (s) the process
{B(t+ s): t = 0} is a Brownian motion started iB(s). ©

We now look at thegerm o-algebra F*(0), which heuristically comprises all events de-
fined in terms of Brownian motion on an infinitesimal smalleinal to the right of the
origin.

Theorem 2.7 (Blumenthal’s0-1 law) Letz € R? and A € F1(0). ThenP,(A) € {0, 1}.

Proof.  Using Theorem 2.5 fos = 0 we see that anyl € o(B(t): t > 0) is indepen-
dent of 77 (0). This applies in particular tel € F*(0), which therefore is independent
of itself, hence has probability zero or one. [ |

As a first application we show that a standard linear Browmention has positive and
negative values and zeros in every small interval to thet igld. We have studied this
remarkable property of Brownian motion already by différemeans, in the discussion
following Theorem 1.27.

Theorem 2.8Supposg B(t): ¢t > 0} is a linear Brownian motion. Define = inf{t >
0: B(t) > 0} ando = inf{¢t > 0: B(¢) = 0}. Then

IPQ{TZO}:PQ{U:O}:l

Proof. The event

EDL:

{r=0}= { there is0 < ¢ < 1/n such thatB(e) > O}

n=1

is clearly inF*(0). Hence we just have to show that this event has positive pititya
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This follows, asPo{T < t} > Po{B(t) > 0} = 1/2fort > 0. HencePy{r = 0} > 1/2
and we have shown the first part. The same argument worksciegl®(t) > 0 by
B(t) < 0 and from these two fact®{c = 0} = 1 follows, using the intermediate value
property of continuous functions. [ |

A further application is &-1 law for thetail o-algebra of a Brownian motion. Define
G(t) =o(B(s): s > t). LetT =), . , G(t) be theo-algebra of alkail events

Theorem 2.9 (Zero-one law for tail events)etz € RY and supposel € 7 is a tail
event. Thei®, (4) € {0,1}.

Proof. It suffices to look at the case = 0. Under the time inversion of Brownian
motion, the tailo-algebra is mapped on the gewmmalgebra, which contains only sets of
probability zero or one, by Blumenthals1 law. [ |

Remark 2.10In Exercise 2.2 we shall see that, for any tail evdng 7, the probability
P, (A) is independent of. For a germ eventl € F*(0), however, the probabilit,. (A)
may depend on. o

As final example of this section we now exploit the Markov pp to study the local and
global extrema of a linear Brownian motion.

Theorem 2.11For a linear Brownian motio{ B(¢): 0 < ¢ < 1}, almost surely,

(a) every local maximum is a strict local maximum;
(b) the set of times where the local maxima are attained is cdletnd dense;

(c) the global maximum is attained at a unique time.

Proof. We first show that, given two nonoverlapping closed timeriaks, i.e. such that
their interiors are disjoint, the maxima of Brownian motiom them are different almost
surely, see Figure 2.2 for an illustration. Lef, b;] and[as, bs] be two fixed intervals with
b1 < ao. Denote bym; andm., the maxima of Brownian motion on these two intervals.
Note first that, by the Markov property together with Theor28, almost surely3(as) <
ms. Hence this maximum agrees with maximum in the intefual— %,62], for some
n € N, and we may therefore assume in the proof that as.

Applying the Markov property at timi we see that the random varialidas) — B(b;) is
independent ofn; — B(b; ). Using the Markov property at time, we see thatns — B(as)
is also independent of both these variables. The evgnt ms can be written as

B(ag) — B(b1) =mi — B(bl) — (m2 — B(CLQ)).

Conditioning on the values of the random variables— B(b;) andms — B(az), the left
hand side is a continuous random variable and the right higledasconstant, hence this
event has probability O.
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meo

a by as by

Fig. 2.2. The random variables, — B(b1) andmz — B(b2) are independent of the increment
B(az) — B(by).

(a) By the statement just proved, almost surely, all nonoveiteppairs of nondegenerate
compact intervals with rational endpoints have differersxima. If Brownian motion
however has a non-strict local maximum, there are two sutgnials where Brownian
motion has the same maximum.

(b) In particular, almost surely, the maximum over any nondegge compact interval
with rational endpoints is not attained at an endpoint. ldeme@ry such interval contains
a local maximum, and the set of times where local maxima aeénat is dense. As
every local maximum is strict, this set has at most the catfitynof the collection of these
intervals.

(c) Almost surely, for any rational numbere [0, 1] the maximum in0, ¢] and in[g, 1] are
different. Note that, if the global maximum is attained f@otpointst; < t, there exists a
rational numbet; < ¢ < to for which the maximum iff0, ¢] and in[q, 1] agree. [ |

2.2 The strong Markov property and the reflection principle

Heuristically, the Markov property states that Browniantio is started anew at each
deterministic time instancdt is a crucial property of Brownian motion that this holdsa
for an important class of random times. These random tinesalledstopping times

The basic idea is that a random tifids a stopping time if we can decide whetH&r<t}
by just knowing the path of the stochastic process up to tinTéink of the situation that
T is the first moment where some random event related to thegsdappens.

Definition 2.12. A random variablel” with values in[0, oc], defined on a probability
space with filtration(F(¢): t > 0) is called astopping time with respect td F(¢): t > 0)
if {T"<t} e F(t), for everyt > 0. o

Remark 2.13We formulate some basic facts about stopping times in geénera

e Every deterministic timg > 0 is a stopping time with respect to every filtra-
tion (F(t): ¢ > 0).
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o If (T,: n = 1,2,...) is an increasing sequence of stopping times with respect
to (F(t):t > 0)andT,, T T, thenT is also a stopping time with respect to
(F(t): t = 0). This is so because

<ty = (Lo <t} € 7).
n=1

e LetT be a stopping time with respect{&(¢): ¢ > 0). Define timesT;, by
T,=(m+1)27"ifm2™" <T < (m+1)27".

In other words, we stop at the first time of the fok®" afterT. It is easy to see
thatT,, is a stopping time with respect {¢-(¢): ¢t > 0). We will use it later as a
discrete approximation t@'. o

Remark 2.14Recall from Section 2.1 the definition of thealgebrag F°(¢): t > 0) and
(FT(t): t > 0) associated with Brownian motion.
e Every stopping timé" with respect tq F°(¢): t > 0) is also a stopping time with
respect tq F+(¢): t > 0) asF(t) C FT(¢) for everyt > 0.

e SupposeH is a closed set, for example a singleton. Then the first bittime

T = inf{t > 0: B(t) € H} of the setH is a stopping time with respect to
(FO(t): t > 0). Indeed, we note that

r<tt= U U {B(s) e Bz, )} € 7).

n=1seQN(0,t) xecQINH
e Suppos&s C R? is open, then
T = inf{t > 0: B(t) € G}

is a stopping time with respect to the filtratiQ&* (¢): ¢ > 0), butnot necessarily
with respect to F°(¢): ¢ > 0). To see this note that, by continuity of Brownian
motion,

r<ty=({{r<st=() U {B(r)eGeF @),

s>t 5>t reQn(0,s)

so thatT is a stopping time with respect (- (¢): ¢ > 0). However, supposing
that G is bounded and the starting point not contained it‘clve may fix a path
v:[0,¢] — RE with v(0,¢) NclG = 0 andy(t) € OG. Then thes-algebraF®(t)
contains no nontrivial subset §B(s) = ~(s) V0 < s < t}, i.e. no subset other
than the empty set and the set itself. If we HEd< ¢} € F°(t), the set

{B(s) =~(s)forall0 < s < t,T =t}

would be inF°(¢) and (as indicated in Figure 2.3) a nontrivial subset of tbis s
which is a contradiction. o
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(1)

Fig. 2.3. At timet the pathy hits the boundary of+, see the arrow. The two possible dotted
continuations indicate that the path may or may not safis#y ¢.

Because the first hitting times of open or closed sets playrgoitant r6le, the last item
in Remark 2.14 shows that when dealing with Brownian mottas bdften preferable to
work with stopping times with respect to the richer filtratioF*(¢): ¢ > 0) instead
of (F°(t): t > 0). Therefore in the case of Brownian motion we make the convent
that, unless stated otherwise, notions of stopping time, atways refer to the filtra-
tion (FT(t): t > 0). As this filtration is larger, our choice produces more stogpimes.

The crucial property which distinguish¢& ™ (¢): ¢ > 0) from (F°(¢): t > 0) is right-
continuity, which means that

(N Frt+e) =F*().

e>0

To see this note that
(F t+e) =) Ft+1/n+1/k)=F(t).
>0 n=1k=1

The next result indicates the technical advantage of ghtinuous filtrations.

Proposition 2.15Suppose a random variable with values in[0, co] satisfies{T < ¢} €
F(t), for everyt > 0, and (F(t): t > 0) is right-continuous, thefl" is a stopping time
with respect tqF(¢): ¢ > 0).

Proof. Suppose thdl satisfies the conditions of the theorem. Then

(T<ty=(W{T <t+1/k} e [ F(t+1/n)=F(),
k=1 n=1
using the right-continuity of 7(¢): ¢ > 0) in the last step. [

We define, for every stopping tinig, thes-algebra
FHT)={Ac A: An{T <t} € Fr(t)forallt > 0}.

This means that the part of that lies in{T" < ¢} should be measurable with respect
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to the information available at time Heuristically, this is the collection of events that
happened before the stopping tifie In particular, it is easy to see that the random path
{B(t): t < T}is F*(T)-measurable. As in the proof of the last theorem we can ihfr t
for right-continuous filtrations like oufF*(¢): ¢t > 0) the event{T < t} may replace
{T" < t} without changing the definition.

We can now state and prove tegong Markov propertyor Brownian motion, which was
rigorously established by Hunt [Hu56] and Dynkin [Dy57].

Theorem 2.16 (Strong Markov property) For every almost surely finite stopping tiriie
the process

{B(T+t)—B(T):t >0}
is a standard Brownian motion independent/of (T').

Remark 2.17 An alternative form of the strong Markov property is that; é&my bounded
measurablg': C([0, 00), R?) — R andx € R?, we have almost surely

E.[f({B(T+1t):t>0}) | FN(T)] =Ep)[f({B(t): t > 0})],

where the expectation on the right is with respect to a Brawmhotion{ B(t): t > 0}
started in the fixed poinB(T). o

Proof. We first show our statement for the stopping timfiéswhich discretely ap-
proximateT from above,T,, = (m + 1)27"if m2™™ < T < (m + 1)27", see Re-
mark 2.13. WriteB, = {Bx(t): t > 0} for the Brownian motion defined b (t) =
B(t + k/2™) — B(k/2"™), andB, = {B.(t): t > 0} for the process defined by..(t) =
B(t + Ty,) — B(T,). Suppose that’ € F*(T,,). Then, for every even{B, € A}, we
have

P({B, € A}NE) = iP({Bk e AANEN{T, = k27"})
k=0

= iP{Bk € A}P(EN{T, = k27"}),
k=0

using that{ By, € A} is independent o N {7, = k27"} € F*(k2~") by Theorem 2.5.
Now, by Theorem 2.3P{B;, € A} = P{B € A} does not depend dn and hence we get

iP{Bk € AYP(EN{T, =k2"}) =P{Be A}iP(E N{T, = k27"})
: —P{Be A}]P;(_E),

which shows thaB, is a Brownian motion and independentf hence ofF * (T,,).
It remains to generalise this to general stopping tiffieds 7,, | T we have that

(B(s+T,) — B(T,): s > 0}
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is a Brownian motion independent " (T,,) > F*(T'). Hence the increments

B(s+t+T)—B(t+T)= lim B(s+t+1T,)—B({t+1T,)

n—oo

of the proces§ B(r + T') — B(T'): r > 0} are independent and normally distributed with
mean zero and varianee As the process is obviously almost surely continuous, é is
Brownian motion. Moreover all increment8(s +t+7T) — B(t +T) = lim B(s + t +
T,) — B(t + T,), and hence the process itself, are independe/t'ofl’). [

Remark 2.18Let 7 = inf{t > 0: B(t) = maxogs<1 B(s)}. Itis intuitively clear that
7 is not a stopping time. To prove it, recall that almost surely 1. The increment
B(r +t) — B(7) is negative in a small neighbourhood to the rightpfvhich contradicts
the strong Markov property and Theorem 2.8. o

2.2.1 The reflection principle

We will see many applications of the strong Markov propestiet, however, the next
result, the reflection principle, is particularly inteiegt The reflection principle states
that Brownian motion reflected at some stopping tifis still a Brownian motion.

Theorem 2.19 (Reflection principle)lf T is a stopping time andB(t): t > 0} is a
standard Brownian motion, then the procgs8*(¢): ¢t > 0} called Brownian motion
reflected atT" and defined by

B*(t) = B(t)ly<ry + (2B(T) — B(1))1>1y

is also a standard Brownian motion.

VA

0 ‘T=inf{t :B(t)=b} W t

Fig. 2.4. The reflection principle in the case of the first hitting time of lével

Proof. If T is finite, by the strong Markov property both paths
{B(t+T)—B(T):t>0}and{—(B(t+T)—B(T)): t >0} (2.1)
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are Brownian motions and independent of the beginfiB(): 0 < ¢ < T'}. The concate-
nation mapping, which takes a continuous pgjte): ¢t > 0} and glues it to the end point
of a finite continuous patfif(¢): 0 < ¢t < T’} to form a new continuous path, is measur-
able. Hence the process arising from glueing the first paB.k) to{B(¢): 0 < ¢t < T'}
and the process arising from glueing the second path in (@ {B(¢): 0 < t < T} have
the same distribution. The first is jusB(¢): t > 0}, the second i§B*(¢): t > 0}, as
introduced in the statement. [

Remark 2.20For a linear Brownian motion, consider

T=inf{t > 0: B(t) = (nax B(s)}
and let{B*(t): t > 0} be the reflection at defined as in Theorem 2.19. Recall from
Remark 2.18 that is not a stopping time. Not only is the reflected proaessBrownian
motion, but its law is singular with respect to that of Broamimotion. Indeed; is a point
of increase of the reflected process by construction, wkevesshall see in Theorem 5.14
that Brownian motion almost surely has no such point. o

Now we apply the reflection principle in the case of linearyn@an motion. LetM (t) =
maxogs<t B(s). A priori it is not at all clear what the distribution of thiamdom variable
is, but we can determine it as a consequence of the refledtincije.

Theorem 2.211f a > 0 thenPo{ M (t) > a} = 2Po{B(¢t) > a} = Po{|B(t)| > a}.

Proof. LetT = inf{t > 0: B(¢t) = a} and let{B*(¢): ¢ > 0} be Brownian motion
reflected at the stopping tin¥e. Then

(M(t) > a} = {B(t) > a} U{M(t) > a, B(t) < a}.

This is a disjoint union and the second summand coincidésavient{ B*(t) > a}. Hence
the statement follows from the reflection principle. [ |

Remark 2.22 Theorem 2.21 is most useful when combined with a tail est@nfiat the
Gaussian as in Lemma 12.9 in the appendix. For example, fapper bound we obtain,
foralla > 0,

V2t a?
Po{M(t) >a} < ——= ¢ - — .
O{ ( ) } a ﬁ Xp{ 2% <&
2.2.2 The area of planar Brownian motion
Continuous curves in the plane can still be extremely wildac-filling curves, like the
Peano curve, can map the time interjall] continuously on sets of positive area, see for

example [La98]. We now show that the range of planar Browniation has zero area.
The Markov property and the reflection principle play an imgaot r6le in the proof.
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Suppose{B(t) : t > 0} is planar Brownian motion. We denote the Lebesgue measure
onR? by L4, and use the symbdl « ¢ to denote theonvolution of the functionsf andg
given, whenever well-defined, by

frg(x) = / fw)g(z —y) dy.

Forasetd C R? andz € RYwe write A + z := {a + z: a € A}.

Lemma 2.23If A;, A, C R? are Borel sets with positive area, then
Lo({z € R?: L3(A1 N (A2 +2)) >0}) > 0.

Proof. We may assumd; and A, are bounded. By Fubini’'s theorem,
/ lAl*l,AQ(x)dx:/ / 14, (w)lg,(w—2)dwdz
R2 R2 JR2

:/]Rz Lo, (w) (/}R lAZ(w—x)dx> dw

= EQ(Al)EQ(AQ) > 0.

Thusly, *1_4,(z) > 0 on a set of positive area. But

La, #1_a, (1) = / Lay (9) 1y (z — y) dy = / Lay () Ly (4) dy
=Lo(A1N (A2 +12)),

proving the lemma. [ |

We are now ready to prove Lévy’'s theorem on the area of planamfian motion.

Theorem 2.24 (Lévy 1940AImost surelyL2(B]0,1]) = 0.

Proof. LetX = L£2(B[0,1]) denote the area dB[0, 1]. First we check thak[X] < oo.
Note thatX > « only if the Brownian motion leaves the square centred in thgiro of
side lengthy/a. Hence, using Theorem 2.21 and Lemma 12.9 of the appendix,

P{X > a} <2P{ max W ()| > Va/2} = 4P{W(1) > a/2} < 4”5,
fora > 1, where{W (t): t > 0} is standard one-dimensional Brownian motion. Hence,
E[X] = /OOOIE”{X > a}da < 4/1we_“/8da+1 < 0.
Note thatB(3t) and+/3B(t) have the same distribution, and hence

EL5(B[0,3]) = 3EL5(B[0,1]) = 3E[X].

Note that we haveC,(B[0,3]) < Y7_, L2(B[j,j + 1]) with equality if and only if for
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0 < i< j<2wehavely(Bli,i+1]NB[j,j+1]) = 0. Onthe other hand, fgr=0, 1, 2,
we haveELy (B[j, 5 + 1]) = E[X] and

2
3E[X] = ELy(B[0,3]) < > ELy(B[j.j + 1]) = 3E[X],
§=0

whence, almost surely, the intersection of any two of ¢ j + 1] has measure zero. In
particular,Co(B[0, 1] N B[2, 3]) = 0 almost surely.

Now we can use the Markov property to define two Brownian nmstj¢B; (¢): t € [0,1]}
by By (t) = B(t), and{Bz(t): t € [0,1]} by Ba(t) = B(t + 2) — B(2) + B(1). The
random variabl@” := B(2)— B(1) is independent of both Brownian motions. koe R?,
let R(x) denote the area of the sBt [0, 1] N (z + Bz[0, 1]), and note thaf R(z): = € R?}

is independent of". Then

0 =E[L2(B[0,1] N B[2,3])] = E[R(Y)] = (2r) ! / e 1" P2 E[R(2)] da,
R2
where we are averaging with respect to the Gaussian distibaf B(2) — B(1). Thus,
for £-almost allz, we haveR(z) = 0 almost surely and hence, by Fubini’s theorem,
L>({z € R*: R(z) > 0}) =0, almost surely.

From Lemma 2.23 we get that, almost surely(B[0,1]) = 0 or L3(B[2,3]) = 0. The
observation that’;(B[0,1]) and L2(B[2, 3]) are identically distributed and independent
completes the proof that, (B[0, 1]) = 0 almost surely. [

Remark 2.25How big is the range, or path, of Brownian motion? We have ghah
the Lebesgue measure of a planar Brownian path is zero aknosly, but a more pre-
cise answer needs the concept of Hausdorff measure andslanewhich we develop in
Chapter 4. o

Corollary 2.26 For any pointsz,y € R%, d > 2, we haveP, {y € B(0,1]} = 0.

Proof. Observe that, by projection onto the first two coordinatesyffices to prove
this result ford = 2. Note that Theorem 2.24 holds for Brownian motion with aeyi
starting pointy € R2. By Fubini’s theorem, for any fixed € R?,

/ P, {x € B[0,1]} dr = E, L2(B[0,1]) = 0.
]RQ
Hence, forL,-almost every point:, we haveP,{z € B[0,1]} = 0. By symmetry of
Brownian motion,
P,{z € B0,1]} = Pofw — y € B[0, 1]} = Po{y — = € B[0,1]} = P.{y € B0, 1]}

We infer thatP,.{y € BJ0,1]} = 0, for Ly-almost every point. For anye > 0 we thus
have, almost surelf 5 (.){y € B[0, 1]} = 0. Hence,

P.{y € B(0,1]} = liﬂ)l]P’z{y € Ble, 1]} = lingz]P’B(e){y € B[0,1 —¢]} =0,

where we have used the Markov property in the second step. [ |
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Remark 2.27 Loosely speaking, planar Brownian motion almost surelysduogt hit sin-
gletons. Which other sets are not hit by Brownian motion? Thearly depends on the
size and shape of the set in some intricate way, and a pratsecawill use the notion of
capacity, which we study in Chapter 8. o

2.2.3 The zero set of Brownian motion

As a further application of the strong Markov property wedaxvirst look at the properties
of the zero se{t > 0: B(t) = 0} of one-dimensional Brownian motion. We prove that
this set is a closed set with no isolated points (sometimbsdca perfect set). This is
perhaps surprising since, almost surely, a Brownian mdtia isolated zeros from the
left, for instance the first zero aftéy2, or from the right, like the last zero befot¢2.

Theorem 2.28Let{B(t): t > 0} be a one dimensional Brownian motion and
Zeros={t > 0: B(t) =0}
its zero set Then, almost surelyeros is a closed set with no isolated points.

Proof. Clearly, with probability oneZeros is closed because Brownian motion is
continuous almost surely. To prove that no pointZefos is isolated we consider the
following construction: For each rationale [0, co) consider the first zero after i.e.,

T, = inf{t > q: B(t) = 0}.

Note thatr, is an almost surely finite stopping time. Sir&os is closed, thénf is almost
surely a minimum. By the strong Markov property, appliedtowe have that for eac
almost surelyr, is not an isolated zero from the right. But, since there aig countably
many rationals, we conclude that almost surely, for albraig, the zeror, is not isolated
from the right.

Our next task is to prove that the remaining pointZefos are not isolated from the left.
So we claim that any < ¢ € Zeros which is different fromr, for all rationalq is not an
isolated point from the left. To see this take a sequepce ¢, ¢, € Q. Definet,, = 7, .
Clearlyq, < t, < tandsot, T t. Thust is not isolated from the left. [ ]

Remark 2.29Theorem 2.28 implies thateros is uncountable, see Exercise 2.9. o

2.3 Markov processes derived from Brownian motion

In this section, we define the concept of a Markov process.mtivation is that various
processes derived from Brownian motion are Markov processmong the examples are
the reflection of Brownian motion in zero, and the procggs : a > 0} of timesT, when

a Brownian motion reaches leveffor the first time. We assume that the reader is familiar
with the notion of conditional expectation giverraalgebra, see [Wi91] for a reference.
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Definition 2.30. A functionp: [0, ) x R? x B — R, where®B is the Borels-algebra in
R?, is aMarkov transition kernel provided

(1) p(-, -, A) is measurable as a function @f x), for eachA € %B;

(2) p(t,z, -) is a Borel probability measure dr? for all t > 0 andx € R?, when
integrating a functiory with respect to this measure we write

[t ptt.zdn);
(3) forall A € B, x € RY andt, s > 0,

p(t+s,z,A) = /Rd p(t,y, A) p(s, x,dy).
An adapted proces§X(t): t > 0} is a (time-homogeneous) Markov processvith
transition kernep with respect to a filtratiofi7 (¢): ¢ > 0), if for all ¢ > s and Borel sets
A € B we have, almost surely,

P{X(t) € A|F(s)} = p(t —s,X(s), A). ¢

Observe thap(t, z, A) is the probability that the process takes a valueliat timet, if

it is started at the point. Readers familiar wittMarkov chainscan recognise the pattern
behind this definition: The Markov transition kerneplays the réle of the transition ma-
trix P in this setup. The next two examples are easy consequenttes Markov property
for Brownian motion.

Example 2.31Brownian motion is a Markov process and for its transitionne¢p the
distributionp(¢, z, - ) is a normal distribution with meaw and variance. Similarly, d-
dimensional Brownian motion is a Markov process afdz, - ) is a Gaussian with mean
x and covariance matrix times identity. Note that property (3) in the definition o&th
Markov transition kernel is just the fact that the sum of twdépendent Gaussian random
vectors is a Gaussian random vector with the sum of the covesi matrices. o

Notation 2.32. The transition kernel of-dimensional Brownian motion is described by
probability measures(t, z, - ) with densities denoted throughout this book by

2
_ —d/2 . |z —yl
plt.zy) = (2mt) M exp (- 0. o

Example 2.33Thereflected one-dimensional Brownian motiph (¢): ¢ > 0} defined by
X(t) = |B(t)| is a Markov process. Moreover, its transition kerpél, x, -) is the law
of |Y'| for Y normally distributed with meam and variance, which we call themodulus
normal distributionwith parameters andt. o
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We now prove a famous theorem of Paul Lévy, which shows thatifierence of the
maximum process of a Brownian motion and the Brownian motiself is a reflected
Brownian motion. To be precise, this means that the diffezenf the processes has the
same finite-dimensional distributions as a reflected Brawmotion, and is also almost
surely continuous.

Theorem 2.34 (Lévy 1948} et {M(t): t > 0} be the maximum process of a linear stan-
dard Brownian motioq{ B(t): ¢t > 0}, i.e. the process defined by

M(t) = [nax, B(s).

Then, the proces§Y (t): ¢t > 0} defined byy' (¢) = M(t) — B(t) is a reflected Brownian
motion.

M(t) - B(t)

Fig. 2.5. On the left, the processgsB(t): ¢ > 0} with associated maximum process
{M (t): t > 0} indicated by the dashed curve. On the right the pro¢éést) — B(t): t > 0}.

Proof. The main step is to show that the procé¥¥t): ¢ > 0} is a Markov process and
its Markov transition kerneb(¢, z, - ) has modulus normal distribution with parameters
andt. Once this is established, it is immediate that the finiteatisional distributions of
this process agree with those of a reflected Brownian mo@iwviously,{Y (¢): ¢t > 0}
has almost surely continuous paths. For the main step X, consider the two processes
{B(t): t > 0} defined by

B(t) = B(s +t) — B(s) fort > 0,
and{M (t): t > 0} defined by

M(t) = max B(u)fort > 0.

o<ust
BecauseY (s) is F1(s)-measurable, it suffices to check that conditional/n(s), for
everyt > 0, the random variabl® (s + t) has the same distribution §8(s) + B(t)|. In-

deed, this directly implies thdf"(¢): ¢t > 0} is a Markov process with the same transition
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kernel as the reflected Brownian motion. To prove the clains fix> 0 and observe that
M(s+t)=M(s)V (B(s) + M(t)), and hence

Y(s+1t) = (M(s) v (B(s) + M(1)) = (B(s) + B(t).
Using the fact thata vV b) — ¢ = (a — ¢) V (b — ¢), we have
V(s+t) = (Y(s) VM) — B(t).

Tofinish, it suffices to check, for every>> 0, thaty\ M (t)— B(t) has the same distribution
as|y + B(t)|. For anya > 0 write

P, =P{y - B(t) > a}, P, =P{y - B(t) < aandM(t) — B(t) > a}.

ThenP{yV M (t) — B(t) > a} = P, + P,. Since{B(t): t > 0} has the same distribution
as{—B(t): t > 0} we haveP, = P{y + B(t) > a}. To study the second term it is
useful to define the time reversed Brownian mot{ofi (u): 0 < w < t} by W(u) :=
B(t—u) — B(t). Note that this process is also a Brownian motion(fet « < ¢ since it is
continuous and its finite dimensional distributions are €3&n with the right covariances.
Let My (t) = maxocucs W(u). ThenMy (t) = M(t) — B(t). SinceW (t) = —B(t),
we have

P, =P{y+W(t) < aandMw (t) > a}.
Using the reflection principle by reflectifg? (v): 0<u<t} at the first time it hits:, we
get another Brownian motiofi?V*(u): 0 < u < t}. In terms of this Brownian motion we
have P, = P{W*(t) > a + y}. Since it has the same distribution gsB(t): t > 0},
it follows that P, = P{y + B(t) < — a}. The Brownian motion{ B(t): ¢ > 0} has
continuous distribution, and so, by addifgand P,, we getP{y v M (t) — B(t) > a} =
P{|y + B(t)| > a}. This proves the main step and, consequently, the theorem. =

While, as seen abov¢)M (t) — B(t): t > 0} is a Markov process, it is important to note
that the maximum processV/(¢): ¢t > 0} itself is not a Markov process. However the
times when new maxima are achieved form a Markov process$eafoliowing theorem
shows.
Theorem 2.35 For anya > 0 define the stopping times

T, = inf{t > 0: B(t) = a}.

Then{T,: a > 0} is an increasing Markov process with transition kernel gi\® the
densities

p(a,t,s) = exp ( - 2(;17;)) 1{s > t}, fora > 0.

2m(s—t)3

This process is called the&table subordinator of index%.

Remark 2.36As the transition densities satisfy thRift-invariance property
pla,t,s) =p(a,0,s —t) foralla > 0ands,t >0,

the stable subordinatof§’, : « > 0} have stationary and independent increments. ¢
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Proof. Fixa > b > 0 and note that for alt > 0 we have
{T.-T, =t}
={B(T,+s)— B(T}) <a—b, fors < t, andB(T, + t) — B(T}) = a — b}.
By the strong Markov property of Brownian motion this eventridependent of- " (7},)

and therefore in particular ¢fT;: d < b}. This proves the Markov property ¢, : a > 0}.
The form of the transition kernel follows from the reflectiprinciple,

P{T, — T, <t} =P{T,—p <t} = IP’{ On<1%><<tB(s) >a— b}

oo

1 2
=2P{B(t)>a—b} =2 ——exp(— %) dx
(Bza-t)=2 [ ——eo(-3)
t 1 5
(a—b)
= ——(a—0b) exp ( — ~—5—+)ds,
| = ta=p e (- 52
where we used the substitutien= +/t/s (a — b) in the last step. [

In a similar way there is another important Markov procdss,Gauchy process, hidden in
the planar Brownian motion, see Figure 2.6.

1 V(s) LV

Fig. 2.6. The Cauchy process embedded in planar Brownian motion

Theorem 2.37Let {B(¢): t > 0} be a planar Brownian motion and denofg(t) =
(B1(t), B2(t)). Define a family(V (a): a > 0) of vertical lines by

V(a) = {(z,y) € R®: z = a},
and letT'(a) = 7(V(a)) be the first hitting time o¥ (a). Then the procesgX (a): a > 0}
defined byX (a) := B2(T'(a)) is a Markov process with transition kernel given by

1 a
P(a,xaA):; A(M_y)gdy

This process is called th@auchy process
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Proof. The Markov property of X (a): a > 0} is a consequence of the strong Markov
property of Brownian motion for the stopping tim&%a), and the fact thal’(a) < T'(b)

for all @ < b. In order to calculate the transition density recall fromedtem 2.35 that
T'(a), which is the first time when the one-dimensional Browniarioro{ B; (s): s > 0}

hits levela, has density
a

Vo (- 5)
T(a) is independent of Bz(s): s > 0} and therefore the density @-(7'(a)) is (in the
variablex)

ag

o} o0 —
1 12 a a2 _ ae _ a
/0 7ams P (= 55) Zom o (- 55) ds = /0 m(a? + 22) do = m(a? + x2)’

where the integral is evaluated using the substitutica 5 (a? + 22). |

Remark 2.38As in the case of stable subordinators, see Remark 2.36,ansee from
the form of the transition kernel that the Cauchy processitidependent, stationary in-
crements. Alternative proofs of Theorem 2.37, avoidingetk@icit evaluation of integrals
will be given in Exercise 2.19 and Exercise 7.5. o

2.4 The martingale property of Brownian motion

In the previous section we have taken a particular featuBr@f/nian motion, the Markov
property, and introduced an abstract class of processebdikov processes, which share
this feature. We have seen that a number of process deriwed Brownian motion are
again Markov processes and this insight helped us gettingmfermation about Brown-
ian motion. In this section we follow a similar plan, takingifferent feature of Brownian
motion, the martingale property, as a starting point.

Definition 2.39. A real-valued stochastic proce§X (¢): ¢ > 0} is amartingale with
respect to a filtratiod 7 (¢): ¢ > 0) if it is adapted to the filtrationE| X (¢)| < oo for all
t > 0 and, for any pair of time8 < s < t,

E[X(t)| F(s)] = X(s) almost surely.

The process is calledsubmartingale if > holds, and asupermartingale if < holds in
the display above. o

Remark 2.40Intuitively, a martingale is a process where the currertes¥gt) is always
the best prediction for its further states. In this sensetingales describ&ir games If
{X(t): t > 0} is a martingale, the proce$tX (t)|: ¢ > 0} need not be a martingale, but
it still is a submartingale, as a simple application of thangle inequality shows. o
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Example 2.41For a one-dimensional Brownian moti¢f(¢): ¢t > 0} we have
E[B(t)| F(s)] =E[B(t) — B(s) | F(s)] + B(s)
=E[B(t) — B(s)] + B(s) = B(s), for0 < s < t,

using Theorem 2.5 in the second step. Hence Brownian matianmartingale. o

We now state two useful facts about martingales, which weexijbloit extensively: The

optional stopping theoremndDoob’s maximal inequalityBoth of these results are well-
known in the discrete time setting and there is a remindergpehdix 12.3. The natural
extension of these results to the continuous time settitigeisontent of our propositions.

The optional stopping theorem provides a condition undechvthe defining equation for
martingales can be extended from fixed tinles s < ¢ to stopping time® < S < 7.

We are focussing ooontinuousnartingales, which means that, almost surely, their sample
paths are continuous.

Proposition 2.42 (Optional stopping theorem) Supposg X (¢): ¢ > 0} is a continuous
martingale, and) < S < T are stopping times. If the proce$X (t AT): ¢t > 0} is
dominated by an integrable random variabtg i.e. | X (¢t AT)| < X almost surely, for all
t > 0, then

E[X(T)|F(S)] = X(S), almost surely.

Proof. The best way to prove this is to prove the result first for maggles in discrete
time, and then extend the result by approximation. The tésutiscrete time is provided
in Theorem 12.27 of the appendix. Let us explain the appration step here.

Fix N € N and define a discrete time martingale By, = X (7' A n2~V) and stopping
timesS’ = [2VS] + 1 andT’ = |2VT| + 1, with respect to the filtratiofG(n): n €
N) given byG(n) = F(n2~"). Obviously X,, is dominated by an integrable random
variable and hence the discrete time result gt 7 | G(S")] = X , which translates
asE[X(T)| F(Sn)] = X(T A Sy), for Sy =27V(|2VS] +1). Hence, ford € F(5),
using dominated convergence,

AX(T)dP:]g%oAE[X(T)|F(SN)] d]P’:/A lim X(T A Sy) dP

. /A X(S) dP, h

and hence the claim follows from the definition of conditibexgpectation. [ |

The following inequality will also be of great use to us.

Proposition 2.43 (Doob’s maximal inequality)Suppose X (¢): t > 0} is a continuous
martingale andp > 1. Then, for any > 0,

B[ sup 1X(:))"] < (20)"EIX(0)P).
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Proof. Again this is proved for martingales in discrete time in oppendix, see
Theorem 12.30, and can be extended by approximationNFix N and define a discrete
time martingale byX,, = X (tn2~) with respect to the filtratiofiG(n): n € N) given

by G(n) = F(tn2~"). By the discrete version of Doob’s maximal inequality,
E[( sup 1Xul)"] < (325)" ElIXor ] = (320) E[IX )]
1<k<2N
Letting N 7 oo and using monotone convergence gives the claim. [ |

We now use the martingale property and the optional stoptiagrem to prove Wald's
lemmas for Brownian motion. These results identify the firsti second moments of the
value of Brownian motion at well-behaved stopping times.

Theorem 2.44 (Wald’s lemma for Brownian motion)Let {B(¢): t > 0} be a standard
linear Brownian motion, and” be a stopping time such that either

() E[T] < o0, 0r
(i) {B(tAT):t>0}isdominated by an integrable random variable.

Then we hav&[B (T)] =0.

Remark 2.45The proof of Wald’'s lemma is based on an optional stoppingraent. An
alternative proof of (i), which uses only the strong Markeogerty and the law of large
numbers, is suggested in Exercise 2.7. Also, the momentittmmdi) in Theorem 2.44
can be relaxed, see Theorem 2.50 for an optimal criterion. o

Proof.  We first show that a stopping time satisfying condition (Iyoasatisfies condi-
tion (ii). So suppos&|T] < oo, and define

Mj = max |B(t+k) — B(k)| andM = M.

Then

[T] oo 00
[ZM,C} =S EUT >k -1} M) = S P{T > k — 1} E[M)]
k=1

=1
=E[Mo]E[T +1] <

where, using Fubini’'s theorem and Remark 2.22,

E[MO}:/ P{OIE?EJB( \>ﬂ?}d$ +/ 3\/‘5; exp{—f”;}dx<oo.

Now note that|B(t A T')] < M, so that (ii) holds. It remains to observe that under

condition (ii) we can apply the optional stopping theorenthw$ = 0, which yields
thatE[B(T)] = 0. [ |
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Corollary 2.46 Let S < T be stopping times arll[T] < co. Then
E[(B(T))?] = E[(B(S))?] + E[(B(T) — B(S))*].
Proof. The tower property of conditional expectation gives
E[(B(T))*] =E[(B(5))"] + 2E[B(S)E[B(T) - B(S) | F()] |
+E[(B(T) - B(5))?].

Note thatE[T] < oo impliesE[T — S | F(S)] < oo almost surely. Hence the strong
Markov property at timeS together with Wald’s lemma impBi[B(T)—B(S) | F(S)] =0
almost surely, so that the middle term vanishes. [ |

To find the second moment &(7") and thus prove Wald’s second lemma, we identify a
further martingale derived from Brownian motion.

Lemma 2.47Supposg B(t): t > 0} is a linear Brownian motion. Then the process
{B(t)*—t: t >0}
is a martingale.
Proof. The process is adapted to the natural filtration of Browniation and
E[B(t)> —t| F*(s)]
=E[(B(t) — B(s))" | F7(s)] + 2E[B(t)B(s) | F*(s)] — B(s)* —t
= (t—s)+2B(s)* = B(s)” =t = B(s)* — s,

|
which completes the proof. [ |

Theorem 2.48 (Wald'’s second lemma)LetT" be a stopping time for standard Brownian
motion such thak[T] < co. Then

E[B(T)?*] = E[T].
Proof. Look at the martingalé B(¢)? — ¢: ¢t > 0} and define stopping times
T, = inf{t > 0: |B(t)] = n}

sothat{B¢ AT AT,)? —t AT AT,: t > 0} is dominated by the integrable random
variablen? + T'. By the optional stopping theorem we @tB (T A T,,)%] = E[T A T5,].
By Corollary 2.46 we havE&[B(T)?] > E[B(TAT,)?). Hence, by monotone convergence,

E[B(T)’] > lim E[B(T AT,)?| = lim E[T AT,]| = E[T].
Conversely, now using Fatou’s lemma in the first step,

E[B(T)?] < liminfE[B(T A T,)?] = liminf E[T AT, ] < E[T]. .

n—oo
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Wald’'s lemmas suffice to obtain exit probabilities and exeeécexit times for a linear
Brownian motion. In Chapter 3 we shall explore the corresiomyn problem for higher-
dimensional Brownian motion using harmonic functions.

Theorem 2.49Leta < 0 < band, for a standard linear Brownian motidrB(t) : ¢ > 0},
defineT’ = min{t > 0: B(t) € {a,b}}. Then

|a]
la| + b

o P{B(T) = a} = |a|b+b andP{B(T) = b} =

o E[T] = alb.

Proof. LetT = 7({a,b}) be the first exit time from the intervat, b]. This stopping time
satisfies the condition of the optional stopping theoremiB4$ A T')| < |a| V b. Hence,
by Wald's first lemma,

0 = E[B(T)] = aP{B(T) = a} + bP{B(T) = b}.

Together with the easy equati®{B(T) = a} + P{B(T) = b} = 1 one can solve this,
and obtaiflP{B(T) = a} = b/(Ja| +b), andP{B(T) = b} = |a|/(|a| +b). To use Wald’s
second lemma, we check tHa{T'] < co. For this purpose note that

E[T] = /000 P{T > t}dt — /OOO P{B(s) € (a,b) for all s [0, ]} dt,

andthat, for > k € Nthe integrand is bounded by th& power ofmax ¢ 4,5 P2 {B(1) €
(a,b)}, i.e. decreases exponentially. Hence the integral is finite
Now, by Wald’s second lemma and the exit probabilities, wiaiob

_a®b b?|al
~lal+b " a|+b

E[T] = E[B(T)?] = |alb. n

We now discuss a strengthening of Theorem 2.44, which woiks avweaker moment
condition. This theorem will not be used in the remaindethefthook and can be skipped
on first reading. We shall see in Exercise 2.13 that the ciomdite give is in some sense
optimal.

Theorem* 2.50Let{B(¢): t > 0} be a standard linear Brownian motion afitia stopping
time WithE[T?/2] < co. ThenE[B(T)] = 0.

Proof. Let{M(t): t > 0} be the maximum process ¢B(t): ¢t > 0} andT a stopping
time with E[T/?] < co. LetT = [log, T, so thatB(t A T) < M(47). In order to get
E[B(T)] = 0 from the optional stopping theorem it suffices to show thatrtiajorant is
integrable, i.e. that

EM(47) < oo.

Define a discrete time stochastic proc€ss,: k € N} by X, = M(4%) — 2*+1 and
observe that is a stopping time with respect to the filtratioA+ (4*) : k € N). Moreover,
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the proces§ X} : k € N} is a supermartingale. Indeed,

E[Xy| Foor] SMEY)+E[  max  B(0)] - 27,

0<t<4k_4k,—1

and the supermartingale property follows as

E[ max B(t)} = 4k — g1 ]E[ max B(t)} <2k,

0<t<ak —4k—1 0<t<1

using that, by the reflection principle, Theorem 2.21, ardG@auchy—Schwarz inequality,

E[ max B(t)] = E[B(1)| < (E[B(1)2)? = 1.

0<t<1
Now lett = 4¢ and use the supermartingale property-fox ¢ to get

E[M(47 At)] = E[X,ne] + E[27M] <E[Xo] +2E[27].

Note thatX, = M(1) — 2, which has finite expectation and, by our assumption on the
moments ofl’, we haveE[27] < co. Thus, by monotone convergence,

E[M(47)] = lim [M(47 At)] < oo,

which completes the proof of the theorem. [ |

Given the functionf: R — R, f(z) = x2, we were able, in Lemma 2.47, to subtract a
suitable term fromf(B(¢)) to obtain a martingale. To get a feeling for what we wish to
subtract in the case of a genefalwe look at the analogous problem for the simple random
walk {S,,: n € N}. A straightforward calculation gives, fgi: Z — R,

E[f(Snt1) [ 0(S1,....Sn)] = f(Sn) = 5 (£(Sn +1) = 2f(Sn) + f(Sn — 1))

whereA is the second difference operathif () := f(x +1) —2f(x) + f(z — 1). Hence
n—1

F(Sn) =5 D AF(S)
k=0
defines a (discrete time) martingale. In the Brownian motiase, one would expect a

similar result withA f replaced by its continuous analogue, the Laplacian

Af(z) = 8x£ ’

i=1

Theorem 2.51Let f: R — R be twice continuously differentiable, add(t): ¢t > 0}
be ad-dimensional Brownian motion. Further suppose that, férat 0 andz € R, we
haveE,|f(B(t))| < oo andE, [; |Af(B(s))|ds < co. Then the procesgX () : ¢ > 0}
defined by

X(t) = f(B(1) - & / AF(B(s)) ds

is a martingale.
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Proof. Forany0 < s < t,

E[X(t) | F(s)]
— Epo [f(B(t - 5)) —f/ Af(B du—/t_sﬂ«:Bs)[ AF(B(w))] du.
Now, using integration by parts addAp(t, z,y) = 2p(t,z,y), we find
B [§ AF(BW)] =} [ bl B(s),2) Af(o) do
3 [ Bp(uB).0) ) do = [ Zpla, B(o).0) flz)da,
and hence
/ B b A7) du =t [ | / T b, B, o) du] f(z)da

= [ blt = 5. Bs).2) f(@) do i [ (e, B(s), ) f ) da
=Ep [f(B(t - )] — f(B(s)),

and this confirms the martingale property. [ |

Example 2.52Using f (z) = :r in Theorem 2.51 yields the familiar martinge[IB( )2 —

t > 0}. Using f(z) = 2* we obtain the martlngaléB - 3]0 s)ds: t = 0}
and not the familiar martingal€¢B(t)® — 3tB(t): t > 0}. Of course the difference
{fg(B(t) — B(s))ds: t > 0} is a martingale. o

The next lemma states a fundamental principle, which wedisttuss further in Chapter 7,
see in particular Theorem 7.18.

0 andE,|f(B(t))| < oo, for

Corollary 2.53 Supposef: R? — R satisfiesAf(z) =
t > 0} is a martingale.

everyr € R% andt > 0. Then the proces§f(B(t)):

Example 2.54The functionf : R? — R given byf(z1,z2) = €% cos 1 satisfiesA f(z) =
0. HenceX(t) = eP1® cos By(t) defines a martingale, wherg3, (t): t > 0} and
{Ba(t): t > 0} are independent linear Brownian motions. o

Exercises

Exercise 2.1.Show that the definition af-dimensional Brownian motion is invariant un-
der an orthonormal change of coordinates. More preciskly, is ad x d-matrix with
AAT = I;and{B(t): t > 0} is Brownian motion, then so ifAB(t): t > 0}.
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Exercise 2.2. Show that for any tail eventt € 7 the probabilityP,(A) is independent
of z, whereas for a germ evert e 7 (0) the probability,. (A) may depend om.
Exercise 2.38 Show that

(i) If S < T are stopping times, theA*(S) c F+(T).
(i) If T,, | T are stopping times, thef ™ (T') = (,—, F(T).
(i) If T is a stopping time, then the random variaBl€T") is F+(T)-measurable.

Exercise 2.4. Let {B(t): — oo <t < oo} be atwo-sided Brownian motion as defined in
Exercise 1.4, but including thédimensional case. A real valued random variabis

e astopping timeif {7 <t} € F(t):=N,_,0(B(s): —co<s<t+1),
e areverse stopping timeif {7 <t} € G~ (t) ==, o(B(s): t — L < s < o0).

For a stopping time let 77 (1) be the collection of eventd with AN {r < ¢} € F*(¢t),
for a reverse stopping timelet G~ () be the collection of eventd with AN {7 > t} €
G~ (t). Show that

(@) {B(r+t)— B(7): t > 0} is a standard Brownian motion independen#of(r),

(b) {B(r —t) — B(7): t > 0} is a standard Brownian motion independengof(r).

Exercise 2.5Let{B(t): 0 < t < 1} be alinear Brownian motion anfl € D[0, 1]. Show
that, almost surely, the sét € [0,1]: B(t) = F(t)} is a perfect set.
Hint. Use the Cameron—Martin theorem, see Theorem 1.38.

Exercise 2.6.Let {B(t): 0 < t < 1} be a linear Brownian motion and
T =sup {t € [0,1]: B(t) = 0}.
Show that, almost surely, there exist tinigs< s,, < 7 with ¢,, T 7 such that

B(t,) <0 and B(sp) > 0.

Exercise 2.78 Let { B(¢): t > 0} be a standard Brownian motion on the line, dhtle a
stopping time witlE[T] < co. Define an increasing sequence of stopping timegby: T’
andT7,, = T(B,) + T,—1 where the stopping tim&(B,,) is the same function &5, but
associated with the Brownian motidi3,,(¢): ¢ > 0} given by

By(t) = B(t+ To_1) — B(Th_1).

(a) Show that, almost surely,
lim 7B(Tn)

nToo n

(b) Show thatB(T) is integrable.

=0.
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(c) Show that, almost surely,

lim B(Ty)

nfoo

n
Combining (a) and (c) implies th&[B(T)| = 0, which is Wald’s lemma.

— E[B(T)].

Exercise 2.8.Show that, for any: > 0 and measurable st C [0, oo),

P.{B(s) >0forall0 <s<tandB(t) € A} =P, {B(t) € A} —P_,{B(t) € A}.
Exercise 2.98 Show that any nonempty, closed set with no isolated pointsgéeuntable.
Note that this applies, in particular, to the zero set ofdinBrownian motion.

Exercise 2.10. The Ornstein—Uhlenbeck diffusida the proces$ X (¢): ¢t € R}, given by
X(t) =e 'B(e*) forallt € R,
see also Remark 1.10. Show tHa¥ (¢): ¢t > 0} and{X(—t): t > 0} are Markov pro-

cesses and find their Markov transition kernels.

Exercise 2.11. Letz,y € R? and{B(t): t > 0} a d-dimensional Brownian motion
started inz. Define thed-dimensionaBrownian bridge{ X (¢): 0 < ¢ < 1} with start inz
and end iry by

X(t) = B(t) —t(B(1) —y), foro0<t<1.

Show that the Brownian bridge it a time-homogeneous Markov process.

Exercise 2.12. Find two stopping time$ < T with E[S] < oo such that
E[(B(S))?] > E[(B(T))?].

Exercise 2.13§ The purpose of this exercise is to show that the moment dondii
Theorem 2.50 is optimal. L&tB(t): ¢ > 0} be a standard linear Brownian motion and
defineT = inf{t > 0: B(t) = 1}, so thatB(T") = 1 almost surely. Show that

E[T% < o0 foralla < 1/2.

Exercise 2.14Let {B(t): t > 0} be a standard linear Brownian motion

(@) Show that there exists a stopping tiffiavith ET' = co butE[(B(T))?] < cc.
(b) Show that, for every stopping tinie with ET' = oo andE+v/T < oo, we have

E[B(T)?] = .

Exercise 2.15Let {B(t): t > 0} be a linear Brownian motion.

(a) Show that, forr > 0, the procesgexp(oB(t) — "th): t > 0} is a martingale.



62 Brownian motion as a strong Markov process

(b) Show, by taking derivativeg% at 0, that the following processes are martingales.

o {B(t)2—t:t>0},
e {B(t)®> - 3tB(t): t > 0}, and
o {B(t)* —6tB(t)2 +3t2: t > 0}.

(c) FINdE[T?] for T = min{t > 0: B(t) € {a,b}} anda < 0 < b.

Exercise 2.168 Let {B(t): t > 0} be alinear Brownian motion and b > 0. Show that

Po{B(t) = a + bt for somet > 0} = e~ 2.

Exercise 2.178 Let R > 0 andA = {—R, R}. Denote byr(A) the first hitting time of
A, and byT,, the first hitting times of the point € R. Consider a linear Brownian motion
started atz € [0, R], and prove that

(@) Ey[r(A)] = R? — 22.

(b) E, [Tr | Tr < Ty] = B52°.

Hint. In (b) use one of the martingales of Exercise 2.15(b).

Exercise 2.18. Let {B(t): t > 0} be a linear Brownian motion.
(a) Use the optional stopping theorem for the martingale in &ger2.15(a) to show
that, with7, = inf{¢t > 0: B(t) = a},

—aV2A\

Eo [ef)‘“ =e , forallXa>0.

(b) Show that, withr_, = inf{t > 0: B(¢) = —a}, we have
Eq [e*AT“] =E [e*/\“ Hra < 70} + Eo [e*/\T*“ Hr_q <70} em20V2h
(c) Deduce that = 7, A 7_, satisfies

Eo[e 7] = sech(av/2)),

2
et4e— "

where secfr) =

Exercise 2.191n this exercise we interpr&? as the complex plane. Hence a planar Brow-
nian motion becomes a complex Brownian motion. A compldxee stochastic process
is called a martingale, if its real and imaginary parts aretimgales. Let{ B(t) : ¢t > 0}
be a complex Brownian motion startedijihe imaginary unit.
(@) Show that{e*F®): ¢t > 0} is a martingale, for any € R.
(b) LetT be the first time whed B(t) : ¢ > 0} hits the real axis. Using the optional
stopping theorem at, show that

E[BMB(T)] — 67/\ )

Inverting the Fourier transform, the statement of (b) metwag B(7") is Cauchy dis-
tributed, a fact we already know from an explicit calculatieee Theorem 2.37.
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Exercise 2.20§ Let f: RY — R be twice continuously differentiablé,B(t): t > 0} a
d-dimensional Brownian motion such thak, [) e *|f(B(s))|ds < oo and
E, [y e |Af(B(s))| ds < oo, for anyz € R andt > 0.

(a) Show that the procedsX (¢) : ¢ > 0} defined by

X(0) = e pB(0) — [ (G ANB() = M (B() ds
is a martingale.

(b) SupposéJ is a bounded open set,> 0, andu: U — R is a bounded solution of
1 Au(z) = Au(z), forz e U,
and lim u(x) = f(x) for all xg € OU. Show that,

u(@) = E. | f(B(r) e,

wherer = inf{t > 0: B(t) ¢ U}.

Notes and comments

The Markov property is central to any discussion of Brownigotion. The discussion of
this chapter is only a small fraction of what has to be said, the Markov property will
be omnipresent in the rest of the book. The name goes back tkoMsa paper [Ma06]
where the Markovian dependence structure was introducédadaw of large numbers
for dependent random variables was proved. The strong Maykaperty had been used
for special stopping times, like hitting times of a pointhe@ the 1930s. Hunt [Hu56]
formalised the idea and gave rigorous proofs, and so diépeaddently, Dynkin [Dy57].

Zero-one laws are classics in probability theory. We haveaaly encountered the
powerful Hewitt—Savage law and there are more to come. Bhtlnad's zero-one law was
first proved in [BI57]. It holds well beyond the setting of Bmian motion, for a class
of Markov processes calldetller processeswhich includes all processes with stationary,
independent increments.

The reflection principle is usually attributed to D. Andréngv], who stated a variant
for random walks. His concern was the ballot problem: if t@adidates in a ballot receive
a, respectivelyb votes, witha > b, what is the probability that the first candidate was
always in the lead during the counting of the votes? See Husidal text of Feller [Fe68]
for more on this problem. A formulation of the reflection mijple for Brownian motion
was given by Lévy [Le39], though apparently not based onitierous foundation of the
strong Markov property. We shall later use a higher-dimamali version of the reflection
principle, where a Brownian motion iR is reflected in a hyperplane.
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The class of Markov processes, defined in this chapter, hiat amd fascinating the-
ory of its own, and some aspects are discussed in the boolerfRagd Williams [RWO00a,
RWO0O0b] and Chung [Ch82]. A typical feature of this theory $sstrong connection to anal-
ysis and potential theory, which stems from the key réle @iHlyy the transition semigroup
in their definition. This aspect is emphasised in differeaysvin the books by Blumen-
thal and Getoor [BG68] and Bass [Ba98]. Many of the imporexamples of Markov
processes can be derived from Brownian motion in one wayeoother, and this is an ex-
cellent motivation for further study of the theory. Amongsm are stable Lévy processes,
like the Cauchy process or stable subordinators, the Bpesetsses, and diffusions.

The intriguing relationship uncovered in Theorem 2.34 loamfl numerous extensions
and complementary results, among them Pitmank— B theorem, which we will discuss
in Section 5.5, which describes the proc¢83/(t) — B(t): ¢t > 0} as a3-dimensional
Bessel process or, equivalently, a Brownian motion coowiid to stay positive.

The concept of martingales is due to Doob, see [Do53]. Theyaarimportant class
of stochastic processes in their own right and one of the ggmsodern probability the-
ory. A gentle introduction, mostly in discrete time, is Wilhs [Wi91], while Revuz and
Yor [RY94] discuss continuous martingales and the richti@fa to Brownian motion. A
fascinating fact, due to Dambis [Da65], Dubins, and SchyjB265], is that for every
continuous martingal¢M (¢): ¢t > 0} with unbounded quadratic variation there exists a
time-change, i.e. a reparametrisation> T, such thatl},¢ > 0 are stopping times, such
thatt — M (T;) is a Brownian motion.

The martingale featuring in Exercise 2.15 (a) plays an irgmirréle in the context
of the Cameron—Martin theorem. It represents the densitietaw of a Brownian mo-
tion with constant drift, with respect to the law of a drifie Brownian motion on the
spaceC|0,t], see Remark 1.43. See also Freedman [Fr83] for a nice tratimfiehis
connection. Girsanov’s theorem offers a more systematicogeh to mutual densities,
which is best understood in the language of semimartingatesfor example Revuz and
Yor [RY94]. Theorem 2.50 establishes a special case of aoiitapt result in martingale
theory, the Burkholder—Davis—Gundy inequalities, see@1R2] for the original paper and
Theorem 3.28 of Karatzas and Shreve [KS91] or Rogers ande¥i#l [RWOOb] for a text-
book treatment. A presentation closer to ours is in Projoositll-2-3(b) of Neveu [Ne75].
Exercise 2.17 appears in similar form in Stern [St75].
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Harmonic functions, transience and recurrence

In this chapter we explore the relation of harmonic functiand Brownian motion. This
approach will be particularly useful fat-dimensional Brownian motion fod > 1. It
allows us to study the fundamental questions of transienderecurrence of Brownian
motion, investigate the classical Dirichlet problem ofotlestatics, and provide the back-
ground for the deeper investigations of probabilistic ptité theory, which will follow in
Chapter 8.

3.1 Harmonic functions and the Dirichlet problem

Let U be adomain, i.e. a connected open détc R¢, andoU be its boundary. Suppose
that its closurel/ is a homogeneous body and its boundary is electrically ethrthe
charge given by some continuous functipn 09U — R. TheDirichlet problemasks for
the voltageu(z) at some point: € U. Kirchhoff's laws state that: must be eharmonic
functionin U. We therefore start by discussing the basic features of draigiunctions.

Definition 3.1. Let U ¢ R? be a domain. A function:: U — R is harmonic (onU) if it
is twice continuously differentiable and, for anye U,

d
0?u

Au(z) = @((E) =0.
j=1 "7

If instead of the last condition onlxu(z) > 0, then the function: is subharmonic.  ©

To begin with we give two useful reformulations of the harnety condition, called the
mean value properties which do not make explicit reference to differentiability

Theorem 3.2LetU C R? be a domain and.: U — R measurable and locally bounded.
The following conditions are equivalent;

(i) w is harmonic;
(i) forany ballB(xz,r) C U, we have

1
)= ZBET P
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(iii) forany ballB(z,r) C U,
1
) = BT g O

whereo, . is the surface measure éi3(z, r).

Remark 3.3We use the following version of Green’s identity,
ou
| Srwde= [ A, 61)
0B (z,r) 9N B(z,r)
wheren(y) is the outward normal vector of the ball gtsee [Ba95]. One can avoid the
use of this identity and prove the result by purely probabdimeans, see Exercise 8.&.

Proof. (i) = (iii) Assumeu has the mean value property (ii). Defigte (0, 0c0) — R by

B(r) = 1~ /6 o M0 o)

Then, for anyr > 0, we have
v L(B(,1)) ulx) = L(B(z, 1)) u(x) /B( ) dy/()rws) o11 g,

Differentiating with respect to givesy(r) = d L(B(x, 1))u(z) for almost all- € (0, 00).
As dri='L(B(z,1)) = 04..(0B(x,r)) we infer that

N
0z, (0B(z,7))
Supposey: [0,00) — [0,00) is a smooth function with compact support[ihe) and
[ g(Jz]) dz = 1. Integrating (3.2) one obtains

u(z) = / u(w)g(|z — ) dy

for all x € U and sufficiently smalk > 0. As convolution of a smooth function with a
bounded function produces a smooth function, we observeuttsainfinitely often differ-
entiable inU. In particular, this implies that (3.2) holds indeed formalk- 0, proving (iii).
(iii) = (i) Fix s > 0, multiply (iii) by o, -(0B(z, 7)) and integrate over all radii < < s.
(i) = (i) We have seen above that (iii) implies thais infinitely often differentiable

in U. Now suppose thahu # 0, so that there exists a small b#(x, ) C U such that
eitherAu(xz) > 0 onB(z,¢), or Au(z) < 0 onB(zx, ). With the notation from above,

0
o= =rt [ S w=r [ su

8B(z,r) on

() = / u(y) do,. (), foralmostallr € (0,00).  (3.2)
oB(x,r)

using (3.1). This is a contradiction.
(i) = (iii) Suppose that is harmonic and3(z,r) C U. Using (3.1), we obtain that
v = [ S = [ Autydy=o.
oB(z,r) ON B(z,r)
Hencey is constant, and dam, o ¢ (r) = 09,1 (B(0, 1)) u(x), we obtain (jii). [
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Remark 3.4 A twice differentiable function;: U — R is subharmonic if and only if

1

u(z) < LB /B(%T) u(y) dy for any ballB(z,r) C U. (3.3)

This can be obtained in a way very similar to Theorem 3.2, kseExercise 3.1. o

An important property satisfied by harmonic, and in fact subtonic, functions is the
maximum principle. This is one of the key principles of arsédy

Theorem 3.5 (Maximum principle) Suppose:: R? — R is a function, which is subhar-
monic on an open connected $&t- R,

(i) If u attains its maximum ¥/, thenw is a constant.
(ii) If wis continuous o/ andU is bounded, then

maxu(xr) = max u(x).
xelU ( ) €U ( )

Remark 3.6 If « is harmonic, the theorem may be applied to beotand —u. Hence the
conclusions of the theorem also hold with ‘maximum’ repthbg ‘minimum’. o

Proof. (i) Let M be the maximum. Note thdt = {z € U : u(z) = M} is
relatively closed irlU. SinceU is open, for any: € V, there is a balB(z,r) C U. By the
mean-value property af, see Remark 3.4,

1
CB@.) /BW) uly) dy < M-

Equality holds everywhere, and a§y) < M for all y € B(x,r), we infer thatu(y) = M

almost everywhere off(x, ). By continuity this impliesB(z, ) C V. HenceV is also
open, and by assumption nonempty. Sibtes connected we get thadt = U. Therefore,
w is constant o/

(i) Sincew is continuous and/ is closed and bounded, attains a maximum oW/.

By (i) the maximum has to be attained 0. [ |

M =u(z) <

Corollary 3.7 Suppose:;, us: R? — R are functions, which are harmonic on a bounded
domainU ¢ R? and continuous o®. If v; andus agree ondU, then they are identical.

Proof. By Theorem 3.5(ii) applied ta; — u, we obtain that

sup {u1(z) —ua(z)} = sup {u(x) —uz(x)} = 0.
zeU redU

Henceu; (z) < uq(x) for all z € U. Applying the same argument tg, — u;, one sees
thatsup, ¢ 7 {u2(z) — u1(z)} = 0. Henceu; (z) = uq(z) forallz € U. [

We can now formulate the basic fact on which the relationstiiBrownian motion and
harmonic functions rests.
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Theorem 3.8SupposédJ is a domain,{B(t): t > 0} a Brownian motion started inside
Uandr = 7(0U) = min{t > 0: B(t) € 9U} the first hitting time of its boundary.
Lety: OU — R be measurable, and such that the function — R with

u(z) = E, [p(B(1)) {r < 00}], foreveryz € U, (3.4)
is locally bounded. Then is a harmonic function.

Proof.  The proof uses only the strong Markov property of Browniartiooand the
mean value characterisation of harmonic functions. Folldifa:, §) C U let7 = inf{t >
0: B(t) & B(z,9)}, then the strong Markov property implies that

u(z) =E, [IEQc [(p(B(T)) {7 < o0} |]~‘+(%)H =E, [u(B(f'))}

- / uly) @a.5(dy),
OB (x,5)

wherew, s is the uniform distribution on the sphei#(x, ). Thereforeu has the mean
value property and, as it is also locally bounded, it is haimonU by Theorem 3.2. m

Definition 3.9. LetU be adomain iR and letdU be its boundary. Suppose OU — R
is a continuous function on its boundary. A continuous fiowct: U — R is a solution
to the Dirichlet problem with boundary valuep, if it is harmonic onU andv(x) = ¢(x)
forz € OU. S

The Dirichlet problem was posed by Gauss in 1840. In fact &dlusught he showed
that there is always a solution, but his reasoning was wrarthZaremba in 1911 and
Lebesgue in 1924 gave counterexamples. However, if the ishasaufficiently nice there
is a solution, as we will see below.

Definition 3.10. LetU c R? be a domain. We say that satisfies théoincaré cone
condition atx € JU if there exists a con®& based at: with opening anglex > 0, and
h > 0suchtha’ N B(x,h) C U°. S

The following lemma, which is illustrated by Figure 3.1, Mgitepare us to solve the Dirich-
let problem for ‘nice’ domains. Recall that we denote, foy apen or closed set ¢ R¢,
by 7(A) the first hitting time of the setl by Brownian motion,

T7(A) =inf{t > 0: B(t) € A}.

Lemma 3.11Let0 < a < 27 andCy(a) C R? be a cone based at the origin with opening
anglea, and

a= sup Py {7(98B(0,1)) < 7(Co(a))}.

mEClB(O,%)
Thena < 1 and, for any positive integétr and 2’ > 0, we have
P, {r(0B(z,1)) < 7(C:(a))} < a¥, forall z,z € R? with |z — 2| < 27FK/,

whereC, («) is a cone based at with opening anglev.
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Fig. 3.1. Brownian motion avoiding a cone.

Proof. Itis easy to verifya < 1 using, for example, Exercise 1.8.4fc B(0,27%) then
by the strong Markov property

IP’x{T(aB(O, 1) < T(Co(a))}
k—1
< H sup P {r(9B(0,27 1)) < 7(Co())} = a*.
o ®E€B(0,2-F+1)
Therefore, for any positive integérandh’ > 0, we have by scalin®, {(0B(z, ")) <
7(C.(a))} < a, forall z with [z — 2| < 27Fn/. [

Theorem 3.12 (Dirichlet Problem) Supposd/ C R¢ is a bounded domain such that
every boundary point satisfies the Poincaré cone conditiad,suppose is a continuous
function ondU. Letr(0U) = inf{t > 0: B(t) € U}, which is an almost surely finite
stopping time. Then the functien U — R given by

u(z) = E, [p(B(r(d0)))], forz e U,
is the unique continuous function harmonic@rwith u(x) = ¢(x) for all z € OU.

Proof. The uniqueness claim follows from Corollary 3.7. The fuaoti is bounded and
hence harmonic off by Theorem 3.8. It remains to show that the Poincaré coneittomd
implies thatu is continuous on the boundary. Fixe OU, then there is a con€,(«a)
based at with anglea: > 0 with C,(a) NB(z,h) C U€. By Lemma 3.11, for any positive
integerk andh’ > 0, we have

P.{7(0B(z, 1)) < 7(C.(a))} < a®

for all z with |z — 2| < 27*K’. Givene > 0, there is @ < ¢ < h such thatp(y) —p(2)| <
e forally € OU with |y — 2| < 6. For allz € U with |z — z| < 2%,

u(z) — u(2)| = [Eap(B(r(90))) — ¢(2)| < Eo|@(B(r(V))) —¢(2)| . (3.5)
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If the Brownian motion hits the con€’, («), which is outside the domaiti, before the
spheredB(z, ), then|z — B(7(0U))| < 4, andp(B(r(dU))) is close top(z). The
complement has small probability. More precisely, (3.3)dsnded above by

2 pllocPo{7(08(2,0)) < T(C:(a))} + ePo{T(OU) < 7(9B(2,0))} < 2| ¢llca” +e.

This implies that: is continuous ort/. [ |

Remark 3.13If the Poincaré cone condition holds at every boundary poim can simu-
late the solution of the Dirichlet problem by running mangiépendent Brownian motions,
starting inz € U until they hit the boundary of/ and lettingu(x) be the average of the
values ofy on the hitting points. o

Remark 3.14In Chapter 8 we will improve the results on the Dirichlet desb signifi-
cantly and give sharp criteria for the existence of soligion o

To justify the introduction of conditions on the domain wenngive an example where the
functionu of Theorem 3.12 fails to solve the Dirichlet problem.

Example 3.15 Take a solutiorn: 5(0,1) — R of the Dirichlet problem on the planar disc
B(0,1) with boundary conditionp: 9B(0,1) — R. LetU = {z € R?: 0 < |2| < 1} be
the punctured disc. We claim thatz) = E, [¢(B(7(9U)))] fails to solve the Dirichlet
problem onU with boundary conditiorp: 95(0,1) U {0} — R if ©(0) # v(0). Indeed,
as planar Brownian motion does not hit points, by Corollag62the first hitting timer

of U = 9B(0,1) U {0} agrees almost surely with the first hitting time@i$(0, 1). Then,
by Theorem 3.12y(0) = Eo[¢(B(7))] = v(0) # ¢(0). o

We now show how the techniques we have developed so far caseldd¢aiprove a classical
result from harmonic analysis, Liouville’s theorem, by Ipabilistic means. The proof uses
the reflection principle for higher-dimensional Browniantion.

Theorem 3.16 (Liouville’s theorem)Any bounded harmonic function @®f is constant.

Proof. Letu: R? — [~M, M] be a harmonic functiony, y two distinct points in
R4, and H the hyperplane so that the reflectionfihtakesz to y. Let {B(¢): ¢t > 0}
be Brownian motion started at and {B(¢): t > 0} its reflection inH. Let7(H) =
min{¢: B(t) € H} and note that

(B(t): t > 7(H)} 2 {B(t): t > r(H)}. (3.6)

Harmonicity implies tha[u(B(t))] = w(z) and decomposing the above intec 7(H)
andt > 7(H) we get

u(z) = E[u(Bt))ir<r(my] +E[u(B0) g > romyy]-
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A similar equation holds fou(y) whenB(t) is replaced byB(t). Now, using (3.6),

u(z) — u(y)| = [E[u(B(t) Larmyy] — E[w(B(E)1pcr )]
<2MP{t < 7(H)} -0 ast — oo.

Thusu(z) = u(y), and sincer andy were chosen arbitrarily; must be constant.  =®

Remark 3.17Clearly, any linear function is harmonic. In Exercise 3.tt@ reader will be
asked to prove that any harmonic functiorifi with sublinear growth is constant. o

3.2 Recurrence and transience of Brownian motion
A Brownian motion{ B(t): ¢ > 0} in dimensiord is calledtransientif

lim |B(t)| = oo almost surely.
tToo

Note that the evenflim;;~, |B(t)] = oo} is a tail event and hence, by the zero-one law
for tail events, it must have probability zero or one. In théxtion we decide in which
dimensionsd the Brownian motion is transient, and in which it is not. Thisestion

is intimately related to the exit probabilities of the Braam motion from an annulus:
Suppose the motion starts at a pairinside an annulus

A={zeR% r<|z| <R}, for0 <r < R < oo.

What is the probability that the Brownian motion hi##(0, ) beforedB(0, R)? The
answer is given in terms of harmonic functions on the annaht is therefore closely
related to the Dirichlet problem.

To find explicit solutionsu: cl A — R of the Dirichlet problem on an annulus it is first
reasonable to assume thais spherically symmetric, i.e. there is a function [, R] — R
such thatu(x) = ¢ (]z|?). We can express derivativesofn terms ofy as

0ip(jxl*) = ' (|2]*)22; anddysop (|2]*) = ¢" (Jo|*)4a? + 20" (|2[?).

Therefore Au = 0 means
d

0= (" (Jol?)402 + 20/ () ) = A" () + 240 ([of?).

i=1

Lettingy = |x|?> > 0 we can write this as
—d
" _ !
Pi(y) = 37 ().

This is solved by every) satisfyingv’(y) = const - y~%2 and thusAu = 0 holds
on{|x| # 0} for
|z] ifd=1,
u(z) =4 2loglx| ifd=2, (3.7)
lz|2=¢  ifd > 3.
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We writeu(r) for the value ofu(z) for all z € 9B(0, ). Now define stopping times
T, = 7(0B(0,7)) = inf{t > 0: |B(¢t)| = r} forr > 0,
and denote b{" = T,. A Tg the first exit time fromA. By Theorem 3.12 we have
u(z) =By [uw(B(T))] = u(r)Po{T, < Tr} + u(R)(1 — P, {T, < Tr}).
This formula can be solved

Pdﬂxﬂ&}zgg_ﬁg

and we get an explicit solution for the exit problem.

Theorem 3.18Suppose B(t): t > 0} is a Brownian motion in dimensiah > 1 started
in z € A, which is an open annulug with radii 0 < r < R < co. Then,

R—|a| o
= ifd=1,
PAT, < Tr}={ 'Eftell ifq=2

2-d 2-d .
% ifd >3

R2—d_,2—

Letting R T oo in Theorem 3.18 leads to the following corollary.

Corollary 3.19 For anyx ¢ B(0,r), we have

1 ifd <2,

7nd72

P {T, < oo} =

We now apply this to the problem eécurrenceandtransienceof Brownian motion in
various dimensions. Generally speaking, we call a Markocess{ X (¢): ¢ > 0} with
values inR¢

e pointrecurrent, if, aimost surely, for every € R¢ there is a (random) sequenge] oo
such thatX (¢,,) = 2 foralln € N,

¢ neighbourhood recurrent, if, almost surely, for every € R? ande > 0, there exists a
(random) sequendg, T oo such thatX (¢,,) € B(z,¢) foralln € N.
e transient, if it converges to infinity almost surely.

Theorem 3.20Brownian motion is

e point recurrent in dimensiod = 1,
¢ neighbourhood recurrent, but not point recurrentdn= 2,
e transient in dimensiod > 3.
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Proof. We leave the casé = 1 as Exercise 3.4, and look at dimensiénr= 2. Fix

e > 0 andz € R%. By Corollary 3.19 and shift-invariance the stopping titne= inf{t >
0: B(t) € B(z,¢)} is almost surely finite. Using the strong Markov propertyiragtt; + 1
we see that this also appliestto= inf{t > ¢, + 1: B(t) € B(z,¢)}, and continuing like
this, we obtain a sequence of timgs? oo such that, almost surelg(t,,) € B(x, ¢) for all

n € N. Taking an intersection over a countable family of b&ll§z;,¢c;): i = 1,2,...),
forming a basis of the Euclidean topology, implies thatdin= 2 Brownian motion is
neighbourhood recurrent. Recall from Corollary 2.26 tHahpr Brownian motion does
not hit points, hence it cannot be point recurrent.

It remains to show that Brownian motion is transient in disiensd > 3. Look at the
events4,, := {|B(t)| > nforallt > T,s}. Recall from Proposition 1.23 th&t,: < oo
almost surely. By the strong Markov property, for everg |z|*/3,

]P).’L‘(ASL) =E, ]P)B(Tng){T" < OO}} = (%)d_2'

Note that the right hand side is summable, and hence the-Boaatelli lemma shows that
only finitely many of the eventsl¢ occur, which implies thatB(t)| diverges to infinity,
almost surely, and hence that Brownian motiol i 3 is transient. [

Remark 3.21 Neighbourhood recurrence, in particular, implies thatghé of a planar
Brownian motion (running for an infinite amount of time) isde in the plane. o

We now have a qualitative look at the transience of Browniarion in R¢, d > 3, and
ask for the speed of escape to infinity. This material is iygmore advanced and can be
skipped on first reading.

Consider a standard Brownian moti¢B(¢): t > 0} in R¢, for d > 3, and fix a sequence
t, 1 oco. For anye > 0, by Fatou’s lemma,

P{|B(tn)| < eV, infinitely often} > limsup P{|B(t,)| < ev/tn} > 0.
By the zero-one law for tail events, see Theorem 2.9, theghitity on the left hand side
must therefore be one, whence

lim inf 7|B(tn)|
n—oo \/t;
This statement is refined by the Dvoretzky—&sdest.

=0, almost surely. (3.8)

Theorem* 3.22 (Dvoretzky—Erdds test)Let { B(t): t > 0} be Brownian motion ifR?
ford > 3andf: (0,00) — (0,00) increasing. Then

/ )22 dr < oo if and only if lim inf 1BO)I = oo almost surely.
1

tteo f(1)

Conversely, if the integral diverges, thﬁl;]Tl inf | B(¢)|/f(t) = 0 almost surely.
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For the proof we first recall two generally useful tools. Thetfis an easy case of the
Paley—Zygmund inequality, see Exercise 3.5 for the futesteent.

Lemma 3.23 (Paley—Zygmund inequality)-or any nonnegative random variahl¢ with
E[X?] < oo,
E[X]?

P{X >0} > E[X7

Proof. The Cauchy—Schwarz inequality gives
E[X] = E[X 1{X > 0}] < E[X?]"/? (P{X > 0})"/,

and the required inequality follows immediately. [ |

The second tool is a version of the Borel-Cantelli lemmagcihillows some dependence
of the events. This is known as the Kochen—Stone lemma, aacc@®sequence of the
Paley—Zygmund inequality, see Exercise 3.6 or [KS64].

Lemma 3.24Supposé’y, F», . .. are events with

fe’e) & A
P(E,NE

Y P(BE,) =00 and  liminf Ym=1 %nzl ( nf; m) oo

n=1 k—oo (EnZI P(En))

Then, with positive probability, infinitely many of the etgsiake place.

A core estimate in the proof of the Dvoretzky—Esdest is the following lemma, which is
based on the hitting probabilities of the previous paragsap

Lemma 3.25There exists a constagt; > 0 depending only on the dimensidsuch that,
for anyp > 0, we have

sup P, { there existg > 1 with |[B(t)| < p} < Cy p* 2.
zER?

Proof. We use Corollary 3.19 for the probability that the motiorrtgtd at time one hits
B(0, p), to see that

) ) p d—2
P, { there exists > 1 with |B(t)| < p} <Eo [(m> }

1 .
< ,d-2 2—d _ lyl
AT /Rd ly+ 2~ exp { — %-}dy.

By considering the integration domaipg+ x| > |y| and|y + z| < |y| separately, it is
easy to see that the integral on the right is uniformly bodrider. [ |

Proof of Theorem 3.22. Define events

A,, = { there exists € (2", 2" with [B(t)| < f(1)} -
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By Brownian scaling, monotonicity of, and Lemma 3.25,
P(A,) < P{ there exists > 1 with |B(t)| < f(2"™)27"/?}

<, (f(2n+1) 2771/2) d—2

Now assume that the integral converges, or equivalenty, th

oo

Z(f(2”) 2‘”/2)6172 < . (3.9)

n=1
Then the Borel Cantelli lemma and (3.9) imply that, almostebuy the set{t > 0:
|B(t)] < f(t)} is bounded. Since (3.9) also applies to any constant meltplf in
place off, it follows thatlim inf,1, |B(¢)|/ f(t) = oo almost surely.
For the converse, suppose that the integral diverges, vehenc

oo

> (f (2m)2/ Q)H =00. (3.10)

n=1

In view of (3.8), we may assume th#ft) < /¢ for all large enought. Changingf on a
finite interval, we may assume that this inequality holdsafibt > 0.
Forp € (0, 1), consider the random variahlg = ff 1{|B(¢)| < p} dt. Since the density
of | B(t)| on the unit ball is bounded from above and also away from zaro€ [1, 2], we
infer that

Cop® < E[I,] < C3p?

for suitable constants depending only on the dimensionofgatement this by an estimate
of the second moment, we use the Markov property to see that

(72 = 26 [ 1B < p) / 11B(s)] < o} dsdi]
< 21@[/121{|B<t>| <o Ene) [ LB < ) dsae].

where the inner expectation is with respect to a BrowniariondtB(t): ¢ > 0} started
in the fixed pointB(t), whereas the outer expectation is with respedBto). We analyse
the dependence of the inner expectation on the startind.pGinenx # 0, we letT =
inf{t > 0: |B(t)| = «} and use the strong Markov property to see that

E/ 1{|B<s>\<p}ds>EA 1{|B<s>\<p}ds:m:m/o 1{|B(s)] < p} ds,

so that the expectation is maximal if the process is stattdteaorigin. Hence we obtain
I3 < 200" Bo | 1B < ) ds.
Moreover, by Brownian scaling,
Bo [ 1B < phds = [ (B < 1)ds

< p? (1+/100Wd5) = Cyp?,



76 Harmonic functions, transience and recurrence

where( is a finite constant. In summary, we haRff2] < 2C5C, p?+2. By the Paley—
Zygmund inequality, for a suitable constary > 0,

E[L,)?

E[17]

> Cspt2.

P{I, >0} >

Now choosep = f(2")27"/2, which is smaller than one, §§t) < /. By Brownian
scaling and monotonicity of, we have

d—2
P(A,) > P{I, > 0} > Cs (f(Q") 2—n/2> 7

so Y., P(A,) = oo by (3.10). Form < n — 1, the Markov property at time™~!,
Brownian scaling and Lemma 3.25 yield that

P[A, | Awm] < sup P.{ there exists > 1 with [B(t)| < f(2"+!)20-)/2]
TzER?

<o (pmy20-m)

From this, and the assumption thit) < /¢, we get that

S P(Am) Y P2[An | Am]

k k
P(A, N A, .
lim inf 2im=1 2un=1P( ﬂ2 ) = 2liminf

oo (YR P(AY)) koo (Xh_ P(An))

k — —

on+1 2(1 n)/2\d—2

< 201 ning Zemt U2 )
Cs k—oo  YF_ (f(2n)2-7/2)d—2

n=1

The Kochen—Stone lemma now yields tffdtA,, infinitely often} > 0, whence by The-
orem 2.9 this probability is 1. Thus the sgt > 0: |B(t)| < f(t)} is almost surely
unbounded. Since (3.10) also appliestbin place of f for anye > 0, it follows that
liminfyoo |B(t)|/f(t) = 0 almost surely. ]

3.3 Occupation measures and Green’s functions

We now address the following question: Given a bounded dobiai R¢, how much time
does Brownian motion spend {A? Our first result states that for a linear Brownian motion
running for a finite amount of time, this time is comparabl¢h® Lebesgue measureGf

Theorem 3.26Let {B(s): s > 0} be a linear Brownian motion antdl > 0. Define the
occupation measurg; by

t
ue(A) = / 14(B(s))ds for A C R Borel.
0

Then, almost surely,, is absolutely continuous with respect to the Lebesgue measu
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Proof. Absolute continuity ofi; with respect to the Lebesgue measure follows if

E Ut(B('xv 7’))
R 2B )

see for example Theorem 2.12 in [Ma95]. To see this we useHatsiu’s lemma and then
Fubini’s theorem,

< oo for u-almost every: € R,

(B, 1)) N
E/ll%%ﬂfmdﬂt(ﬂﬁ) < hlﬁ%)nfﬂE/ut(B(x,r))dut(:E)

1 t t
= liminf — / / ]P’{|B(31)—B(32)| Sr} dsy dss .
T‘\LO 2T 0 0

Using that the density of a standard normal random variabie bounded by one, we get

P{|B(Sl) - Pl T} N P{|X‘ S \/|s:fsz\} S \/\siiszv

and this implies that

lim inf — /t/t]P’{|B(s) B(s2)| <r}dsidss < /t/t dsidsy o
o 1) — 2) X 1 2 X - .
r0 2r Jo Jo 0 Jo /|s1— sz

This implies that, almost surely, is absolutely continuous with respect4o [ |

We now turn to higher dimensions > 2. A first simple result shows that whether the
overall time spent in a bounded set is finite or not depend®jusransience or recurrence
of the process.

Theorem 3.27LetU c R? be a nonempty bounded open set and R? arbitrary.

e If d = 2, thenP,-almost surer/ 1y(B(t))dt = oo.
0
o Ifd >3, then]Ez/ 1ly(B(t))dt < 0.
0

Proof. AsU is contained in a ball and contains a ball, it suffices to show/for balls.
By shifting, we can even restrict to balls = B(0,r) centred in the origin. Let us start
with the first claim. We let! = 2 and letG = B(0, 2r). Let.S; = 0 and, for allk > 0, let

T, =inf{t > Sk: B(t) ¢ G} and Sy =inf{t > T} : B(t) € U}.

Recall that, almost surely, these stopping times are fiRitem the strong Markov property
we infer, fork > 1,

P, { /STk L (B0) dt > 5 [F(80)} = By { /OTl 1 (B(1) dt > 5}

k
Tk

_E, [PB(Sk){ATI 10(B(1)) dt > sH :Px{ /Sk 10(B(1)) dt > s}

by rotation invariance. Hence the random variat{lﬁé%;k 1y(B(t))dt,: k=1,2,...} are
independent and, as the second term does not depehddentically distributed. As they
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are not identically zero, but nonnegative, they have pas@kpectation and, by the strong
law of large numbers we infer

) ' n T
/0 (B> i 3 /S 1u(B@) =,

which proves the first claim. For the second claim, we firsklab Brownian motion
started in the origin and obtain, making good use of Fubithissorem and denoting by
p: [0,00) x RY x R? — [0, 1] the transition density of Brownian motion,

o | ta (B ds = [ PolB(s) € BOas = [ L, PO dvds

/ / p(s,0,y)dsdy
B(0,r)
a(0B(0,1)) / d- 1/ 27r9 6722 dsdp.

Now we can use the substitution= p? /s and obtain, using that > 3 to ensure finiteness
of the integral, for a suitable constafifd) < oo,

:C(d)/ P12l gy — C(d)r < .
0

For start in an arbitrary: # 0, we look at a Brownian motion started dnand a stopping
time T', which is the first hitting time of the sphe&#(0, |«|). Using spherical symmetry
and the strong Markov property we obtain

oo

00
Eaj/ 1B(O,r)(B(S)) ds = Eo/ ]-B(O,r) (B(S)) ds
0 T
< Ko / 1500, (B(s)) ds < cc. u
0

In the case when Brownian motion is transient it is intergstb ask further for the ex-
pected time the process spends in a bounded open set. Innatderconfine this discus-
sion to the casé€ > 3 we introduce suitable stopping rules for Brownian motiod ia 2.

Definition 3.28. Suppose thafB(t): 0 < ¢ < T} is ad-dimensional Brownian motion
and one of the following three cases holds:

(1) d > 3andT = oo,
(2) d > 2 andT is an independent exponential time with paramater 0,
(3) d > 2 andT is the first exit time from a bounded domaih

We use the convention th@ = R? in cases (1), (2). We refer to these three cases by
saying thaf{ B(t): 0 < ¢ < T'} is atransient Brownian motion. ©

Remark 3.29 For a transient Brownian motiofB(t): 0 < ¢t < T}, given F*(t), on
the event{B(t) = y, t < T}, the proces§B(s +t): 0 < s < T} is again a transient
Brownian motion of the same type, startediyin We donot consider Brownian motion
stopped at sixedtime, because this model lacks this form of the Markov progper  ©
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Theorem 3.30For transient Brownian motiofiB(t): 0 < t < T'} there exists a transition
(subjdensityp*: [0, 00) x R? x R? — [0, 1] such that, for any > 0,

P.{B(t) € Aandt < T} = / p*(t,z,y) dy for everyA c R? Borel.
A

Moreover, for allt > 0 and £L-almost everye, y € D we havep* (¢, z,y) = p*(t,y, z).

Proof. Fix ¢t throughout the proof. For the existence of the density, leyRladon—
Nikodym theorem, it suffices to check tHat{B(¢) € Aandt < T'} = 0, if A is a Borel
set of Lebesgue measure zero. This is obvious, by just dngppe requirement < 7',

and recalling thaf3(¢) is normally distributed. 1¥/ > 3 andT = oo, orif d > 2 andT is

independent, exponentially distributed symmetry is obsio

Hence we can now concentrate on the case 2 and a bounded domaif. We fix a
compact sef{ C D and define, for every € K andn € N, a measurg~ on the Borel
setsA C D,

10 (A) =P, {B(s) e Kforallk =0,...,2" andB(t) € A} .

Thenp{™ has a density

on
P:L(ta%y):/K“'/Kilj[lp(;”Zi1,Zz')dz1~~d22n17

wherezg = z, zon = y andyp is the transition density af-dimensional Brownian motion.

As p is symmetric in the space variables, sgjjsfor everyn. Note thatp; is decreasing in

n. From the monotone convergence theorem one can segthate, y) := lim p} (¢, z,y)

is a transition subdensity of Brownian motion stopped ugaving K. The symmetry of

pr givespi (t,z,y) = pi(t,y,x). Choosing an increasing sequence of compact sets
exhaustingD and taking a monotone limit yields a symmetric verspdiit, «, y) of the
transition density. [ |

In all of our three cases of transient Brownian motions wé fidim now on choose partic-
ular versions of the transition densities. Recall fhaenotes the transition kernel for the
(unstopped) Brownian motion. Then,

(1) if d > 3 andT = oo, we takep* (¢, x,y) = p(t, z,y);
(2) if d > 2 andT is exponential with parameter> 0, we choose

pr(t,y) = e M p(t,y);
(3) if d > 2 andT is the first exit time fromD, we let
p*(ta (E7y) = p(tw%'a y) - E:L’ [p(t - T7 B(T)7y) 1{T < t}] :

It is easy to verify that thegg* are indeed transition densities as claimed.
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Definition 3.31.  For transient Brownian motiofB(t): 0 < t < T} we define the
Green'’s function G: R? x R? — [0, oc] by

G(z,y) = /0 p*(t,x,y)dt

The Green’s function is also called tii&reen kernel Sometimes it is also called the
potential kernel but we shall reserve this terminology for a closely relatedcept, see
Remark 8.21. o

In probabilistic terms= is the density of thexpectedccupation measure for the transient
Brownian motion started im.

Theorem 3.32If f: R¢ — [0, oo] is measurable, then

E, / F(B@®) dt = / £(y) Gl ) dy

Proof. Fubini’s theorem implies

e [ smoa = [TElmonen)a= [T v aa
= // p*(t,x,y)dt fy dy—/Gmy y) dy,

by definition of the Green’s function. [ |

In case (1), i.e. ifl" = oo, Green’s function can be calculated explicitly.

Theorem 3.33If d > 3 andT = oo, then
G(z,y) = c(d) |o —y|*™, wherec(d) = Hd/220),

ord/2

Proof. Assumed > 3 and use the substitution= |z — y|?/2¢ to obtain,

o 1 2 0 s /2 |z — y|?
o) = [ e [ () e (<
)= [ G e ) B 52 )
2-d oo
:|x—y\ /s(d/Q)_Qe_Sds:F(d/Z_l)|x—y|2_d
0

2rd/2 2rd/2 ’
whereI'(z fo s*~le~% ds is the Gamma function. This proves th@thas the given
form and the calculation above also shows that the integiiafinite if d < 2. [ |

In case (2), if Brownian motion is stopped at an independegmbeential time, one can find
the asymptotics of7(z, y) for z — y.

Theorem 3.34If d = 2 andT is an independent exponential time with parametesr 0,
then

1
G(z,y) ~ —gloglx—yl for |z —y[ | 0.
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Proof. From the explicit form op* we get

o0 1 e 2
G(z,y) = Gr(z —y) ::/ Z—exp{—%—)\t}dt.
0 Tt

We thus geiG(z — y) = G1(V/A(z — y)) and may assume without loss of generality
thatA = 1. Then

1 oo —t o0 1 o0 [ee] —t
G(l‘,y) = 5 / 67 / e *dsdt = — / e ® / e7dtd5
2m Jo b Jla—y2/(20) 21 Jo le—y|2/(2s) ¢

For an upper bound we use that,

/°° et { loghﬁi‘z‘z—i—l, if |2 —y|?> < 2s,
|

—dt < .
z—y|2/(2s) t 1 if |l‘ — y|2 > 2s.

)

For|z — y| < 1this gives, withy := [~ e™* log s ds < oo, a bound of

Glay) < -

— (1 +1log2+7 —2log |z —y|),
27

which is asymptotically equal te% log |z — y|. For a lower bound we use

o0 —t 2
/ ¢ dt > log 752 -1,
o—yl2/(2s) t |z =yl
and thus withd < v := — fO°° e~ * log s ds denoting Euler’s constant,

1
G(x,y)>§(—1+10g2—7—210glx—y|),

and again this is asymptotically equaltd- log |z — y|. [

We now explore some of the major analytic properties of Gssfeimction.

Theorem 3.35In all three cases of transient Brownian motiondn> 2, the Green’s
functionG: D x D — [0, co] has the following properties:

() G is finite off and infinite on the diagond = {(x,y): © = y}.
(i) Gis symmetric, i.eG(z,y) = G(y,z) forall z,y € D.
(i) Foranyy € D the Green'’s functiol( - , y) is subharmonic oD \ {y}.

Moreover, in case (1) and (3) it is harmonic.

This result is easy in the cage> 3, T = oo, where the Green'’s function is explicitly
known by Theorem 3.33. We prepare the prooflia- 2 by two lemmas of independent
interest.
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Lemma 3.36If d = 2, for z,y, = € R? with |z — 2| = 1,

1 oo
- log |z —y| = / p(s,x,y) —p(s,z,2)ds,
0
wherep is the transition kernel for the (unstopped) Brownian miotio

Proof. For|z — z| = 1, we obtain
1 eyl 1
2t

/Ooop(t,x,y) —p(t,x,z)dt = (e

_%0

1 1/(2t) dt
=— (/ e ® ds) —,
27 Jo lz—yl2/(2t) t

and by changing the order of integration this equals
1 [ V@) gy 1
— e_s(/ —) ds =——log |z —y|,
2m Jo ja—yl?/(25) ¢ i

which completes the proof. [ |

Lemma 3.37Let D C R? be a bounded domain andy € D andT the first exit time
from D. Then, withu(z) = 2log ||,

Glay) = 5o ule —y) ~ Ea[ o u(BT) )]
Proof. Recall that
itz y) =p(t,2,y) — Eo[p(t — T, B(T), y) {T < t}].
Asp(t,z,z + v) does not depend on we can add
0= —p(t,z,z+v) +E;[p(t, B(T), B(T) + v)]

on the right hand side. Integrating ovesind using Lemma 3.36 yields the statemenm

Proof of Theorem 3.35. We first look at properties (i) and (ii). These are obvious
in the cased > 3, T = oo, by the explicit form of the Green’s function uncovered in
Theorem 3.33. In the case tHatis an independent exponential time we can see from the
explicit form of p* that the Green’s function is symmetric and finite everywhexeept on

the diagonal. Moreover note for later reference that in thise twice differentiability is
easy to check using dominated convergence.

We now focus on the case where the Brownian motion is stopped leaving a bounded
domainD and look at the casé = 2 andd > 3 separately. First lef = 2. Lemma 3.37
gives, forz # y, thatG(x,y) < oo. However, we have

By [-1/2m) u(B(T) — z)] < o0,

henceG(z,z) = oo by Lemma 3.37. Itz € D, thenG(z, -) is continuous orD \ {z},
because the right hand side of the equation in Lemma 3.37nncmus. Similarly, if
y € D the right hand side is continuousdrmon D \ {y}, asE,[u(B(T) — y)] is harmonic
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in . HenceG(-,z) is also continuous oD \ {z}. The symmetry follows from the
almost-everywhere symmetry pf(¢, -, - ) together with the continuity. ¥ > 3 the same
proof works, replacing-1/ (27 )u(x —y) by £(x,y) = c(d)|z —y|>~<. In fact the argument
becomes easier because

Lz,y) = / p(t,z,y)dt, forallz,y € R?,
0

and there is no need to subtract a ‘renormalisation’ term.
Next we investigate (sub-)harmonicity of the Green'’s fiorcin all cases. Define

Ge(z,y) = /B( )G(x, z)dz, forB(y,e) C Dandz € D.
y,e

We first prove thati. (-, y) satisfies the mean value property of subharmonic functians o
D\ B(y,e), i.e.

1

=9 < 2B

/ Ge(z,y) dz, for0<r<|z—yl—e  (3.11)
B(z,r)

Indeed, fixz # yin D, let0 < r < |z —y|ande < |z — y| — r. Denoter =
inf{¢t: |B(t) — x| = r}. As a Brownian motion started in spends no time ifB(y, ¢)
before timer, we can write

Gele,y) = B [1r < T} /TT 1B(1) € By, <)} dt].

From the strong Markov property applied at timewe obtain

G.(z,y) = E, [1{7 <7 EB(T)/O 1{B(t) e B(y,fs)}dt},

where the inner expectation is with respect to a transieawBian motion{ B(t): 0 < t

< T} with the same stopping rule, but started in the fixed pdiit). By the strong
Markov property and since, on the evenk T, the random variabl@ () is uniformly

distributed orB(z, r), by rotational symmetry, we conclude,

Ge(z,y) =P {r < T} Ge(z,y) dwy r(2) < / Ge(z,y) dwy r(2).
aB(x,r) oB(x,r)

This implies (3.11) and it is also easy to see that in casear{d)(3) we have equality

in (3.11), as in these cases< T with probability one. Focusing on these two cases for

the moment, we obtain using continuity Gf for z,y € D with |z — y| > r,

= lim G (2, y) = lim ! M z
G(z,y) = 10 L(B(y,€))  cl0 L(B(z,r)) /B(z,r) L(B(y,¢))
1
— E(B(W/BW)G(z,y)dza

where the last equality follows from the bounded convergaheorem. This proves har-
monicity in cases (1) and (3). In case (2) the same argumidlrgiges (3.11), and we can
infer thatG( -, y) is subharmonic o \ {y} as the function is twice differentiable. m
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Remark 3.38Let K C R?, for d > 3, be a compact set andbe any measure oii. Then

u(z) = /K G(z,y) du(y), forz e K¢

is a harmonic function o . This follows as, by Fubini’s theorem, the mean value prop-
erty of G( -, y) can be carried over to. Physically,u(z) is the electrostatic (or Newtonian)
potential atr resulting from a charge represented;ny The Green functioid( -, y) can

be interpreted as the electrostatic potential induced hyitacharge in the poing. o

3.4 The harmonic measure

We have seen in the previous section that, for any compadt setR¢, d > 3, and any
pon K functions of the formu(z) = [ G(z,y) du(y) are positive harmonic functions on
K°. An interesting question is whether every positive harmdanction onK°¢ can be
represented in such a way by a suitable meaguoa 0K. The answer can be given in
terms of the harmonic measure.

Definition 3.39. Let {B(t): ¢ > 0} be ad-dimensional Brownian motion] > 2, started
in some pointr and fix a closed set c R?. Define a measurg(z, - ) by

pa(z,B) =P{B(r) € B, 7 <oc} Wwherer =inf{t > 0: B(t) € A},

for B C A Borel. In other wordsy: 4 (z, - ) is the distribution of the first hitting point of
A, and the total mass of the measure is the probability thabevan motion started in
ever hits the sefl. If 2 € A the harmonic measure is supporteddy. o

The following corollary is an equivalent reformulation dfiforem 3.12.

Corollary 3.40 If the Poincaré cone condition is satisfied at every pairg OU on the
boundary of a bounded domaii then the solution of the Dirichlet problem with boundary
conditiony: U — R, can be written as

u(zx) = /go(y) pov(z,dy) forallz € U.

Remark 3.410f course, the harmonicity af does not rely on the Poincaré cone condition.
In fact, by Theorem 3.8, for any compadt ¢ R? and Borel setB C 0A, the function
x +— p4(z, B) is harmonic onA°. ©

Besides its value in the discussion of the Dirichlet prohlém harmonic measure is also
interesting in its own right, as it intuitively weighs theipts of A according to their acces-
sibility from z. We now show that the measures(x, -) for different values oft € A°
are mutually absolutely continuous. This is a form of thedasHarnack principle

Theorem 3.42 (Harnack principle) Supposed C R? is compact andr,y are in the
unbounded component df. Thenp(z, - ) < pa(y, -)-
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Proof. Given B C 0A Borel, by Remark 3.41, the mapping— p4(x, B) is a
harmonic function ord°. If it takes the value zero for somee A€, theny is a minimum
and the maximum principle, Theorem 3.5, together with thesequent remark, imply that
pa(z, B) =0forall z € A°, as required. [

The Harnack principle allows to formulate the following aétfion.

Definition 3.43. A compact setd is callednonpolar for Brownian motion, or simply
nonpolar, if p4(z, A) > 0 for one (and hence for ally € A°. Otherwise, the sed is
calledpolar for Brownian motion . o

We now give an explicit formula for the harmonic measureshenunit spher@5(0, 1).
Note that ifx = 0 then the distribution oBB(7) is (by symmetry) the uniform distribution,
but if z is another point it is an interesting problem to determine distribution in terms
of a probability density.

Theorem 3.44 (Poisson’s formulaSuppose thaB C 9B(0,1) is a Borel subset of the
unit sphere ford > 2. Letw denote the uniform distribution on the unit sphere. Then, fo
all x ¢ 90B(0, 1),

1—|z/?
Mas(o,n(%B):/ wdw(y)-

B |~T—y|d

Remark 3.45The density appearing in the theorem is usually calledRbieson kernel
and appears frequently in potential theory. o

Proof.  We start by looking at the cage| < 1. Recall thatr denotes the first hitting
time of the se¥(0,1). To prove the theorem we indeed show that for every bounded
measurablg : R? — R we have

_ xQ
E.[f(B(r)) = /8 ! :d £(4) de(y), (3.12)

B(0,1) lz —y

which on the one hand implies the formula by choosing indicatnctions, on the other
hand, by the monotone class theorem, see e.g. Chapter B, ifL[Bu95], it suffices to
show this for smooth functiong. To prove (3.12) we recall Theorem 3.12, which tells us
that we just have to show that the right hand side as a funatiane 5(0,1) defines a
solution of the Dirichlet problem o8(0, 1) with boundary valugf.

Straightforward (double) differentiation shows that, éeeryy € 98(0, 1), the mapping

1—|af?

|z — y|

X —

is harmonic onB(0, 1). Using the characterisation of harmonic functions via tfeam
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value property, Theorem 3.2, we get for any &k, ) C B(0, 1),

m /196(,2,7") (/63(0,1) |1$——|Zx/|z fy) de=ty )> do=.r ()

= . L= _
- /aB(o,n (Uz,r(aB(w)) /as(z,r) |z — y|? do,( )> f(y) dw(y)
- [ R iwas),

Bo.1 12—yl

by Fubini's theorem, which implies the required harmoniciio check the boundary con-
dition first look at the cas¢ = 1, in which case we have to show that, forale 5(0, 1),

1-— |33|2
I(x :_—/ w(dy) = 1.
( ) 8B(0,1) |5F *y\d ( )

Indeed, observe thd{0) = 1, I is invariant under rotation and/ = 0 on B(0, 1), by the
first part. Now letr € B(0,1) with || = r < 1 and letr := inf{¢: |B(t)| > r}. By
Theorem 3.12,

1(0) = Eo [I(B(7))] = I(x),

using rotation invariance in the second step. Heheel, as required.

Now we show that the right hand side in the theorem can be é&teoontinuously to all
pointsy € 0B(0,1) by f(y). We write D, for 05(0, 1) with a §-neighbourhood3(y, d)
removed andD; = 9B(0,1) \ Dy = 05(0,1) N B(y,d). We have, using that = 1, for
allz € B(y,d/2) N B(0, 1),

- [ TR date)

B(0,1) |z — 2|4

‘/68(0 1) = |x|2 (f(y) = £(2)) dW(Z)’

|z — 2|

(E2
< Wl [ T b+ sup 150) - 52

Do‘ - | ze€Dy

For fixedd > 0 the first term goes t0 asz — y by dominated convergence, whereas
the second can be made arbitrarily small by choicé.ofThis completes the proof if
x € B(0,1).

If |z] > 1 we use inversion at the unit circle to transfer the problerthocase studied
before. Indeed, it is not hard to check that a function

u: B(0,1) =R
is harmonic if and only if its inversion
u: B0,1)\ {0} = R, u*(2)=u(h)lz>,

is harmonic, see Exercise 3.2. Now suppose tha?3(0,1) — R is a smooth function
on the boundary. Then define a harmonic function

u: B(0, 1)C =R, u(z)=E;[f(B(r(8B(0,1)))) 1{7(8B(0,1)) < co}].
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Thenu*: B(0,1) \ {0} — R is bounded and harmonic. By Exercise 3.11 we can extend
it to the origin, so that the extension is harmonic 8(0, 1). In fact, this extension is
obviously given byu*(0) = [ f dww. The harmonic extension is continuous on the closure,
with boundary values given by. Hence it agrees with the function of the first part, and
u = u** must be its inversion, which gives the claimed formula. [

We now fix a compact nonpolar sdt C R?, and look at the harmonic measuyrg(z, - )
whenz — oo. The first task is to make sure that the limit object is weliid.

Theorem 3.46Let A ¢ R be a compact, nonpolar set, then there exists a probability
measureu 4 on A, given by

pa(B) = lim P,{B(r(A)) € B|7(A) < oo} for B C ABorel.

xr—00

This measure is called thermonic measure(from infinity).

Remark 3.47The harmonic measure weighs the pointglafccording to their accessibility
from infinity. It is naturally supported by theuter boundaryof A, which is the boundary
of the infinite connected componentRf \ A. o

The proof is prepared by a lemma, which is yet another exampiethe strong Markov
property can be exploited to great effect.

Lemma 3.48For A ¢ R? compact and nonpolar and every> 0, there exists a large
R > 0 such that, for allz € 9B(0, R) and any hyperplanél c R? containing the origin,

P, {7(4) < 7(H)} < eP,{7(A) < o0}.

Proof.  Fix aradiusr > 0 such thatd ¢ B(0,r). Suppose there exists a large radius
R > r such that, for al: € 9B(0, R),

P, {7(B(0,7)) < 7(H)} < eP,{r(B(0,7)) < co}. (3.13)
Then, using the strong Markov property,
]P)m{T(A) < T(H)} < Em [I{T(B(O,T)) < T(H)}]P)B(T(B(O,T))){T(A) < OO}} .

Now recall from Remark 3.41 that — P, {7(A) < oo} is harmonic onA°. Hence the
ratio of any two values of this function on the compact@B(0, r) is bounded by a fixed
constantC > 0, independent of > 0. Therefore, using (3.13) in the second step,

Po{r(4) < 7(H)} < OF, [Lr(B(0,r) < 7(H)} _min P-{r(4) < oo}

<eCP{r(A) < o0},

from which the result follows.
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It remains to show (3.13). Observe that there exists an atesobnstany < 1 such that,
for anyx € 9B(0,2) and hyperplanéd,

P.{7(B(0,1)) < 7(H)} < ¢P,{7(B(0,1)) < co}.

Let & be large enough to ensure thdt < . Then, by the strong Markov property and
Brownian scaling,

sup P {7(B(0,r)) < 7(H)}
z€0B(0,r2k)

< sup Ez[l{T(B(O,TQkil)) <7(H)}
z€dB(0,r2F)

X Pp(rs(0.r20- 1)) 17(B(0, 7)) < 7(H)}]

<gq sup ]P’m{T(B(O,ﬂk*l)) < oo}
z€dB(0,r2F)

X sup Pw{T(B(O,T)) <7(H)}.
z€OB(0,r2k—1)

Iterating this and lettind? = r2* gives

k
sup  Po{7(B(0,r) <7(H)} <q" [[ sup Pu{r(B(0,r27")) < o}

z€0B(0,R) j=1 x€dB(0,r27)
=¢*  sup Px{T(B(O,T’)) < oo},
xz€0B(0,R)
as required to complete the proof. [ |

Proof of Theorem 3.46. Let z,y € 0B(0,r) and H be the hyperplane through the
origin, which is orthogonal ta: — y. If {B(t): ¢ > 0} is a Brownian motion started in,
define{B(t): t > 0} the Brownian motion started i, obtained by defining3(t) as the
reflection of B(¢) at H, for all timest < 7(H), andB(t) = B(t) forallt > 7(H). This
coupling gives, for every > 0 and sufficiently larger,

|na(z, B) = paly, B)| < Po{7(4) < 7(H)} <epala, A),

using Lemma 3.48 for the last inequality. In particular, v g s (z, A) — pa(y, A)
<epa(x, A). Next, let|z| > r and apply the strong Markov property to obtain

pa(@,B)  pa(z,B) _ /( pa(z, B) _ #aly, B)
MB(o,r)(

pale, A pa(z,A) z,B(0,7))pa(z, A) pA(z,A))MB(O’T)(Z’dy)

1 pa(z, A)
B pa(z, A) /(NA($7B) ,LLB(O,T)(Z,g(O,T))HA(I,A) a MA(y’B))MB(O””)(Z’dw

S [ B 00 = il B) s o),

<
ILLA(Z’ A)
where we used that

M@m=/mmmmmMmm<u+memﬁ@mmuA»
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This leads to the estimate

MA(x’ A)

/JA(va) . MA(sz) < MA(Z’B) <5+5(1+E)2.
/LA(Z7A) h

<e€
2\ (Iv A) ,U'A(Z? A) :L"A(Zv A)
Similarly, we obtain

/LA($7B) _ MA(Z7B) > 1
NA(va) ;U'A(ZvA) - MA(Z’A)
and from this
pa(z, B)  pa(z, B) pa(z, B)

+e(l+¢)

/ (na(z,B) (1 —¢e) = pa(y, B)) pso,m (2, dy),

MA($, A)

> — e (1 4e) " > —e—g(14¢)2
pa@ ) paed) © pad) LG e
As e > 0 was arbitrary, this implies thats (z, B) /ua(x, A) converges as — co. [

Example 3.49For any ballB(z,r) the harmonic measuyes, - is equal to the uniform
distributionw, ,, on9B(x,r). Indeed, note that, for alk > r, we have

w-’ﬂﬂ"( ) = C( ) KB (z,r) (ya ' )dwx,R(y);
9B(z,R)

where C(R) is a normalizing constant, because the two balls are coriceand both
sides of the equation are rotationally invariant finite nuees on the spher@5(z,r)
and hence multiples of each other. LettiRg] oo, we obtain from Theorem 3.46, that

We,r = MB(m,r)- o

The following surprising theorem shows that the harmoni@asnee from infinity can also
be obtained without this limiting procedure.

Theorem 3.50Let A C R? be a nonpolar compact set, and suppie, r) D A, letw,

be the uniform distribution oA (x, ). Then we have, for any Borel sBtC A,

_ qu(a7B) dw, ,(a)
na(B) = J pala, A)dwy - (a)

Remark 3.51 The surprising fact here is that the right hand side de#sdependn the
choice of the balBB(z, r). o

The crucial observation behind this result is that, stgréiBrownian motion in a uniformly
chosen point on the boundary of a sphere, the first hittingtpafi any ball inside that
sphere, if it exists, is again uniformly distributed, segute 3.2.

Lemma 3.52Let B(z,r) C B(y,s) and B C dB(x,r) Borel. Then

f HoB(xz,r) (a7 B) dwy,s(a)
J roB,r(a, 0B(x,r)) duw, s (a)

= w, ,(B).
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Fig. 3.2. Starting Brownian motion uniformly on the big circle, the distributibthe first hitting
point on the small circle is also uniform.

Proof. By Example 3.49 we haver, s = pupp(y,s) and hence, for the normalisation
constant(R) := 1/ [ pop(y,s)(a, 0B(y, s)) dwy, r(a), we have

() = Jim o) [ romyi(e: ) A nla).

Hence, for anyB C 0B(z,r) Borel, using the Markov property in the second step,

[ pteny (@ B) dyla) = fims () [ [ o @, Bpano 0. da) ez (0

= Jim e(R) [ iante (. B) den(t)
=Cw,(B),

for a suitable constant’, becausd3(x, R) and B(x,r) are concentric. By substituting
B = 9B(z,r) into the equation, we see that the constant must be as clamtbd state-
ment. [ ]
Proof of Theorem 3.50. Assume thaf3(z,r) andB(y, s) are two balls containingt.

We may then find a balB(z, t) containing both these balls. Using Lemma 3.52 and the
strong Markov property applied to the first hitting8fz, ) we obtain, for anyB C A,

JnataB)dmen@ = e [ [iaa, By 0. da) ds. )
—c1 [nalbBydm.a) = v [ [l Busgy (budo) deo (2

o / pa(a, B) de, (a),

for suitable constants, , c; depending only on the choice of the balls. Choosthg- A
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gives the normalisation constant

ey — [1ala, A) dw, . (a)
[1a(a, A) dw, s(a)’

and this shows that the right hand side in Theorem 3.50 igiaigent of the choice of the
enclosing ball. Hence it must stay constantas oo, which completes the proof. =

Exercises

Exercise 3.1.Show that, ifu: U — R is subharmonic, then

1

o) S ZB@n)

/ u(y) dy for any ballB(x,r) C U.

B(x,r)

Conversely, show that any twice differentiable functionl/' — R satisfying (3.3) is sub-
harmonic. Also give an example of a discontinuous functicatisfying (3.3).

Exercise 3.2.Letd > 2. Show that a functiom: 5(0,1) ‘ — Ris harmonic if and only if
its inversion

uts B0,1)\ {0} = R, u(z) = u(Zp)lal*~
is harmonic.

Exercise 3.38 Suppose:: B(z,r) — R is harmonic and bounded k. Show that the
kth order partial derivatives are bounded by a constant maltph/r—.

Exercise 3.4.Prove the casé = 1 in Theorem 3.20.

Exercise 3.58 Prove the strong form of thealey—Zygmund inequality
For any nonnegative random variabfewith E[X?] < co and\ € [0, 1),

2
P{X > AE[X]} > (1 — \)? Eﬁ].

Exercise 3.6.Prove theKkochen—Stone lemm&upposer;, Es, . .. are events with

00 k k

P(E, N E,,
d P(E,) =00 and  liminf Lom=1 Z:k”:l ( r; ) < o
n=1 koo (211:1 P(En))

Then, with positive probability, infinitely many of the eusriake place.
Hint. Apply the Paley—Zygmund inequality t8§ = liminf,, .o 15,,.
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Exercise 3.78 Suppose that is a radial harmonic function on the annulus
D ={zeR% r<|z| <R},

where radial means(z) = u(]z|) for some functionii: (r, R) — R and allz. Suppose
further thatu is continuous orD. Show that,

e if d > 3, there exist constantsandb such thatu(z) = a + b|z|>~9;
e if d = 2, there exist constantsandb such thatu(z) = a + blog|z|.

Exercise 3.88 Show that any positive harmonic function Bt is constant.

Exercise 3.9. Let H be a hyperplane iiR? and let{B(t): t > 0} be ad-dimensional
Brownian motion. For € R?, show that

iL;E)EZ“B(tM H{t < 7(H)}] < oo.

Hint. We may assume thaf is the hyperplanéz; = 0} andz; > 0. Bound the/3-norm
by the¢,-norm. If B(t) = (Bi(t),..., Ba(t)), the estimate foE,[|B;(¢)|1{t < 7(H)}]
whenj > 1 follows from the tails ofr(H). The estimate for3; reduces to the one-
dimensional setting, where the reflection principle yighisdensity ofB(¢)1{t < 7(0)}.

Exercise 3.10Let u be a harmonic function oR? such that% — 0 asz — oo.
Show that: is constant.
Hint. Follow the proof of Theorem 3.16, and use Exercise 3.9.

Exercise 3.118 Let D c R? be a domain and € D. Suppose:: D \ {z} — R is
bounded and harmonic. Show that there exists a unique h&mmmtinuatiornu: D — R.

Exercise 3.12Let f: (0,1) — (0,00) with ¢ — f(t)/t decreasing. Then

1
/ f(r)d_Q?“_d/Q dr < oo if and only if lim inf 1BO)l = oo almost surely.
0

tlo f(t)
Conversely, if the integral diverges, them inf, |, |B(t)|/ f(¢t) = 0 almost surely.

Exercise 3.13. Show that, ifd > 3 andT is an independent exponential time with
parameten > 0, then

G(a,y) ~ c(d) ]z -y~ for|z—y| |0,

wherec(d) is as in Theorem 3.33.

Exercise 3.148 Show that ifD is a bounded domain, then the Green’s function
G: (D x D)\ A

is continuous, wheré = {(x,z): = € D} is the diagonal.
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Exercise 3.158 Find the Green’s function for the planar Brownian motiorpgted when
leaving the domaiB(0, R).

Exercise 3.168 Supposer, y ¢ B(0,r) andA C B(0, ) is a compact, nonpolar set. Show
that ua(x, -) andpua(y, -) are mutually absolutely continuous with a density bounded
away from zero and infinity.

Exercise 3.17§ Supposek C R? is a compact set. Thiallianpur—Robbins lavstates
that, for a standard planar Brownian motipB; : ¢ > 0},

t
1 (By)dt
7f0 ﬁ)(gtt) 4 x, ast T oo,

whereX has an exponential distribution with me%{f—).
(a) Fixradii0 < r; < ro and define stopping timeg = 0 and
Toks = inf {t > Topqi—1: |B(t)| =r;}  forintegersk > 0 andi € {1,2}.
For anyR > r, denote

N(R) =sup{k € N: sup |B(t)| < R}.
0<t< T2k
Show that

N(R) a
— Y
oz R asRk 1 oo,

whereY has an exponential distribution with paramdtey(rs /7).

(b) Show that, for a Brownian motiof\B(t): ¢ > 0} started uniformly oroB(0, 1)
and stopped at the first timewhen they reacld3(0, r») we have

E/ 1 (B(s)) ds = log (£2) 25,
0
(c) Use(a), (b) and the law of large numbers to show that, for= 5(0, 1),

JF 1By dt -
_-

X as ,
log R ’ RToo

whereX has an exponential distribution with meéé{i).
(d) Use(c)to prove the Kallianpur—Robbins law in the case= 5(0,1).

A modification of this technique can also be used to prove tAidhpur—Robbins
law for arbitrary compact set&k. If you want to try, see for example Section 3
in [M600] for a good hint.
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Notes and comments

Gauss discusses the Dirichlet problem in [Ga40] in a papezlectrostatics. Examples
which show that a solution may not exist for certain domaiasargiven by Zaremba [Za11]
and Lebesgue [Le24]. Zaremba’'s example is the puncturedvaésdiscuss in Exam-
ple 3.15, and Lebesgue’s example is the thorn, which we ustiugss in Example 8.40.
For domains with smooth boundary the problem was solved bgcBré [Po90]. The
Dirichlet problem will be revisited in Chapter 8.

Bachelier [Ba00, Ba01] was the first to note a connection ofBiian motion and the
Laplace operator. The first probabilistic approaches tdinehlet problem were made
by Phillips and Wiener [PW23] and Courant, Friedrichs and y.§8FL28]. These proofs
used probability in a discrete setting and approximatiohe Treatment of the Dirichlet
problem using Brownian motion and the probabilistic defimitof the harmonic mea-
sure are due to the pioneering work of Kakutani [Ka44a, Ka4ddi5]. Further rela-
tionships between Brownian motion and partial differdnéiquations are the subject of
the Feynman—Kac formulas explored later in this book, seti®e7.7.4, and can also be
found in Durrett [Du84]. A current survey of probabilisticthods in analysis can be found
in the book of Bass [Ba95], see also Rao [Ra77], Port and §R®B€8] or Doob [D084]
for classical references.

Pélya [Po21] discovered that a simple symmetric random walk< is recurrent for
d < 2 and transient otherwise. His result was later extended twBian motion by
Lévy [Le40] and Kakutani [Ka44a]. Neighbourhood recuremplies, in particular, that
the path of a planar Brownian motion (running for an infiniteaunt of time) is dense in
the plane. A more subtle question is whether iz 3 all orthogonal projections of &-
dimensional Brownian motion are neighbourhood recurr@ngéquivalently whether there
is an infinite cylinder avoided by its range. In fact, an aedictylinder does exist almost
surely. This result is due to Adelman, Burdzy and PemantBH88]. The Dvoretzky—
Erdds test is originally from [DE51] and more information andlainal references can
be found in Pruitt [Pr90]. There is also an analogous resulpfanar Brownian motion
(with shrinking balls) which is due to Spitzer [Sp58].

Green introduced the function named after him in [Gr28].ptsbabilistic interpreta-
tion appears in Kac'’s paper [Ka51] and is investigated thghty by Hunt [Hu56]. Quite
a lot can be said about the transition densitiez, -, -) is jointly continuous onD x D
and symmetric in the space variables. Moreopé(t, x, y) vanishes if eithet: or y is on
the boundary oD, if this boundary is sufficiently regular. This is, of coursaly difficult
in case (3) and full proofs for this case can be found in Baa®®or in the classical book
of Port and Stone [PS78].

Poisson’s formula for the harmonic measure on a sphere i®dafier the French
mathematician Siméon-Denis Poisson. The functibrlefined by inversion on a sphere,
which we used in the proof, is also known as Kelvin transforirupsee also 11.1 in
Bass [Ba95].
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The Kallianpur-Robbins law, first proved by Kallianpur andid®ins in [KR53], gives
the limiting distribution of the scaled occupation timesre€urrent Brownian motions.
Exercise 3.17 gives the two-dimensional case, in whichith#ihg distribution is expo-
nential, in the one-dimensional case the limiting disttitou is a one-sided normal distri-
bution. A substantial extension of this law was given by ibaraind Kac in [DK57]. This
leads to the study of additive functionals of Brownian motisee Chapter X in [RY94]. A
study of almost-sure Kallianpur-Robbins laws can be foum{@i600].
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Hausdorff dimension: Techniques and applications

Dimensions are a tool to measure the size of mathematicattsbpn a crude scale. For
example, in classical geometry one can use dimension tchsea tine segment (a one-
dimensional object) is smaller than the surface of a baliM@dimensional object), but
there is no difference between line-segments of differengths. It may therefore come
as a surprise that dimension is able to distinguish the dige many objects in probabil-

ity theory. In this chapter we first introduce a suitably gah@&otion of dimension, the
Hausdorff dimension. We then describe general techniquealtulate the Hausdorff di-
mension of arbitrary subsets Bf', and apply these techniques to the graph and zero set
of Brownian motion in dimension one, and to the range of higlimensional Brownian
motion. Lots of further examples will follow in subsequehapters.

4.1 Minkowski and Hausdorff dimension
4.1.1 The Minkowski dimension

How can we capture the dimension of a geometric object? Cogreament for a useful
definition of dimension is that it should hetrinsic. This means that it should be inde-
pendent of an embedding of the object in an ambient spacélikentrinsic notions of
dimension can be defined in arbitrary metric spaces.

Supposer is a bounded metric space with metpicHere bounded means that the diameter
|E| = sup{p(z,y) : x,y € E} of E is finite. The example we have in mind is a bounded
subset ofR?. The definition of Minkowski dimension is based on the notifa covering

of the metric spac&. A coveringof E is a finite or countable collection of sets

Ey, By, Es,... with E C | J E;.
i=1
Define, fore > 0,
M(E,€e) = min {k > 1: there exists a finite covering

(4.1)
B, ..., Ey of E with | E| <afori:1,...,k},

where|A| is the diameter of a set C E. Intuitively, whenE has dimensios the number
M (E,¢) should be of ordet—*. This can be verified in simple cases like line segments,
planar squares, etc. This intuition motivates the definitbMinkowski dimensian

96
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Definition 4.1. For a bounded metric spa¢ewe define thdower Minkowski dimension
as

log M(E
dim,, F := lim inf log M(F, ¢) ,
<o log(1/e)

and theupper Minkowski dimension as

S— ) log M(E,¢)
dimpy/ F := limsup ——=
M €l0 p 10g(1/€)

We always havelim,, E < dim,, E, but equality need not hold. If it holds we write

dim]\/jE = @N[E:mME. ©

Remark 4.21f E is a subset of the unit culje, 1] ¢ R? then let
M,(E)=#{Q€D,: QNE # 0}

be the number of dyadic cubes of side lengjtf¥ which hit E. Then there exists a constant
C(d) > 0, not depending ot, such that

M,(E) > M(E,vVd2™™) > C(d) M,,(E).

Hence

S log M,,(E log M
dimy, F := lim sup L() and dim,,F := liminf 08 Mnl %)
nioo nlog2 nloo nlog2

Example 4.3In Exercise 4.1, we calculate the Minkowski dimension of tedainistic
‘fractal’, the (ternary) Cantor set,

C= { > gime {0,2}} c[0,1].
This set is obtained from the unit interyal 1] by first removing the middle third, and then
successively the middle third out of each remaining inteaghinfinitum, see Figure 4.1

for the first three stages of the construction. o

Remark 4.4 There is an unpleasant limitation of Minkowski dimensionbs@rve that
singletonsS = {z} have Minkowski dimensiof, but we shall see in Exercise 4.2 that the
set

E = {% : nGN}U{O}

has positive dimension. Hence the Minkowski dimension dumshave thecountable
stability property

dim U E. = sup{dimEk: k> 1}.
k=1
This is one of the properties we expect from a reasonablesptioé dimension. There are
two ways out of this problem.
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Fig. 4.1. The ternary Cantor set is obtained by removing the middle third &ach interval. The
figure shows the first three steps of the infinite procedure.

| <>~
|‘2/

(i) One can use a notion of dimension taking variations of theisithe different sets
in a covering into account. This captures finer details ofs¢bieand leads to the
notion of Hausdorff dimension

(i) One can enforce the countable stability property by subhigi every set in count-
ably many bounded pieces and taking the maximal dimensidghesh. The infi-
mum over the numbers such obtained leads to the notipadding dimension

We follow the first route now, but come back to the second rtater in the book. o

4.1.2 The Hausdorff dimension

The Hausdorff dimension and Hausdorff measure were intediby Felix Hausdorff in
1919. Like the Minkowski dimension, Hausdorff dimensiom ¢e based on the notion of
a covering of the metric spade. For the definition of the Minkowski dimension we have
evaluated coverings crudely by counting the number of setisd covering. Now we also
allow infinite coverings and take the size of the covering sgkeasured by their diameter,
into account.
Looking back at the example of Exercise 4.2 one can see taagtty = {1/n: n > 1} U
{0} can be covered much more effectively, if we decrease theo§ittee balls as we move
from right to left. In this example there is a big differencetseen evaluations of the
covering which take into account that we use small sets igélrering, and the evaluation
based on just counting the number of sets used to cover.
A very useful evaluation is the-value of a covering. For everye > 0 and covering
E4, Es, ... we say that the:-value of the covering is

o0

doIEI.

i=1
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The terminology of thev-values of a covering allows to formulate a concept of dinems
which is sensitive to the effect that the fine features of sieisoccur in different scales at
different places.

Definition 4.5. For everya > 0 the a-Hausdorff content of a metric spacé” is defined
as

HS(E) = inf { Z |E;|“: By, Es,... isacovering ofE} )
i=1

informally speaking thex-value of the most efficient covering. f < a < £, and
H (E) = 0, then alsgH? (E) = 0. Thus we can define

dimE = inf{a > 0: HO(E) = 0} = sup {oz >0: HO(E) > 0},

the Hausdorff dimension of the setE. o

Remark 4.6 The Hausdorff dimension may, of course, be infinite. But ieé&sy to see

that subsets aR? have Hausdorff dimension no larger th@&nMoreover, in Exercise 4.3
we show that for every bounded metric space, the Hausdarfédsion is bounded from
above by the lower Minkowski dimension. Finally, in Exeecs4 we check that Hausdorff
dimension has the countable stability property. o

S
NS
\\§

Fig. 4.2. The ball, sphere and line segment pictured here all h#dausdorff content equal to one.

The concept of thex-Hausdorff content plays an important part in the definitidrthe
Hausdorff dimension. However, it does not help distingtighsize of sets of the same di-
mension. For example, the three sets sketched in Figurdlhave the sameé-Hausdorff
content: the ball and the sphere on the left can be covereddayl af diameter one, so
that theirl-Hausdorff content is at most one, but the line segment omigite also does
not permit a more effective covering and itsHausdorff content is alsé. Therefore,
one considers a refined concept, Heusdorff measureHere the idea is to consider only
coverings bysmallsets.
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Definition 4.7. Let X be a metric space and C X. For everya > 0 andd > 0 define
HY(E) = inf{z |E;|*: Ey, Ey, Es,... coverE, and|E;| < 5},
=1

i.e. we are considering coverings Bfby sets of diameter no more thanThen

HY(E) =supH§ (E) = im HS (F)
5>0 510

is thea-Hausdorff measureof the setF. o

Remark 4.8 The a-Hausdorff measure has two obvious properties which, tegewith
H*(0) = 0, make it anouter measureThese areountable subadditivity

HQ( U Ei) < H(E;), for any sequencé&, Es, E3,... C X,
=1 1=1
andmonotonicity

HYE) <HY(D), HECDCX. o

One can express the Hausdorff dimension in terms of the Heffisdeasure.

Proposition 4.9For every metric spac& we have
HYE)=0 < HI(E)=0
and therefore

dimFE = inf{a: H¥*(E) =0} =inf{a: H(E) < oo}
= sup{a: HY(E) > 0} = sup{a: HY(E) = oo} .

Proof. Suppose first that{2 (E) = ¢ > 0, which clearly impliesH§ (E) > c for
all & > 0. Hence,H*(E) > ¢ > 0. Conversely, ifH% (E) = 0, for everyd > 0 there
exists a covering by set8, Es, ... with ;7 | |E,|* < é. These sets have diameter
less thary!/e, henceHs,,.(£) < ¢ and lettings | 0 yields H*(E) = 0, proving the
claimed equivalence. The equivalence readily implies that £ = inf{a: H*(E) =
0} = sup{a: H*(E) > 0}.

To verify the alternative representations it suffices tovsltibat H*(E) < oo implies
HP(E) = 0forall 3 > a. So suppos&(®(E) = C < oo. Givens > 0 there exists a
covering by setd’;, Es, . .. with diameter less thad and «-value not more thad' + 1,
whenceH$ (E) < C + 1. Note thatH (E) < §°~*H¥(E) < 6°~*(C + 1). Letting
§ | 0impliesH?(E) = 0. ]
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Remark 4.10As Lipschitz maps increase the diameter of sets by at moshstaat, the
image of any sel C E under a Lipschitz map has at most the Hausdorff dimensioh of
This observation is particularly useful for projections. o

A natural generalisation of the last remark arises when & bt the effect of Holder
continuous maps on the Hausdorff dimension.

Definition 4.11. Let0 < a < 1. A function f: (Eq, p1) — (F2, p2) between metric
spaces is called-Hoélder continuous if there exists a (global) const@nt 0 such that

p2(f(x), f(y)) < Cpr(a,y)®  forallz,y e E.

A constantC' as above is sometimes calleldlder constant o

Remark 4.12 Hdlder continuous maps allow some control on the Hausdoefisare of
images: We show in Exercise 4.6 that,fif (E1,p1) — (Ea,p2) is surjective anch-
Holder continuous with constant, then for anys > 0,

HP(Ey) < CPHOP(EY),

and thereforelim(E,) < 1 dim(E). o

4.1.3 Upper bounds on the Hausdorff dimension

We now give general upper bounds for the dimension of graghrange of functions,

which are based on Holder continuity.

Definition 4.13. For a functionf: A — R?, for A C [0, 00), we define th@raph to be
Graph(A) = {(t, f(t)): t € A} C R,

and therange or path to be

Range;(A) = f(A) = {f(t): t € A} c R4 <

Proposition 4.14Supposg : [0, 1] — R% is ana-Hoélder continuous function. Then

(a) dim (Graph,[0,1]) <1+ (1—a) (dA 1),
(b) and, for anyA C [0, 1], we havelim Range ;(A) < 44,

[e3

Proof.  Sincef is a-Holder continuous, there exists a consta@rguch that, ifs, ¢ € [0, 1]
with |t — s| < e, then|f(t) — f(s)| < Ce“. Cover|0,1] by no more tharf1/<] intervals
of lengthe. The image of each such interval is then contained in a ballavheterCe>.
One can now

e either cover each such ball by no more than a constant multip/®sf ¢ balls of dia-
metere,
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e or use the fact that subintervals of lengttyC')'/« in the domain are mapped into balls
of diameter to cover the image inside the ball by a constant multiple'of/* balls of
radiuse.

In both cases, look at the cover of the graph consisting ofptleeluct of intervals and
corresponding balls of diameter The first construction needs a constant multiple of
gde—d=1 product sets, the second uses/® product sets, all of which have diameter of
ordere. This gives the upper bounds for (a), while (b) follows fromrfRark 4.12. [ |

Remark 4.15By countable stability of Hausdorff dimension, the statataef Proposi-
tion 4.14 remain true if : [0, 00) — R?is only locally a-Hélder continuous. o

We now take a first look at dimensional properties of Browniaotion and harvest the
results from our general discussion so far. We have showrpiolary 1.20 that linear
Brownian motion is everywhere localky-Hoélder continuous for any < 1/2, almost
surely. This extends obviously tbdimensional Brownian motion, and this allows us to
get an upper bound on the Hausdorff dimension of its rangegeaqgth. For convenience,
when referring to Brownian motion, we drop the referencéntoftinction in the subindex
of Graph;(A) andRange;(A).

Corollary 4.16 For any fixed setd C [0, 00) the graph of ad-dimensional Brownian

motion satisfies, almost surely,
. 3/2 ifd=1,
dim (Graph(A)) < { 9 ifd>2.

and its range satisfies, almost surely,

dim Range(A) < (2dim A) A d.

Remark 4.17The correspondintpwer boundgor the Hausdorff dimension draph(A)
andRange(A) are more subtle and will be discussed in Section 4.4.3, wheehave more
sophisticated tools at our disposal. Our upper bounds allsbfor the Minkowski dimen-
sion, see Exercise 4.7, and corresponding lower boundsasierehan in the Hausdorff
case and obtainable at this stage, see Exercise 4.10. o

Corollary 4.16 does not make any statement aboufthausdorff measure of the range,
and any such statement requires more information than théeH@&xponent alone can
provide, see for example Exercise 4.9. It is however notaiffito show that, forl > 2,

H?(B([0,1])) < oo almost surely. (4.2)
Indeed, for any: € N, we look at the covering aB([0, 1]) by the closure of the balls

B(B(g), max |B(t)—B(§)¢), kefo,....n—1}.

k+1
Eecki
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By the uniform continuity of Brownian motion on the unit in¢al, the maximal diameter
in these coverings goes to zero,;as» co. Moreover, we have

2 2 1 2
_ B(k — = =
B[(, max,, [B0) - BG) | =B[( max 150)) | = B[ (guax 1)) ],
using Brownian scaling. The expectation on the right isdiliy Proposition 2.43. Hence
the expecte@-value of thenth covering is bounded from above by

n—1

[ Y (| max [B) - B(%)|) ] = 4E[( max [B)]) ].

o et osi<t

which implies, by Fatou’s lemma, that

k+1
A

n—1 2
E[liminfllz ( max |B(t) — B(%)D } < 0.
k=0
Hence the liminf is almost surely finite, which proves (4.2).

The next theorem improves upon (4.2) by showing thaRthénensional Hausdorff mea-
sure of the range of-dimensional Brownian motion is zero for ady> 2. The proof is
considerably more involved and may be skipped on first readinrmakes use of the fact
that we have a ‘natural’ measure on the range at our dispsbkadh we can use as a tool to
pick a good cover by cubes. The idea of using a natural measpported by the ‘fractal’
for comparison purposes will also turn out to be crucial far lower bounds for Hausdorff
dimension, which we discuss in the next section.

Theorem* 4.18Let {B(t): t > 0} be a Brownian motion in dimensiah > 2. Then,
almost surely, for any set C [0, c0) we have

H?(Range(A)) = 0.

Proof.  Itis sufficient to show that{?(Range[0, >)) = 0 for d > 3, as2-dimensional
Brownian motion is the projection df-dimensional Brownian motion, and projections
cannot increase the Hausdorff measure. Moreover it sufficpsove’?(Range[0, o0) N
Cube) = 0 almost surely, for any half-open cui@be C R? of side length one at positive
distance from the starting point of the Brownian motion. Miit loss of generality we
may assume that this cube is the unit cdhe = [0,1)4, and our Brownian motion is
started at some ¢ Cube.

Letd > 3, and recall the definition of the (locally finite) occupatimeasure:, defined by
w(A) = / 14(B(s))ds, for A c R Borel.
0

Let D, be the collection of all cubeF["_,[n;27%, (n; + 1)27%) wheren,,...,ng €
{0,...,2F —1}. We fix a thresholdn € N and letM > m. We callD € D, with k > m
abig cube if

102k
uw(D) z 227",
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The collection&(M) consists of all maximal big cube® € ©;, m < k < M, i.e. all
those which are not contained in another big cube, togethibrall cubesD € © ;; which
are not contained in a big cube, but intersRatge[0, co). Obviously&(M) is a cover of
Range|0, o0) N Cube by sets of diameter smaller thafi2—™.

To find the expecte@-dimensional Hausdorff content of this cover, first look atube
D € D). Wedenote byD = Dy C Dy C -+ C Dy, With Dy, € Dy the ascending
sequence of cubes containifiy Let D} be the cube with the same centrelagand3/2
its side length, see Figure 4.3.

Fig. 4.3. Nested systems of cubes, cubgsindicated by dashed);. by solid boundaries.

Let 7(D) be the first hitting time of the cub® andr, = inf{t > 7(D): B(t) ¢ D;}
be the first exit time fromD; for M > k > m. For the cubeube = [0,1)¢ and
Child = [0, 3) we also define the expanded culfasbe® and Child* and the stopping
timer = inf{¢t > 0: B(t) & Cube™}. Let

q:= sup Py{/ leube(B(s)) ds < %} <1.
y€Child* 0

By the strong Markov property applied to the stopping timgs < ... < 7,41 and

Brownian scaling,

Pm{u(Dk) < %27% foral M >k >m | 7(D) < oo}

Tk
<]P’I{/ 1p,(B(s))ds < 1272k forallM>k>m’T(D)<oo}
Tk+1
M-1 Fu
< H sup ]P’y{22’C /0 1p,(B(s))ds < é} <M,

k=m Y€Pin

wheref7y, is the first exit time of the Brownian motion frof;, and the last inequality fol-

lows from Brownian scaling. Recall from Theorem 3.18 tAg{7(D) < oo} < 2~ M(d=2),
for a constant > 0 depending only on the dimensiahand the fixed distance af from
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the unit cube. Hence the probability that any given clibe ©,, is in our cover is
P, {u(Dy) < 1272 forall M > k > m, (D) < oo} < 27 Md=2)gM=m
Hence the expectetlvalue from the cubes ig(M) N D is
d2?M272Mp Lp(Dy) < L27%F forall M > k > m, 7(D) < oo} < edg™ ™. (4.3)

The2-value from the cubes ig(M) N ;- ,,., Dk is bounded by

M—1 M-1
STlae N yuD)z2*ly<de Y Y u(D)
k=m DeC(M)NDy, k=m DeC(M)NDy (44)

< de p(Cube) .

As Eu(Cube) < oo by Theorem 3.27, we infer from (4.3) and (4.4) that the exgeb2t
value of our cover converges to zero fo 0 and a suitable choic® = M(e). Hence
a subsequence converges to zero almost surely, and,veas arbitrary, this ensures that
H?(Range|[0, o)) = 0 almost surely. |

4.2 The mass distribution principle

From the definition of the Hausdorff dimension it is plausilthat in many cases it is
relatively easy to give an upper bound on the dimension:findtan efficient cover of the
set and find an upper bound to isvalue. However it looks more difficult to give lower
bounds, as we must obtain a lower boundhewalues ofall covers of the set.

The mass distribution principle is a way around this problesnich is based on the exis-
tence of a nonzero measure on the set. The basic idea isfitias, imeasure distributes a
positive amount of mass on a geéin such a manner that its local concentration is bounded
from above, then the set must be large in a suitable sensehé&gpurpose of this method
we call a measurg on the Borel sets of a metric spakea mass distribution on E, if

0< u(F)<oo.

The intuition here is that a positive and finite mass is spmad the spacé.

Theorem 4.19 (Mass distribution principle) Supposé is a metric space and > 0. If
there is a mass distribution on £ and constantg’ > 0 andd > 0 such that

u(V) < Clv|*,
for all closed setd” with diameterV| < 4, then

HY(E) > @ >0,

and hencelim E > «.
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Proof.  Suppose thal/;,Us, ... is a cover ofFE by arbitrary sets withU;| < §. LetV;
be the closure ol/; and note thall/;| = |V;|. We have

0<uE) <p(Ju) <u(UW) < X um <cd o,
=1 =1 =1 =1
Passing to the infimum over all such covers, and letfing) gives the statement. [ |

We now apply this technigue to find the Hausdorff dimensiothef zero set of a linear

Brownian motion. Recall that this is an uncountable set wilisolated points.

At first it is not clear what measure aferos would be suitable to apply the mass distri-
bution principle. Here Lévy’'s theorem, see Theorem 2.3#a®to our rescue: Recall

the definition of the maximum proce$3/(¢): ¢ > 0} associated with a Brownian motion
from Chapter 2.2.3.

Definition 4.20. Let{B(¢): t > 0} be a linear Brownian motion andV/(¢): ¢t > 0} the
associated maximum process. A time: 0 is arecord time for the Brownian motion if
M (t) = B(t) and the set of all record times for the Brownian motion is deddyRec. ¢

Note that the record times are the zeros of the prof¥s$): ¢ > 0} given by
Y(t) = M(t) — B(t).

By Theorem 2.34 this process is a reflected Brownian motiod,hence its zero set and
the zero set of B(t): ¢t > 0} have the same distribution. A natural measureRen is
given by the distribution functiofM (¢): ¢t > 0}, which allows us to get a lower bound
for the Hausdorff dimension dec via the mass distribution principle.

Lemma 4.21AImost surelydim(Rec N [0, 1]) > 1/2 and hencelim(ZerosN [0, 1])>1/2.

Proof. The first equality follows from Theorem 2.34, so that we catukin this proof

on the record set. Sinde— M (t) is a non-decreasing and continuous function, we can
regard it as a distribution function of a positive measurevith 1.(a,b] = M (b) — M (a).
This measure is supported on the (closed)Reetof record times, see Exercise 4.12. We
know that, with probability one, the Brownian motion is ItigaHolder continuous with
any exponentv < 1/2. Thus there exists a (random) consté@it such that, almost surely,

_ — < —a)®
M(b) — M(a) < KI}I}g;){_ﬂB(u—Fh) B(a) < Cy(b—a)“,

forall a,b € [0, 1]. By the mass distribution principle, we get that, almosegyr
dim(Rec N [0,1]) > a.

Lettinga 1 3 finishes the proof. |



4.2 The mass distribution principle 107

To get an upper bound on the Hausdorff dimensiode&bs we use a covering consisting
of intervals. Define the collectiaB,, of intervals[j2=%, (j+1)27%)forj = 0,...,2% -1,
and letZ(I) = 1if there existg € I with B(t) = 0, andZ(I) = 0 otherwise. To estimate
the dimension of the zero set we need an estimate for the Ipilithpahat Z(7) = 1, i.e.
for the probability that a given interval contains a zero of\Bnian motion.

Lemma 4.22There is an absolute constafitsuch that, for any, e > 0,

P{ there exists € (a,a +¢) with B(t) = 0} < C/ 5=

Proof. Considerthe evet = {|B(a+¢)| < v/2}. By the scaling property of Brownian
motion, we can give the upper bound

p(4) =P{IBO) < /75 <2/

Knowing that Brownian motion has a zero (n,a + ) makes the eventl very likely.
Indeed, applying the strong Markov property at the stoptimg 7' = inf{t > a: B(t) =
0}, we have

P(A) > P(AN{0 € Bla,a +¢l})
>P{T <a+e} min P{|B(a+¢)| <+e|B(t)=0}.

astLa+te

Clearly the minimum is achieved at= « and, using the scaling property of Brownian
motion, we havé®{|B(a + ¢)| < v | B(a) = 0} = P{|B(1)| < 1} =: ¢ > 0. Hence,

2 |/

and this completes the proof. [

Remark 4.23This is only very crude information about the position of #eeos of a linear

Brownian motion. Much more precise information is avaigaldbr example in the form

of the arcsine law for the last sign-change, which we provénnext chapter, and which
(after a simple scaling) yields the precise value of the gbdly in Lemma 4.22. o

We have thus shown that, for any> 0 and sufficiently large integet, we have
E[Z(I)] < ¢; 27%/2, forall I € ®, withI C (,1 —¢),

for some constant; > 0. Hence the covering of the sgte (¢,1 —¢): B(t) =0} by all
Ie®,withIn(e,1—¢)#0andZ(I) = 1 has an expected-value of

IE[ 3 Z(I)T’f/ﬂ = S Ezm)2 M <e2te Moo
IeDy Ie®y,
IN(e,1—e)#0 IN(e,1—e)#0

We thus get, from Fatou’s lemma,

E[hminf 3 (1)2*’“/2} < liminf E[ 3 2(1)2*’6/2} <.
k=00 IeDy, k=00 Ie®

k
IN(e,1—e)#0 IN(e,1—e)#0
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Hence the liminf is almost surely finite, which means thatétexists a family of coverings
with maximal diameter going to zero and boundedalue. This implies that, almost
surely,

Hz{t e (e,1—¢): B(t) =0} < oo,

and, in particular, thaflim(Zeros N (¢,1 — €)) < 3. Ase > 0 was arbitrary, we obtain
the same bound for the full zero set. Combining this estimétie Lemma 4.21 we have
verified the following result.

Theorem 4.24Let{B(t): 0 < t < 1} be alinear Brownian motion. Then, with probability
one, we have

dim (Zeros N [0,1]) = dim (RecN [0,1]) = .

Remark 4.25 The Hausdorff measurkz vanishes on the zero set of Brownian motion,
see Exercise 4.14, just like that Hausdorff meagifevanishes on the range of Brownian
motion, as seen in Theorem 4.18. Therefore another metmagded to construct a natural
positive finite measure on the zero set. We encountered ard@hdonstruction, via Lévy’s
identity, in the proof of Lemma 4.21. A powerful direct congttion of the same measure,
known as thdocal time at zerpwill be the subject of Chapter 6. o

4.3 The energy method

The energy method is a technique to find a lower bound for theséaff dimension, which
is particularly interesting in applications to random teds. It replaces the condition on
the mass of all closed sets in the mass distribution priadiplfiniteness of an energy.

Definition 4.26. Suppose: is a mass distribution on a metric spgde, p) anda > 0.
Thea-potential of a pointz € E with respect tqu is defined as

_ [ du(y)
Pal) = / p(z,y)>

In the caseZ = R? anda = 1, this is the Newton gravitational potential of the mass
The a-energyof p is

) = [ batyaute) = [ [ 24D, o

The simple idea of the energy method is the following: Masgithiutions with/,, (1) < oo
spread the mass so that at each place the concentratiorfitsesilfy small to overcome
the singularity of the integrand. This is only possible ots sehich are large in a suitable
sense.
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Theorem 4.27 (Energy method)Let o > 0 and p be a mass distribution on a metric
spaceE. Then, for every > 0, we have

1(E)?
du (z) du(y) ~
ffp(w y)<e  p(z,y)>

Hence, ifl, (1) < oo thenH*(E) = oo and, in particular,dim £ > «o

HO(E)

Remark 4.28To get a lower bound on the dimension from this method it sedfio show
finiteness of a single integral. In particular, in order t@whfor a random sef? that
dim E > « almost surely, it suffices to show th&f, () < oo for a (random) measure
onFk. o

Proof. If {A,:n =1,2,...} is any pairwise disjoint covering df consisting of sets
of diameter< ¢, then

o s S, e

n=1

and moreover,

[e%e] g N n

E)< Y u(A Z [Anl® T

— |An|2

Givend > 0 choose a covering as above such that additionally
Z |A, | < HE(E) + 6.

Using now the Cauchy—Schwarz inequality, we get

Z'A'a |A|c)v (e (2 +9) //,m)@du P

p(x,y)®

Lettingd | 0 and d|V|d|ng both sides by the integral gives the stateduaéty. Further,
lettinge | 0, if EI, (1) < oo the integral converges to zero, so thét (E) diverges to
infinity. [ |

We now apply the energy method to resolve questions left ap#re first section of this
chapter, namely the lower bounds for the Hausdorff dimenefahe graph and range of
Brownian motion.

The nowhere differentiability of linear Brownian motiontaislished in the first chapter
suggests that its graph may have dimension greater thanFaredimensions! > 2, it

is interesting to look at the range of Brownian motion. Weéhagen that planar Brown-
ian motion is neighbourhood recurrent, that is, it visitergwneighbourhood in the plane
infinitely often. In this sense, the range of planar Browniastion is comparable to the
plane itself and one can ask whether this is also true in thgesef dimension.
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Theorem 4.29 (Taylor 1953)Let{B(t): 0 < 1} bed-dimensional Brownian motion.
(@) If d =1, thendim Graph[0, 1] = 3/2 almost surely.

(b) If d > 2, thendim Range[0, 1] = dim Graph[0, 1] = 2 almost surely.

Recall that we already know the upper bounds from Corollat$ 4We now look at lower
bounds for the range of Brownian motiondn> 2.

Proof of Theorem 4.29(b). A natural measure oRange|0, 1] is the occupation measure
w defined byu(A) = £L(B~1(A) n[0,1]), for all Borel setsA C R, or, equivalently,

[ 1@ ane) = [ 5(Bw)

for all bounded measurable functioﬁsWe want to show that for any < a < 2,

s [ 4 |x—y|a // 50 B < 45

Let us evaluate the expectation
BIB() — B(s)|~ = E[(t = sl |BO)) ] = s =/2 [ S

The integral can be evaluated using polar coordinates,lbweaneed is that it is a finite
constantc depending oni and« only. Substituting this expression into (4.5) and using
Fubini’s theorem we get

ds dt Y du
—C/ / ‘t—s|a/2 \26/0 W<OO. (46)

Thereforel,, (1) < oo and hencelim Range[0, 1] > «, almost surely. The lower bound
on the range follows by letting T 2. We also obtain a lower bound for the dimension of
the graph: As the graph of a function can be projected ontpaltie, the dimension of the
graph is at least the dimension of the path by Remark 4.10céjéfud > 2, almost surely
dim Graphl0, 1]>2. ]

Now let us turn to linear Brownian motion and prove the firdf b&Taylor's theorem.

Proof of Theorem 4.29(a). Again we use the energy method for a sharp lower bound.
Recall that we have shown in Corollary 4.16 thah Graph[0, 1] < 3/2. Leta < 3/2 and
define a measure on the graph by

w(A)=L1({0<t<1: (¢,B(t)) € A}) for A C [0,1] x R Borel.

Changing variables, the—energy ofu can be written as

// \w—yI“ // It—32—|—|g(st()h—B(s)|2)a/2'

Bounding the integrand, taking expectations, and appliugini we get that

El (1) < 2 /01 E ((t2 + B(t)2)_0‘/2) dt. (4.7)
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Letp(z) = NoTa. exp(—22/2) denote the standard normal density. By scaling, the ex-
pectation above can be written as

“+oo
2/ (t2 4+ t2%)7?p(2) dz. (4.8)
0

Comparing the size of the summands in the integration stiggeparating < /¢ from
z > +/t. Then we can bound (4.8) above by twice

Vit oo 1 o
/ (t2)~%dz + / (t2%) " p(z)dz = t2~ + t‘a/Q/ z%p(z) dz.
0 Vi Vi

Furthermore, we separate the last integral at 1. We get

00 1
/ 27 %(2)dz < 1 +/ 27 %dz.
Vi Vi

The latter integral is of ordef! —)/2, Substituting these results into (4.7), we see that the
expected energy is finite when< 3/2. The claim now follows from the energy methaal.

4.4 Frostman’s lemma and capacity

In this section we provide a converse to the mass distribugrinciple, i.e. starting from
a lower bound on the Hausdorff measure we construct a maisibdi®n on a set. This
is often useful, for example if one wants to relate the Hatfédamension of a set and its
image under some transformation.

Theorem 4.30 (Frostman’s lemma)f A ¢ R? is a closed set such that(A) > 0, then
there exists a Borel probability measytesupported o and a constan€ > 0 such that
u(D) < C|D|« for all Borel setsD.

We now give a proof of Frostman’s lemma, which is based ongpesssentation of compact
subsets ofR? by trees, an idea that we will encounter again in Chapter 9e fiin
ingredient in the proof is the max-flow min-cut theorem. Seetf®n 12.4 in the appendix
for definitions and notation associated with trees, flowsreas and statement and proof
of the max-flow min-cut theorem.

Proof of Frostman's lemma.  We may assumel C [0, 1]¢. Any compact cube ifR?

of side lengths can be split int¢ nonoverlapping compact cubes of side length. We

first create a tree with a root that we associate with the fuldé?. Every vertex in the tree
has2¢ edges emanating from it, each leading to a vertex that isc&ed with one of the

24 subcubes with half the side length of the original cube. V@ tirase the edges ending

in vertices associated with subcubes that do not inter$elrt this way we construct a tree

T = (V, E) such that the rays iiT correspond to sequences of nested compact cubes, see
Figure 4.4.
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Fig. 4.4. The first two stages in the construction of the tree associated witthtided sed C
[0,1]?. Dotted edges in the tree are erased.

There is a canonical mappidy: 9T — A, which maps sequences of nested cubes to their
intersection. Note that if € A, then there is an infinite path emanating from the root, all
of whose vertices are associated with cubes that contaimd thus intersect. Henced

is surjective.

For any edge at leveln define the capacit¢'(e) = (d%Q*")a. We now associate to every
cutsetlI a covering ofA, consisting of those cubes associated with the initialisestof
the edges in the cutset. To see that the resulting colleofionbes is indeed a covering, let
& be aray. Adl is a cutset, it contains one of the edges in this ray, and the associated
with the initial vertex of this edge contains the poit¢). Hence we indeed cover the
entire setb(9T) = A. This implies that

inf{gf(e): Hacutset} > inf{Xj:|Aj|a: AcC LjJAj},

and asH% (4) > 0, by the equivalence in Proposition 4.9, this is bounded faamo.

Thus, by the max-flow min-cut theorem, there exists a flow® — [0, oo) of positive

strength such that(e) < C(e) for all edges: € E.

We now show how to define a suitable measure on the space dfanfizths. Given an
edgee € F we associate a sfi(e) C 9T consisting of all rays containing the edge
Define

v(T(e)) = 0(e).

It is easily checked that the collectidi{9T") of subsetsl’'(v) C 9T forallv € T is a
semi-algebra o@T. Recall that this means thatif, B € C(0T), thenAn B € C(9T)
and A¢ is a finite disjoint union of sets i6i(0T). Because the flow through any vertex is
preservedy is countably additive. Thus, using a measure extensiorr¢heguch as, for
example A.1(1.3) in [Du95], we can extemrdo a measure on thes-algebra generated
by C(0T).
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We can now define a Borel measyre= v o ®~! on A, which satisfies.(C) = 6(e),
whereC' is the cube associated with the initial vertex of the edg8uppose now thab

is a Borel subset oR? andn is the integer such tha& " < |D N [0,1]¢] < 2=,
ThenD N [0, 1]¢ can be covered with? of the cubes in the above construction having side
length2—", or diameteriz 2~ Using this bound, we have

u(D) < d? 3727 < d? 34D,

so we have a finite measupesatisfying the requirement of the lemma. Normalisingp
get a probability measure completes the proof. [ |

Definition 4.31. We define theRiesz a-capacity, or simply thea-capacity, of a metric
space E, p) as

Cap, (E) := sup {Ioé(u)*1 : pa mass distribution ot with ;(E) = 1}.

In the case of the Euclidean spage= R? with d > 3 anda = d — 2 the Riesz-capacity
is also known as thBlewtonian capacity. o

Theorem 4.27 states that a set of positiveapacity has dimension at least We now
show that, in this formulation the method is sharp. Our pfahis fact relies on Frost-
man'’s lemma and hence refers to closed subsets of Eucligeas.s

Theorem 4.32 For any closed sefl C R?,
dim A = sup {a : Cap,(4) > 0}.

Proof. It only remains to showg, and for this purpose it suffices to show that if
dim A > «, then there exists a Borel probability measuren A such that

< 0.
~/]R" /Rd Ix - yl“

By our assumption for some sufficiently smalt> o we haveH?(A) > 0. By Frostman’s
lemma, there exists a nonzero Borel probability meaguom A and a constant’ such
that (D) < C|D|? for all Borel setsD. By restrictingy to a smaller set if necessary,
we can make the support pfhave diameter less than one. kixc A, and fork > 1 let
Sk(z) = {y:27F < |z — y| < 2'7*}. Sinceu has no atoms, we have

o0

(R | EPWCIBES
Rdlw—yl skaz)lw—yl

=1

where the equality follows from the monotone convergene®rttm and the inequality
holds by the definition of thé. Also,

iu 2ka < Cz |22 k|52ko¢ C,i2k(a7ﬁ)
k=1

k=1 k=1

whereC’ = 22°8(.
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Sinces > «a, we have
In(p) < €Y 2K < o,
k=1

which proves the theorem. [

In Corollary 4.16 we have seen that the image of asset [0, o) under Brownian motion
has at most twice the Hausdorff dimensionAf Naturally, the question arises whether
this is a sharp estimate. The following result of McKean shthvat, ifd > 2, this is sharp
for anysetA, while ind = 1 itis sharp as long adim A < %

Theorem 4.33 (McKean 1955)Let A C [0, c0) be a closed subset afdB(¢): t > 0} a
d-dimensional Brownian motion. Then, almost surely,

dim B(A) = 2dim A A d.

Proof. The upper bound was verified in Corollary 4.16. For the loweurid let
a < dim(A) A (d/2). By Theorem 4.32, there exists a Borel probability meaguoa A
such thatl,, (1) < co. Denote byji the measure oR? defined by

D) = u({t > 0: B(t) € DY)

for all Borel setsD c R?. Then

sttt = | [ P =2 [ [ i e

where the second equality can be verified by a change of vasiablote that the denom-
inator on the right hand side has the same distributioft as s|%| Z|?>*, whereZ is a
d-dimensional standard normal random variable. Sitwee< d, we have that

9 1 90 —|ul?
BZ2) = g [ 720 dy < o

Hence, using Fubini's theorem,

E{la (/i / / Efj 2] |§)|“ < E[2]7) L(u) < o.

Thus,E[I2,(j1)] < oo, and hencdz, (i) < oo almost surely. Moreovey; is supported on
B(A) because: is supported o. It follows from Theorem 4.27 thatim B(A) > 2«

almost surely. By lettingy 1 dim(A) A d/2, we see thatlim(B(A)) > 2dim(A) A d

almost surely. This completes the proof of Theorem 4.33. [ |

Remark 4.34 We have indeed shown that, @fap,(A) > 0, thenCap,,(B(4)) > 0
almost surely. The converse of this statement is also trdendlhbe discussed later, see
Theorem 9.36. o
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Remark 4.35Later in the book, we shall be able to significantly improvekdan’s the-
orem and show that for Brownian motion in dimensidén> 2, almost surely, for any

A C [0,00), we havedim B(4) = 2dim(A). This result is Kaufman’s theorem, see
Theorem 9.28. Note the difference between the results ofédokand Kaufman: In The-
orem 4.33, the null probability set depends 4nwhile Kaufman’s theorem has a much
stronger claim: it states dimension doubling simultangofes all sets. This allows us to
plug in random setsl, which may depend completely arbitrarily on the Browniartiom

For Kaufman'’s theorem] > 2 is a necessary condition: we have seen that the zero set of
one dimensional Brownian motion has dimensigg, while its image is a single pointo

Exercises

Exercise 4.1§ Show that for the ternary Cantor €t we havedim,; C' = iggg‘
Exercise 4.2§ Let E := {1/n : n € N} U {0}. Show thaddim,, E = 1.

Exercise 4.38 Show that, for every bounded metric space, the Hausdorfedgion is
bounded from above by the lower Minkowski dimension.

Exercise 4.48 Show that Hausdorff dimension has the countable stabilitperty.

Exercise 4.5. Show that, for the ternary Cantor s&twe havedim C' = }gg 2.

Exercise 4.68 Supposef: (E1, p1) — (Ea, p2) is surjective anch-Hélder continuous
with constantC. Show that, for any > 0,

HP(Ey) < CPHOP(EY),

and thereforelim(E»>) < 1 dim(Ey).

Exercise 4.7.Supposef : [0, 1] — R9 is ana-Holder continuous function. Show that

(@) dimy(Graph[0,1]) <1+ (1—a) (dA 2),
(b) and, for anyA c [0, 1], we havedim); Range(A) <

dimy A
o

Exercise 4.88 For any integer/ > 1 and0 < o < d construct a compact set ¢ R¢
such thatlim A = «.

Exercise 4.9.Construct a functiorf: [0, 1] — R which is a-Hélder continuous for any
a < 3, but haSHﬁ(Rangef[O, 1]) = o0.

Exercise 4.10.A function f: [0,1] — R is calledreverse-Holder for some0 < 8 < 1
if there exists a constart > 0 such that for any interval, s], there is a subinterval
[t1,s1] C [t,s], such that f(t,) — f(s1)| = C|t — s|®. Let f: [0,1] — R be reverse
p-Holder. Show thadlimy; (Graph ;[0,1]) > 2 — 3.
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Exercise 4.11.Show that for{ B(¢): ¢ > 0} we havedimy; Graph[0,1] = 2 if d = 1, and
dimyy Graph[0,1] = dimy, B0, 1] = 2 if d > 2, almost surely.

Exercise 4.12.Show that the set of record points of a linear Brownian mosatisfies,
almost surely,

Rec={s>0: M(s+h) > M(s—h)forall0 < h < s}.
Exercise 4.13. Show thaidimy {0 < ¢ <1 : B(t) = 0} = 1, almost surely.
Exercise 4.148 Show thatH!/2(Zeros) = 0, almost surely.

Exercise 4.15. For a Brownian patf B(t): t > 0} in R?, d > 2, we denote by
W.(t) = {z € R?: |z — B(s)| < e for some0 < s < t}
theWiener sausagef width ¢ > 0 up to timet.

(a) Show that, for a suitable consta@it> 0, we haveEL(W;(¢)) < Ct.

(b) Infer from the result of (a) that(?(Range[0, 1]) < oo, almost surely.

Notes and comments

Felix Hausdorff introduced the Hausdorff measure in hisisatrpaper [Hal9]. Credit
should also be given to Carathéodory [Cal4] who introducegreeral construction in
which Hausdorff measure can be naturally embedded. Theddéfisneasure indeed de-
fines a measure on the Borel sets, proofs can be found in [Ma@6[R099]. IfX = R?
anda = d the Hausdorff measurE® is a constant multiple of Lebesgue measyg
moreover ifa is an integer andX an embedded:-submanifold, theri{* is (a constant
multiple of) the surface measure. This idea can also be usdeMelop vector analysis on
sets with much less smoothness than a differentiable mMdnifor more about Hausdorff
dimension and geometric questions related to it we stroregipmmend Mattila [Ma95].
The classic text of Rogers [R099], which first appeared in019¥ a thorough discussion
of Hausdorff measures. Falconer [Fa97a, Fa97b] coverge i@rapplications and current
developments, but with more focus on deterministic fractal

The results on the Hausdorff dimension of graph and rangeBvbanian motion are
due to S.J. Taylor [Ta53, Ta55] and independently to Lévyb[ljehough the latter paper
does not contain full proofs. Taylor also proved in [Ta55ttthe dimension of the zero
set of a Brownian motion in dimension onelig2. Stronger results show that, almost
surely, the Hausdorff dimension afl nondegenerate level setslig2. For this and much
finer results see [Pe81]. A classical survey, which inspaddt of activity in the area
of Hausdorff dimension and stochastic processes is Taya8d] and a modern survey is
Xiao [Xi04].
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The energy method and Frostman’s lemma all stem from Ottstian’'s famous
1935 thesis [Fr35], which lays the foundations of moderreptial theory. The elegant
guantitative proof of the energy method given here is due deddSchramm. Frost-
man’s lemma was generalised to complete, separable mpaaes by Howroyd [Ho95]
using a functional-analytic approach. The main difficultisiag in the proof is that, if
HY(E) = o0, one has to find a subsdt C E with 0 < H*(A) < oo, which is tricky
to do in abstract metric spaces. Frostman’s original preesuin a way, the same idea
as the proof presented here, though the transfer to the étep & not done explicitly.
Probability using trees became fashionable in the 1990sratad, this is the right way
to look at many problems of Hausdorff dimension and fractdrgetry. Recommended
survey articles are by Pemantle [Pe95], Lyons [Ly96] or thapter on random fractals
in [KMO09], more information can be found in [Pe99] and [LP05]

McKean’s theorem is due to Henry McKean [McK55]. Its surimigsextension by
Kaufman is not as hard as one might think considering the ajidicability of the result.
The original source is [Ka69], we discuss the result in daptBhapter 9.

The concept of ‘reverse Holder’ mappings only partiallyesds from Minkowski to
Hausdorff dimension. Iff: [0,1] — R is both 3-Holder and reversg-Hdlder for some
0 < B < 1, it satisfiesdim(Graph [0, 1]) > 1, see Przytycki and Urlgeski [PU89]. For
example, the Weierstrass nowhere differentiable fundtioft) = >, a™ cos(b™t), for
ab>1,0< a < 1, is f-Holder and reversg-Holder for somé) < § < 1. The Hausdorff
dimension of its graph is, however, not rigorously known émeral.

There is a natural refinement of the notions of Hausdorff disien and Hausdorff

measure, which is based on evaluating sets by applying atmaayb'gauge’ functiony

to the diameter, rather than taking a power. Measuring seigya gauge function not
only allows much finer results, it also turns out that the redtmeasures on graph and
range of Brownian paths, which we have encountered in trapteh, turn out to be Haus-
dorff measures for suitable gauge functions. Results & diviection are Ciesielski and
Taylor [CT62], Ray [Ra63a], Taylor [Ta64] and we includeretnts of this discussion in
Chapter 6, where the zero set of Brownian motion is consitlere

The Wiener sausages, defined in Exercise 4.15, have beelywiddied. In the early
sixties, Kesten, Spitzer and Whitman, see e.g. p.252 in [[M&itbwed thatC (W (t))/t,
for d > 3, converges almost surely to the Newtonian capacity of thiehat. This result
indicates that covering of the Brownian path with ball§ixédsize is not sufficient to show
that its%—dimensional Hausdorff measure is zero. Spitzer [Sp64jveldahat, ford = 3,
the expected volume of the Wiener sausage satisfies
ﬁ ¢ Vit o(vi),
wherec = Cap,(B(0,1)). A central limit theorem, which highlights the deep connec-
tion of the Wiener sausage to the self-intersections of trevBian path is due to Le
Gall [LG88Db]. An integrated view of these results is given@®séki and Hu [CHuUO07].

E[L(Wi(t)] = ct +
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Brownian motion and random walk

In this chapter we discuss some aspects of the relation betreadom walk and Brownian
motion. The first two sections aim to demonstrate the natiitiei®relation by examples,
which are of interest in their own right. These dirst the law of the iterated logarithm,
which is easier to prove for Brownian motion and can be exdrit random walks by
an embedding argument, asdconda proof that Brownian motion does not have points
of increase, which is based on a combinatorial argument fuitable class of random
walks and then extended to Brownian motion. We then distwesSkorokhod embedding
problem systematically, and give a proof of the Donskerrilawvece principle based on the
Skorokhod embedding. We give a variety of applications afi€ker’s invariance principle,
including the arcsine laws and Pitmag@’d/ — B theorem.

5.1 The law of the iterated logarithm

Suppos€ B(t): t > 0} is a standard linear Brownian motion. Although at any giveret
and for any open sé&f C R the probability of the evertB(t) € U} is positive, over a long
time Brownian motion cannot grow arbitrarily fast. We haees in Corollary 1.11 that,
for any smalle > 0, almost surely, there exists > 0 such that B(¢)| < et for all ¢ > to,
whereas Proposition 1.23 ensures that for every laygémost surely, there exist arbitrarily
large timest such that| B(t)| > k+v/t. It is therefore natural to ask for the asymptotic
smallest upper envelopg# the Brownian motion, i.e. for a functiof: (1,00) — R such
that

B(t)
limsup ——= =
t—o0 ¢(t)
The law of the iterated logarithm (whose name comes fromtisevar to this question but
is by now firmly established for this type of upper-envelopgults) provides such a ‘gauge’
function, which determines the almost-sasymptotic growttof a Brownian motion.
A similar problem arises for arbitrary random walkS,,: » > 0}, where we ask for a

sequencéa, : n > 0) such that
S
limsup — = 1.
n—oo 0n

These two questions are closely related, and we start wignawer to the first one.

118
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Theorem 5.1 (Law of the Iterated Logarithm for Brownian moti on) Supposé B(¢): t > 0}
is a standard linear Brownian motion. Then, almost surely,
B(t)

lim sup ————-e= =

t—oo +/2tloglog(t)

Remark 5.2 By symmetry it follows that, almost surely,

lim inf Lt) = —

t—oo /2t log log(t)

Hence, for any > 0, there existg, such thatB(¢)| < (1 + €)/2tloglog(t) for any
t > to, while there exist arbitrarily large timeswith |B(¢)| > (1 — €)y/2tloglog(t). <

Fig. 5.1. Brownian motion and its asymptotic upper envelppg = /2t loglog(t) at large times.
In the picture on the left we see a typical Brownian path indicating that timesenthe path comes
near to the envelope are very sparse. The picture on the right wasrcfrosn a large number of
samples so that the Brownian motion ends near the envelope. Due to thetiegoiditioning on
this event, the sample path of the motion has features untypical of Broywaihs. See the ‘Notes
and comments’ section for more details.

Proof.  The main idea is to scale by a geometric sequenceyl®t= /2t log log(t).
We first prove the upper bound. Fix> 0 andg > 1. Let

A —{ max B(t) > (1—1—6)1/)((1”)}.

0t

By Theorem 2.21 the maximum of Brownian motion up to a fixedetinhas the same
distribution ag B(t)|. Therefore

P(A,) = IP’{'B\}Z»Z)' > (1+e) w%)}.

We can use the tail estimal{Z > z} < e~ '/2 for a standard normally distributed
andx > 1, see Lemma 12.9 in the appendix, to conclude that, for large
2

B(4n) < 2 exp (~(1+¢)*loglogq") = ooy
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This is summable im and hence, by the Borel-Cantelli lemma, we get that onlyelipit
many of these events occur. For largerite ¢"~! < t < ¢". We have

B(t) _ B(t) ¥(¢") t q¢"

O R BT R
sincey(t)/t is decreasing im, and thus

li?isolip i((z)) < (1+¢)g, almostsurely.

Since this holds for any > 0 andq > 1 we have proved thdtm sup B(¢)/¥(t) < 1
almost surely.

For the lower bound, fixy > 1. In order to use the Borel-Cantelli lemma in the other
direction, we need to create a sequencmdépendenevents. Let

D, ={B(¢") = B(¢" ") = ¢(¢" —¢" ")}

We now use Lemma 12.9 of the appendix to see that there is sacdns> 0 such that, for
largez,

Cefz2/2

P{Z >z} >

Using this estimate we get, for some further conséant0 andn large enough,

”,1)

P(D,) = IF’{Z > w(‘I"—Q"’l)} > e e~ loglog(q"—q
\/q"—q"*l \/QIOg log(qn _ q"*l)

ce— log(nlogq) é
z > )
2log(nlogq) nlogn

and therefore | IP(D,,) = co. Thus for infinitely manyn

B(qn> > B(qn—l) _‘_w(qn _ qn—l) > — 21/J(q"_1) 4 w(qn _ qn—l)7

where the second inequality follows from applying the poegly proved upper bound to
—B(g"1'). From the above we get that almost surely, for infinitely many

B(g") _ —2¢(¢" ) +v("—¢"") _ -2 ¢"—¢"' 2 1
ke e > Et =1 N (5.1)

Indeed, to obtain the second inequality first note that
Ul _ ) Ve 1 _ 1
(@) gt we) Vi VT
sincew(t)/+/t is increasing irt for larget. For the second term we just use the fact that
¥(t)/t is decreasing im. Now (5.1) implies that

. B(t) 2 1
limsup ——= > — — + 1 — — almost surely,
q

t—o00 w(t) - \/Z]

and lettingg T oo concludes the proof of the lower bound. [ |
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Corollary 5.3 Supposd B(t): t > 0} is a standard Brownian motion. Then, almost surely,

[B(h)]

lim sup =1
hio +/2hloglog(1/h)
Proof. By Theorem 1.9 the proceqsY(¢): ¢t > 0} defined byX (¢) = ¢tB(1/t) for
t > 0 is a standard Brownian motion. Hence, using Theorem 5.1,etre g
[B(h)] ‘ [ X ()]

lim sup = lim sup

110 2hloglog(1/h) t1oo /2tloglogl

The law of the iterated logarithm is a result which is easigorove for Brownian motion
than for random walks, as scaling arguments can be used tbejtert in the proof. We
now use an ad hoc argument to obtain a law of the iterateditbgafor simple random
walks, i.e. the random walk with increments taking the valtté with equal probability,
from Theorem 5.1. A version for more general walks will fellavith analogous arguments
from the embedding techniques of Section 5.3, see Theorkrm 5.

Theorem 5.4 (Law of the Iterated Logarithm for simple randomwalk) Let{S,,: n > 0}
be a simple random walk. Then, almost surely,

: Sn
lim sup

I A
n—oo V/2nloglogn

We now start the technical work to transfer the result frorovrian motion to simple
random walk. The next result shows that the limsup does revigh if we only look along
a sufficiently dense sequence of random times. We abbrey{aje= /2t log log(t).

Lemma5.51f {T,,: n > 1} is a sequence of random times (not necessarily stopping}ime
satisfying7,, — oo andT,,1/T,, — 1 almost surely, then

lim sup i((?’))

Furthermore, ifT},,/n — a > 0 almost surely, then

= 1 almost surely.

. B(T,)
lim sup = 1 almost surely.
n—oo Y(an)
Proof. The upper bound follows from the upper bound for continuanne twithout

any conditions o{7T,: n > 1}. For the lower bound some restrictions are needed, which
prevent us from choosing, for exampl, = 0 andT,, = inf{¢t > T,,_; + 1: B(t) < %}.

Our conditiongl,, +1/T,, — 1 andT,, — oo make sure that the times are sufficiently dense
to rule out this effect. Define, for fixeg > 4,

Dy = {B(¢*) = B(¢" ") = v(¢* — " ")},

qk gtquJrl
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Note thatD; and(; are independent events. From Brownian scaling and Lemngaitl2.
is easy to see, as in the proof of Theorem 5.1, that, for aldaitionstant > 0,

P(Dy) =P{B(1) > UL D15 _°
(D) { (1) Vak—gk-1 } klogk
Moreover, by scalingP(£2;) =: ¢, > 0, andc, that does not depend dn AsP(D;) =
cqP(Dy,) the sumy ", P(D3, ) is infinite. As the event$ D3, : k£ > 1} are independent, by
the Borel-Cantelli lemma, for infinitely many (eveh)
min  B(t) > B(¢"") +¢(¢" - ¢"7") — V.

AL
By Remark 5.2, for all sufficiently large, we haveB(¢"~1) > — 2¢(¢*~1!) and, by easy
asymptoticsy(¢* — ¢*~') > 4(¢*)(1 - 7). Hence, for infinitely many:,

Lmin | BO>0(d" ¢ = 2006 - Vi 20 (1- - &) - VA

with the right hand side being positive by our choicegofNow definen(k) = min{n :
T,, > ¢*}. Since the ratio§, ,, /T;, tend tol, it follows that for any fixect > 0, we have
q" < T,k < ¢* (1 +¢) for all largek. Thus, for infinitely manyk,

B(Tow)) > ¥(d*) (1 1 l) _ v+
O(Tuwy) ~ U(a*(1+¢)) ¢ VI (b))
But since\/q* /4 (¢") — 0 andv(¢*) /¢ (¢"(1 + €)) — 1//1 + ¢, we conclude that
lim sup B(T) > L (1-
n—00 w(Tn) - vV 1+4+¢

and since the left hand side does not depend; @mds > 0 we can letg T oo and
¢ | 0 to arrive at the desired conclusion. For the last part, neaeif 7,,/n — a then

_%)7

Q=

(Tn) /¢ (an) — 1. ol
e
R EE S S
)
0
-1
-2

Fig. 5.2. Embedding simple random walk into Brownian motion
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Proof of Theorem 5.4.  To prove the law of the iterated logarithm for simple random
walk, we letT, = 0 and, forn > 1,

T, =min{t > T,_1: |B(t) — B(Tn-1)| = 1}.

The timesT;,, are stopping times for Brownian motion and, hence, by thengtMarkov
property, the waiting time%,, — 7T,,_1 are independent and identically distributed random
variables. ObviousyP{B(T,,) — B(T,—1) = 1} = P{B(T,,) — B(T,-1) = -1} = 1,
and therefore{ B(T,): n > 0} is a simple random walk. By Theorem 2.49, we have
E[T,, — Tn—1] = 1, and hence the law of large numbers ensuresthat converges al-
most surely to 1, and the theorem follows from Lemma 5.5. [ |

Remark 5.6 The technique used to get Theorem 5.4 from Theorem 5.1 isllmasBnding
an increasing sequence of stopping tifi&s: » > 0} for the Brownian motion, such that
S, = B(T,) defines a simple random walk, while we keep some control desize of
T,,. This ‘embedding technique’ will be extended substanti@iSection 5.3. o

5.2 Points of increase for random walk and Brownian motion

A pointt € (0,00) is a local point of increase for the functigh (0, cc) — R if for some
open interval(a, b) containingt we havef(s) < f(t) forall s € (a,t) and f(t) < f(s)
forall s € (¢,b). In this section we show that Brownian motion almost surely ho local
points of increase. Our proof uses a combinatorial argunteetiérive a quantitative result
for simple random walks, and then uses this result to stuey#se of Brownian motion.
A crucial tool in the proof is an inequality of Harris [Ha6®}hich is of some independent
interest.

Theorem 5.7 (Harris’ inequality) Suppose thak = (X3,...,X,) is a random vari-
able with values ifR¢ and independent coordinates. Lgtg: R? — R be measurable
functions, which are non-decreasing in each coordinatenlh

E[f(X)g(X)] = E[f(X)] E[g(X)], (5.2)
provided the above expectations are well-defined.

Proof. One can argue, using the monotone convergence theorerit,ghffices to prove
the result whenf andg are bounded. We assunfeand g are bounded and proceed by
induction on the dimensio. Suppose first that = 1. Note that

(f(z) = f(y)(g(x) — g(y)) =0, forallz,y € R.
Therefore, forY” an independent random variable with the same distributsoXi,a
0 < E[(f(X) - f()(9(X) - g(Y))]
= 2E[f(X)g(X)] - 2E[f(X)] E[g(Y)],
and (5.2) follows easily. Now, suppose (5.2) holdsder 1. Define
fl(xl) = E[f(l'17X2, e ,Xd)] s
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and defingy; similarly. Note thatf; (z1) andg; («;) are non-decreasing functions of.
Since f andg are bounded, we may apply Fubini’s theorem to write the laftchside of
(5.2) as

/RE[f(xl,Xg, o Xa) g(we, Xa, .., Xa)] dpa(21), (5.3)

whereyp; denotes the law oK;. The expectation in the integral is at legstz1)g; (x1)

by the induction hypothesis. Thus, using the result forthe 1 case, we can bound (5.3)
from below byE|[ f; (X1 )] E[g1(X1)], which equals the right hand side of (5.2), completing
the proof. [ |

For the rest of this section, 1&f,, X, ... be independent random variables with
P{X; =1} =P{X; = -1} = §,
and letS;, = Zle X; be their partial sums. Denote
prn=P{S; >0 forall 1<i<n}. (5.4)

Then {S,, is a maximum amond, Si,...S,} is precisely the event that the reversed
random walk given by, = X, +...+X,,_,11 isnonnegative foralt = 1,...,n. Hence
this event also has probabilipy,. The following lemma gives the order of magnitude of
pn, the proof will be given as Exercise 5.4.

Lemma 5.8There are positive constants andC, such that

C C
L <P{S;>0forall 1<i<n}<—=foralln>1.

vn Vn
The next lemma expresses, in terms of thelefined in (5.4), the probability that; stays
betweerD and.S,, for j betweerD andn.
Lemma 5.9We havep? < P{0 < S; < S, forall 1<j<n}< pfn/zj.
Proof. The two events

A = {0 S;forall j < |n/2|} and
B = {8 <S.forj>|n/2]}

are independent, sincé depends only onXy, ..., X|,/2; and B depends only on the
remainingX |, /2|11, - -, Xn. Therefore,

P{0 < S; < Sy, forallj € {0,...,n}} <SP(ANB) =P(A)P(B) < pf,, /)

which proves the upper bound.
For the lower bound, we let(z1, . .., z,) = Lif all the partial sums; +. .. +xy, for k =
1,...,n are nonnegative, anf{z1, . . ., z,) = 0 otherwise. Also, defing(z1,...,z,) =
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f(zn,...,z1). Thenf andg are non-decreasing in each component. By Harris’ inegualit
for X = (Xy...., X,), we havel[(X)g(X)] > E[f(X)| E[g(X)] = p?. Also,
E[f(X)g(X)] = P{Xi+...+X;>0and X; ., +...+ X, >0forallj}
= P{0<S; < S, foralll <j<n},

which proves the lower bound. [ |

Definition 5.10.
(a) Asequencsy, s1, ..., s, of reals has a (globapoint of increaseatk € {0,...,n},
ifs; <spfori=0,1,...,k—1lands, <sjforj=k+1,...,n
(b) A real-valued functionf has aglobal point of increase in the interval (a, b) if
there is a point € (a,b) such thatf(s) < f(¢) forall s € (a,t) andf(t) < f(s)
for all s € (¢,b). t is alocal point of increaseif it is a global point of increase in
some interval. o

Theorem 5.11Let Sy, Sy, ..., S, be a simple random walk. Then

P{So, ..., S, has a point of increase< e ,
logn

forall n > 1, whereC does not depend on

The key to Theorem 5.11 is the following upper bound, whickd&dor more general
random walks. It will be proved as Exercise 5.5.

Lemma 5.12For any random walK.S; : j > 0} on the line,

Zk:() PkPn—k ' (5.5)

[n/2]
o P¥

P{So,...,S, has apoint of increase< 2

Remark 5.13Equation (5.5) is easy to interpret: The expected numbeviotpof increase
by time n is the numerator in (5.5), and given that there is at leastpmiat of increase
in [0,7/2], the expected number of these pointg(nn] is bounded from below by the
denominator. o

Proof of Theorem 5.11.  To bound the numerator in (5.5), we can use symmetry to
deduce from Lemma 5.8 that

> PkPu-k <242 > prpa-k <242C5 Y kTP(n— k)72
k=0 k=1 k=1
[n/2]

< 2440372 N K2,
k=1



126 Brownian motion and random walk

which is bounded above because the last sum is bounded bystanbmultiple ofn'/2.
Since Lemma 5.8 implies that the denominator in (5.5) isa@st€? log|n/2] , this com-
pletes the proof. [ |

We now see how we can use embedding ideas to pass from thealesutsimplerandom
walks to the result about Brownian motion.

Theorem 5.14Brownian motion almost surely has no local points of inceeas

Proof.  To deduce this, it suffices to apply Theorem 5.11 wimaplerandom walk on
the integers. Indeed, it clearly suffices to show that theMBian motion{B(t): ¢ > 0}
almost surely has no global points of increase in a fixed timerval (a, b) with rational
endpoints. Sampling the Brownian motion when it visits &idatyields a simple random
walk; by refining the lattice, we may make this walk as long &wish and capture all
required detail.

More precisely, for any vertical spacirig > 0 definer, to be the firstt > a such that
B(t) is an integral multiple of., and for: > 0 let ;1 be the minimak > ; such that
|B(t) — B(t;)| = h. DefineN, = max{k € Z : 7, < b}. For integers satisfying

0 < i < N, define

B(T,) — B(To)

—

Then{S;: i = 1,..., Ny} is a finite portion of a simple random walk. If the Brown-
ian motion has a global point of increasge € (a,b), and if k£ is an integer such that
Tr—1 < tg < Tk, then this random walk has points of increasé at 1 andk. Similarly, if

to < 19 Orty > 7n,, thenk = 0, resp.k = Ny, is a point of increase for the random walk.
Therefore, for alln,

P{{B(t): t > 0} has a global point of increase i, b) }

i 5.6
< P{N, <n}+ Z IP{SO,...,Sm has a point of increase and;, = m}. (5.6)

m=n+1

Note thatV, < n implies|B(b) — B(a)| < (n + 1)h, so

S; =

P{N, < n} <P{|B(b) = B(a)| < (n + 1)h} = P{IZ\ < %}

whereZ has a standard normal distribution. Sirnge. .., S,,, conditioned onV, = m
is a finite portion of a simple random walk, it follows from Tdrem 5.11 that for some
constantC, we have

> P{S,..., Sy has apoint of increase, anti, = m}
m=n+1
> C C
< P{N, = < .
Z {No = m} logm = log(n+1)

m=n+1

Thus, the probability in (5.6) can be made arbitrarily srbglfirst takingn large and then
picking . > 0 sufficiently small. [ |
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5.3 Skorokhod embedding and Donsker’s invariance princip

In the proof of Theorem 5.4 we have made use of the fact thed #aasts a stopping time
T for linear Brownian motion with the property thB{7T"] < oo and the law ofB(T) is the
uniform distribution on{—1, 1}. To use the same method for random w&lks : n € N}
with general increments, it would be necessary to find, foivargrandom variableX
representing an increment, a stopping tiffievith E[T] < oo, such thatB(T) has the
law of X. This problem is called th8korokhod embedding proble@y Wald’s lemmas,
Theorem 2.44 and Theorem 2.48, for any integrable stoppimg/F, we have

E[B(T)] =0 and  E[B(T)’] =E[I] < o0,

so that the Skorokhod embedding problem can only be solvedafalom variablesX
with mean zero and finite second moment. However, these arently restrictions, as the
following result shows.

Theorem 5.15 (Skorokhod embedding theorem$uppose thafB(t): t > 0} is a stan-
dard Brownian motion and thak is a real valued random variable witi’[X] = 0
and E[X?] < oo. Then there exists a stopping tirfie with respect to the natural fil-
tration (F(¢): t > 0) of the Brownian motion, such tha(T") has the law ofX and
E[T] = E[X?2].

Example 5.16Assume thatX may take two values < b. In order thatE[X] = 0 we
must haver < 0 < bandP{X =a} =b/(b—a)andP{X = b} = —a/(b—a). We have
seen in Theorem 2.49 that, for the stopping tifie= inf{¢: B(¢) € (a,b)} the random
variableB(T') has the same distribution &5, and thatE[T] = —ab is finite. o

Note that the Skorokhod embedding theorem allows us to esarfuments developed for
the proof of the law of the iterated logarithm for simple randwalks, Theorem 5.4, and
obtain a much more general result.

Theorem 5.17 (Hartman—Wintner law of the iterated logarithm) Let{S,,: n € N} be
a random walk with increments;,, — S,,_; of zero mean and finite variane€. Then
Sn

limsup ———==1

n—oo 1/202nloglogn B

We now present two proofs of the Skorokhod embedding theovemch actually rep-
resent different constructions of the required stoppinge. Both approaches, Dubins’
embedding, and the Azéma-Yor embedding are very elegarttamdtheir own merits.

5.3.1 The Dubins’ embedding theorem

The first one, due to Dubins [Du68], is particularly simpledldrased on the notion of
binary splitting martingales. We say that a martingalg, : n € N} is binary splitting if,
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whenever for somey, ..., z, € R the event
Ao, ... xn) :={Xo =20, X1 =21,..., X = Tpn}

has positive probability, the random variablg,,; conditioned onA(zy, ..., z,) is sup-
ported on at most two values.

B | W\a

Fig. 5.3. Dubins’ embedding for the uniform distribution pr4, —2, 0, 2, 4}: First go until you hit
{—3, 3}, inthis picture you hit-3. Given that, continue until you hit either2 or —4, in this picture
you hit—2. HenceB(T') = —2 for this sample.

Lemma 5.18Let X be a random variable with?[X?] < oo. Then there is a binary
splitting martingale{ X,, : n € N} such thatX,, — X almost surely and ii.?.

Proof. We define the martingaleX,, : n € N} and the associated filtratiq@,,: n €
N) recursively. LetG, be the trivialo-algebra (consisting only of the empty set and the
underlying probability space itself) andy, = F X. Define the random variablg by

6 — 1,  ifX>X,
T -1, ifX <X,

Foranyn > 0, letG,, = 0(&,...,{u—1) andX,, = E[X | G,]. Also define the random
variable,, by

e T if X > X, ,
T -1, fX<X,.

Note thatG,, is generated by a partitioR,, of the underlying probability space in@y
sets, each of which has the fotA{xq, ..., z,). As each element dP,, is a union of two
elements ofP,,;1, the martingale X,, : n € N} is binary splitting. Also we have, for
example as in (12.1) in the appendix, that

E[X?] = B[(X - X,)?] + E[X2] > E[X?].
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Hence{X, : n € N} is bounded inL? and, from the convergence theorem of-
bounded martingales and Lévy’s upward theorem, see Theot@n28 and 12.25 in the
appendix, we get

X, — Xoo = E[X | G almost surely and ifi.2,

whereG,, = cr( U;’io g,») . To conclude the proof we have to show that= X, almost
surely. We claim that, almost surely,

lim & (X = Xn1) = |X — Xool. (5.7)

Indeed, ifX (w) = X (w) thisis easy. IfX(w) < X (w) then for some large enough
N we haveX (w) < X, (w) foranyn > N, hencet,, = —1 and (5.7) holds. Similarly, if
X(w) > Xoo(w) theng,, = 1 forn > N and so (5.7) holds.

Using that¢,, is G, 1-measurable, we find that

E[& (X = Xn41)] = Bl EIX = X1 | Guya]] = 0.

Recall that ifY,, — Y almost surely, andY,,: n = 0,1, - - } isL?-bounded, the&Y,, —
EY (see, for example, the discussion of uniform integrabitityl2.3 of the appendix).
Hence, as the left hand side of (5.7)i$-bounded, we conclude thal X — X..| =0.m

Proof of Theorem 5.15. From Lemma 5.18 we take a binary splitting martingale
{X,: n € N} such thatX,, — X almost surely and if.2. Recall from the example
preceding this proof that i is supported on a set of two elemedtsa, b} for some
a,b > 0thenT = inf{t : B(t) € {—a,b}} is the required stopping time. Hence, ¥s
conditioned oA (zo, . .., z,—1) IS supported on at most two values it is clear we can find
a sequence of stopping timés < 77 < ... such thatB(T,,) is distributed asX,, and
ET,, = E[X?2]. AsT, is an increasing sequence, we hdyel T almost surely for some
stopping timel". Also, by the monotone convergence theorem

ET = lim ET,, = lim E[X?] = E[X?].
As B(T,) converges in distribution t& by construction, and converges almost surely to
B(T) by continuity of the Brownian sample paths, we get th&T") is distributed asy. m

5.3.2 The Azéma—Yor embedding theorem

In this section we discuss a second solution to the Skorokindoedding problem with a
more explicit construction of the stopping times.

Theorem* 5.19 (Azéma—Yor embedding theorem¥Buppose thak is a real valued ran-
dom variable withE[X] = 0 and E[X?] < cc. Let
U(z)=FE[X|X>z] #P{X>a}>0,

and¥(z) = 0 otherwise. For a Brownian motiof\B(t): ¢t > 0} let{M(¢): t > 0} be the
maximum process and define a stopping tinioy

T=1inf{t > 0: M(t) > ¥(B(t))}.

ThenE[r] = E[X?] and B(7) has the same law aX.
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B / T

(M ()

Fig. 5.4. The Azéma-Yor embedding: the path is stopped when the Brmownotion hits the
level U~ (M (t)), where¥ ! (x) = sup{b: U(b) < z}.

We proceed in three steps. In the first step we formulate arédibg for random variables
taking only finitely many values.

Lemma 5.20Suppose the random variahle with EX = 0 takes only finitely many values
T < Ty < -0 < Ty
Definey; < yo2 < -+ < yn—1 byy; = ¥(z;41), and define stopping tim&s = 0 and
Ti:inf{tETi_lzB(t)¢(xi,yi)} fori <n—1.

ThenT = T,,_, satisfiesE[T] = E[X?] and B(T) has the same law aX.

T T T=T,

Fig. 5.5. The Azéma-Yor embedding for the uniform distribution on thg s€, —1,0,1,2}. The
drawn path samples the valig7T") = 0 with T' = T}.
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Proof. First observe thay; > x;.1 and equality holds if and only if= n — 1. We have
E[T,,—1] < oo, by Theorem 2.49, an8[T,,_] = E[B(T,—1)?], from Theorem 2.48. For
1=1,...,n — 1define random variables

v — EX|X 2 xip1] FX >xi,

Note thatY; has expectation zero and takes on the two valueg,. Fori > 2, given
Y;_1 = y;_1, the random variabl&’; takes the values;,y; and has expectation;_;.
GivenY;_; = z;, j < i — 1 we haveY; = z;. Note thaty,,_; = X. We now argue that

(B(Th),....,B(Tn_1)) % (Y1,....Yu_1).

Clearly, B(T7) can take only the values,, y; and has expectation zero, hence the law of
B(Ty) agrees with the law oY;. Fori > 2, given B(T;—1) = y;—1, the random vari-
able B(T;) takes the values;, y; and has expectatiofi_,. GivenB(T;_1) = x; where

j <i—1,we haveB(T;) = z;. Hence the two tuples have the same law and, in particular,
B(T,,—1) has the same law &s. [ ]

In the second step, we show that the stopping time we haverootesd in Lemma 5.20
agrees with the stopping timein the Azéma—Yor embedding.

Lemma 5.21The stopping tim& constructed in Lemma 5.20 and the stopping time
Theorem 5.19 are equal.

Proof. Suppose thaB(T,,—1) = x;, and henc& (B(T,,—1)) = y;—1. If i <n — 1, then
i is minimal with the property thaB(T;) = --- = B(T,—1), and thusB(T;_1) # B(T;).
HenceM (T,,_1) > y;—1. If i = n we also haveM (T,,_1) = z, > y;—1, which implies
in any case that < 7. Conversely, ifl;_; <t < T; thenB(t) € (x;,y;) and this implies
M(t) < y; < ¥(B(t)). Hencer > T, and altogether we have seen tlfat 7. [

This completes the proof of Theorem 5.19 for random vargtd&ing finitely many val-
ues. The general case follows from a limiting procedurectvis left as Exercise 5.10.

5.3.3 The Donsker invariance principle

Let {X,: n > 0} be a sequence of independent and identically distributedora vari-
ables and assume that they are normalised, sditfiat] = 0 and Var(X,,) = 1. This
assumption is no loss of generality f&r, with finite variance, since we can always con-
sider the normalisation

X, —E[X,]

VVar(X,,)

We look at theandom walkgenerated by the sequence

Sn = iXka
k=1
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and interpolate linearly between the integer points, i.e.
S(t) = Sy + (¢ = [t (Sig+1 — Spy) -

This defines a random functigh € CJ0, co). We now define a sequengs? : n > 1} of
random functions irC|0, 1] by
«ipy - Snt)

forallt € [0, 1].

Theorem 5.22 (Donsker’s invariance principle)On the spac€|0, 1] of continuous func-
tions on the unitinterval with the metric induced by the sigpm, the sequendes: n > 1}
converges in distribution to a standard Brownian motidB(¢): ¢ € [0, 1]}.

Remark 5.23Donsker’s invariance principle is also called faactional central limit the-
orem The namenvariance principlecomes from the fact that the limit in Theorem 5.22
does not depend on the choice of the exact distribution ohtivenalised random vari-
ablesX,,. o

The idea of the proof is to construct the random variables X>, X3, ... on the same
probability space as the Brownian motion in such a way {tt§t: n > 1} is with high
probability close to a scaling of this Brownian motion.

Lemma 5.24Supposeg B(t): ¢t > 0} is a linear Brownian motion. Then, for any random
variable X with mean zero and variance one, there exists a sequencepgiisg times

O0=To<T1 <Tr<T3< ...

with respect to the Brownian motion, such that

(a) the sequencéB(T;,): n > 0} has the distribution of the random walk with incre-
ments given by the law of,

(b) the sequence of functiofs’:: n > 0} constructed from this random walk satisfies
‘ B(nt)
NG

Proof. Using Skorokhod embedding, we defifieto be a stopping time witli[7;] = 1
such thatB(T7) = X in distribution. By the strong Markov property,

lim IP’{ sup

n—oo 0<t<1

fS:;(t)‘ >5} —0.

(Ba(t): t >0} = {B(Ty +t) — B(Ty): t > 0}

is a Brownian motion and independent®f (7} ) and, in particular, of 71, B(T})). Hence
we can define a stopping tinig, for the Brownian motion{B2(¢): ¢t > 0} such that
E[T3] = 1 andB2(T3) = X in distribution. Therl, = T; + Ty is a stopping time for
the original Brownian motion witfE[T5] = 2, such thatB(T5) is the second value in a
random walk with increments given by the law &t We can proceed inductively to get a
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sequenc® = Ty < Ty < T> < T5 < ... such thatS,, = B(T,,) is the embedded random
walk, andE[T;,] = n.

AbbreviateW,,(t) = % and letA,, be the event that there exists [0, 1) such that
|Sk(t) — W,(t)| > . We have to show thad(A,,) — 0. Letk = k(¢) be the unique
integer with(k — 1) /n <t < k/n. SinceS}, is linear on such an interval we have
A, C{ there exists € [0, 1) such thal Sy, /\/n — W,(t)| > ¢}
U { there exists € [0,1) such tha{S,_/v/n — W, (t)| > ¢}.

As S, = B(Ty) = v/nW,(Tx/n), we obtain
A, C A, :={ there exists € [0, 1) such tha{W,, (T}/n)) — W,(t)| >}
U { there exists € [0,1) such tha{W,, (Ti,—1/n) — W,,(t)| > €}.
For given0 < ¢ < 1 the eventd} is contained in

{ there exists, t € [0,2] such thals —t| <4, [W,(s) — W,(t)] > €} (5.8)
U { there exists € [0, 1) such tha{T})./n — t| V [Tx—1/n — t| > 6} . (5.9)

Note that the probability of (5.8) does not dependronChoosings > 0 small, we can
make this probability as small as we wish, since Brownianiomois uniformly continu-
ous on|0,2]. It remains to show that for arbitrary, fixed> 0, the probability of (5.9)
converges to zero as— oo. To prove this we use that

lim 2% = lim Xn:(T Ty—1) = 1 almost surel

m — = lim — —Tr_q) = .

n—oo N, n—oo N, k k=1 y
This is Kolmogorov's law of large numbers for the sequefi€g — T}, } of independent
identically distributed random variables with mean Observe that for every sequence
{a,} of reals one has

lim & =1 = lim sup |ax —k|/n=0.

This is a matter of plain (deterministic) arithmetic andilyashecked. Hence we have,

{ Ty, — K|
sup
o<k<n M

lim P

n—oo

> 5} —0. (5.10)

Now recall that € [(k — 1)/n, k/n) and letn > 2/§. Then

PP{ there exists € [0, 1] such tha{T}, /n —t| V [Tj—1/n —t| = 6}

T, — (k-1 — T
< IP{ sup (Tpy = (k=1)) vV (k=T 1)25}
1<k<n n
T — k (k—1)—Tk_1
< P9 su >6/2:+P sup ———— = 6/2¢,
{1<k2n n /} {1<k2n n /}

and by (5.10) both summands convergéto [ |
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Proof of the Donsker invariance principle. Choose the sequence of stopping times as
in Lemma 5.24 and recall from the scaling property of Browrniaotion that the random
functions{W,,(¢): 0 < ¢t < 1} given by W,,(¢t) = B(nt)/+/n are standard Brownian
motions. Suppose th# C CJ0, 1] is closed and define

Kle] ={f € C[0,1]: || f — gllsup < € for someg € K}.

ThenP{S} € K} < P{W,, € K[e|} + P{||S; — Wy|lsup > €} . Asn — oo, the second
term goes td), whereas the first term does not dependiand is equal t®{B € K|e|}
for a Brownian motionB. As K is closed we have

limP(B € K[c]} = IP’{B N K[s]} —P{B e K}.
e>0
Putting these facts together, we obt#in sup,,_, . P{S;; € K} < P{B € K}, which is
condition (ii) in the Portmanteau theorem, Theorem 12.6@eppendix. Hence Donsker’s
invariance principle is proved. [ |

Below and in the following section we harvest a range of itedok random walks, which
we can transfer from Brownian motion by means of Donskevaiiiance principle. Read-
ers unfamiliar with the nature of convergence in distribntare recommended to look at
the appendix, Chapter 12.1.

Theorem 5.25Suppose thaf X : & > 1} is a sequence of independent, identically dis-
tributed random variables witlE[X;] = 0 and0 < E[X?] = 0% < co. Let{S,: n > 0}
be the associated random walk and

M, = max{S;: 0 < k < n}

its maximal value up to time. Then, for allz > 0,

2 o 2 2
lim P{M,, > zy/n} = eV /2 dy
n—oo A /27'(0'2 z

Proof. By scaling we can assume that = 1. Suppose now thaj: R — R is a
continuous bounded function. Define a funct®n C[0, 1] — R by

G(f) = g( max f(2)),

z€[0,1]

and note tha& is continuous and bounded. Then, by definition,

o] = o, * )] =Bl ()

and

E[G(B)} - E[g( max B(t))]

0<t<1

Hence, by Donsker’s invariance principle,

i Blo(72)] = 2o i, 200
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From the Portmanteau theorem, Theorem 12.6, and the refigutinciple, Theorem 2.21,
we infer

nlirr;o P{M,, > x\/n} = P{max B(t) > x} = 2P{B(1) > 2},

0<t<1

and the latter probability is the given integral. [

5.4 The arcsine laws for random walk and Brownian motion

We now discuss the two famous arcsine laws for Brownian madiod also for random
walks. Their name comes from tlacsine distribution, which is the distribution on
(0,1) which has the density

1
m/z(l —x)

The cumulative distribution function of an arcsine digtitdd random variablé& is there-
fore given by

forz € (0,1).

2
P{X <z} = = arcsin(+/z) forz € (0,1).
7r
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Fig. 5.6. The density of the arcsine distribution is concentrated near threlhoy value$ and1.

Thefirst arcsine lawdescribes the law of the last passage over level zero by arBaow
motion or random walk running for finite time. In the case ofraBnian motion we shall
find this law by a smart calculation, and then Donsker’s ifaraze principle will allow us
to transfer the result to random walks. Observe that thewatlg result is surprising: the
rightmost zero of Brownian motion in the intervl, 1) is most likely to be near zero or
one, see Figure 5.6.
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Theorem 5.26 (First arcsine law for Brownian motion)Let{B(t): t > 0} be a standard
linear Brownian motion. Then,

(a) the random variablel = sup {¢ € [0,1]: B(t) = 0}, the last zero of Brownian
motion in[0, 1], is arcsine distributed, and
(b) the random variablé\/* € [0, 1], which is almost surely uniquely determined by

B(M*) = B(s),
(M*) Jnax, (s)

is arcsine distributed.

Proof. By Theorem 2.11 Brownian motion has a unique maximum on ttesval [0, 1],
and hence the maximiséd ™ is well-defined. Moreover, Theorem 2.34 shows thét,
which is the last zero of the proce§a/(t) — B(t): t > 0} has the same law ds Hence
it suffices to prove part (b).

Recall that{ M (¢): 0 < t < 1} is defined byM (¢) = maxo<s<¢ B(s). Fors € [0,1],

PO <s} = P{ oo Blu) > o, B}
= P{ jnax B(u) — B(s) > ax B(v) — B(s)}

= P{Ml(s) >M2(1—8)},
where{M;(t): 0 < t < s} is the maximum process of the Brownian motipB, (¢):
0 <t < s}, whichis given byB;(t) = B(s — t) — B(s), and{Mx(t): 0 < t < 1} is the
maximum process of the independent Brownian mofiBa(t): 0 < t < 1 — s}, which is
given by By (t) = B(s +t) — B(s). Since, by Theorem 2.21, for any fixedthe random
variableM (t) has the same law a8(¢)|, we have

P{M(s) > Ma(1—s)} =P{|Bi(s)| > |B2(1 - s)|}.
Using the scaling invariance of Brownian motion we can egpihis in terms of a pair of
two independent standard normal random varial@leand 7 , by
| Z2|
N E7]
In polar coordinates,Z,, Z;) = (Rcosf, Rsin#) pointwise. The fact that the random

variabled is uniformly distributed orj0, 2] follows from Lemma 12.11 in the appendix.
So the last quantity becomes

12| = sin sy = arcsin(v/s
P{\/ﬁ<ﬁ}*ﬂ”{l (0)] < s} =4P{0 < (V3))
() 2y

2w

P{|Bi(s)| > |Ba(1 — 5)|} = P{/5|Z1| > VI —5|Zs|} :P{ < \/E}

It follows by differentiating that\/* has density(r+/s(1 — s))~! for s € (0, 1). [

For random walks the first arcsine law takes the form of a lthméibrem, as the length of
the walk tends to infinity.
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Proposition 5.27 (Arcsine law for the last sign-changepuppose thaf X;.: k£ > 1} is
a sequence of independent, identically distributed rangleanables withE[X;] = 0 and
0 < E[X?] = 02 < co. Let{S,,: n > 0} be the associated random walk and

N, =max{l <k <n : SpSk_1 <0}

the last time the random walk changes its sign before timehen, for allz € (0, 1),
2
lim P{N,, < zn} = = arcsin(y/z) .
n—o0 m
Proof.  The strategy of proof is to use Theorem 5.26, and apply Datisskevariance
principle to extend the result to random walks. As is unchanged under scaling of the
random walk we may assume thet = 1. Define a bounded functiopon C[0, 1] by

g(f) = max{t < 1: f(t) = 0}.

Itis clear thaty(S};) differs from N,, /n by a term, which is bounded ky'n and therefore
vanishes asymptotically. Hence Donsker’s invariancegia would imply convergence
of N,,/n in distribution tog(B) = sup{t < 1: B(t) = 0} — if g was continuousg is
not continuous, but we show thatis continuous on the sétof all f € CJ[0, 1] such that
f takes positive and negative values in every neighbourhéegery zero and’(1) # 0.
As, by Theorem 2.28, Brownian motion is almost surel¢ jiwe get from property (v) in
the Portmanteau theorem, Theorem 12.6, and by Donskegsiamce principle, that, for
every continuous boundéd R — R,

Np, .

lim ]E{h(j)} = lim E[hog(S%)] = E[hog(B)] = E[h(sup{t < 1: B(t) = 0})],
which completes the proof subject to the claim. To seeghsttontinuous o, lete > 0
be given andf € C. Let

dp = min B,
0= etoey O
and choosé; such that(—d1, 1) C f(g(f) —€,9(f) +¢).Let0 < § < §p A d;1. If now
|h — fllso < 4, thenh has no zero irfg(f) + <, 1], but has a zero ig(f) — &, g(f) + ),
because there aret € (g(f) — &, 9(f) + ) with h(t) < 0 andh(s) > 0. Thus|g(h) —
g(f)| < e. This shows thag is continuous oft. ]

There is a second arcsine law for Brownian motion, which dless the law of the random
variable£{t € [0,1]: B(t) > 0}, the time spent by Brownian motion above thexis.
This statement is much harder to derive directly for Browmaotion, though we will do
this using more sophisticated tools in Chapter 8. At thigesteie can use random walks to
derive the result for Brownian motion.

Theorem 5.28 (Second arcsine law for Brownian motion).et { B(¢): ¢ > 0} be a stan-
dard linear Brownian motion. Ther;{¢ € [0,1]: B(t) > 0}, is arcsine distributed.

The idea is to prove a direct relationship between the firstinmam and the number of
positive terms for asimplerandom walk by a combinatorial argument, and then transfer
this to Brownian motion using Donsker’s invariance prineip
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Lemmab5.29Let{S;: k = 1,...,n} be a simple, symmetric random walk on the integers.
Then

#{ke{1,...,n}: 5, >0} Lmin{k € {0,...,n} : S = max S;}.  (5.11)

<J

Proof. LetX; = Sy — Sk_; foreachk € {1,...,n}, with Sy := 0. We rearrange the
tuple(Xy,...,X,) by

¢ placing first indecreasingrder ofk the termsX;, for which Sy, > 0,
e and then inncreasingorder ofk the X, for which S, < 0.

Denote the new tuple b§¥y,...,Y,) := T,(X4, ..., X,,). We first show that
d
(X1,.. ., Xn)=(Y1,...,Y5).

Note that, because the incremeq?$,, ..., X,,) are uniformly distributed oqf—1,1}",

this is equivalent to showing thé&t, is a bijection for everyn € N. Forn = 1 this

is obviously true, and we continue by induction, assumirag T is a bijection for any
k < n — 1. T, is obviously a bijection on those tuples for which all pdrédams are
nonpositive. For all other tupldsy, ..., z,) let

k
01, .., Zn) :max{l <k<n: Z:cj >0}.
j=1

Then, abbreviating = (z1,...,2,),

Tn(xla s axn) = (I(($), Tf(w)fl (.1317 s 7xf($)fl)axf(z)+lv s 7x7b> .

Note that, ify = T,,(x) then/(z) = ¢(y), and therefore the inverse 9}, is given as

Tn_l(yla cee 7yn) = (T[(yl),l <y27 cee 7y€(y)>>y17 Yo(y)+1s5- -+ »yn)v
proving thatT,, is a bijection, as required.
Now {S,(Y): k=1,...,n}given byS,(Y) = Zle Y; is arandom walk and we check
by induction onn that
#{ke{l,...,n}: Sp(X) >0}
=min{k € {0,...,n}: Sg(Y) = max S;(V)}.

0isn

(5.12)

Indeed, this obviously holds fai = 1. Suppose it holds for fixed. When X, ,; is
appended there are two possibilities:

e Supposes,,+1(X) > 0, so that
#{ke{l,...,n+1}: Sp(X) >0} =#{ke{1,...,n}: Sp(X) >0} + 1.
Denoting(Yy, ..., Y5 1) = T4 (X1, ..., Xy41) We haveY* = X, 1, and therefore
min{k € {0,...,n+ 1} : Sp(Y") = pmax S;(Y*)}

=min{k € {0,...,n}: Sp(Y) = max S;(V)} +1.

0<j<n
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In summary, appending the valdg,; to (X1, ..., X,,) in this case, has led to the in-
crease of both sides in Equation (5.12) by one.

e Supposes,,+1(X) <0, so that
#{k: e{l,...,n+1}: S(X) > 0} z#{k e{1,...,n}: Sk(X) > 0}.
ThenY, , = X, and therefore

min{k € {0,...,n+1}: Sp(Y*) = max S;(Y*)}

0<j<n+1
=min{k € {0,...,n}: Sk (Y) = Jnax. S;(Y)}.
In summary, appending the valug, ,; to (X4, ..., X,,) in this case, has left both sides
in Equation (5.12) unchanged.
This completes the induction step and proves the lemma. [ |

Proof of Theorem 5.28. Look at the right hand side of the equation (5.11), which
divided byn can be written ag(.S;) for the functiong: C[0, 1] — [0, 1] defined by
g(f) =inf{t € [0,1]: f(t) = sup f(s)}.
s€1[0,1]
The functiong is continuous in every € CJ0, 1] which has a unique maximum, hence al-
most everywhere with respect to the distribution of Brownigotion. Hence, by Donsker’s
invariance principle and the Portmanteau theorem, Thedr2r®, the right hand side

in (5.11) divided byn converges to the distribution @f(B), which by Theorem 5.26 is
the arcsine distribution.

Similarly, by Exercise 5.11, the left hand side of (5.11)idiéd byn can be approximated
in probability byh(S}:) for the functionk: CJ[0, 1] — [0, 1] defined by

h(f) = L{t €[0,1]: f(t) > 0}.

Itis not hard to see that the functidris continuous in every € C|0, 1] with the property
that

1ifrolﬁ{t €0,1]: —e< f(t)<e} =0,

which again is equivalent ta{¢ € [0,1]: f(t) = 0} = 0, a property which Brownian
motion has almost surely. Hence, again by Donsker’s inmaggrinciple and the Port-
manteau theorem, the left hand side in (5.11) dividea lopnverges to the distribution of
h(B) = L{t € [0,1]: B(t) > 0}, and this completes the argument. ]

Remark 5.30The proof of Theorem 5.28 can now be used literally to showttieasecond
arcsine law holds for random walKsS,,: n > 0} with mean zero and finite variance.
Indeed, ifP, = #{1 < k < n : S, > 0} is the number of positive values of the random
walk before timen, then, for allz € (0,1),

2
lim P{P, < xn} = — arcsin(y/7) . ©
n— 00 T
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5.5 Pitman’'s2M — B theorem

Pitman's2M — B theorem describes an interesting relationship betweesthmensional

Bessel process, which, loosely speaking, can be consi@dsradinear Brownian motion
conditioned to avoid zero and a simple transformation ofBh@vnian path, namely the
process

{@2M (@) - B(t),M(t)): t >0} for M(t) = max B(s).

0<s<t

Geometrically, the first component of this process is olet@iby reflecting the Brownian
path at each time in the level of the current maximum. We whllain this result from
a random walk analogue, using Donsker’s invariance priadip pass to the Brownian
motion case.

We start by discussing simple random walks conditioned ¢édaxero, and its continuous-
time analogue, the three-dimensional Bessel process.id&rres simple random walk on

{0,1,2,...,n} conditioned to reach before0. By Bayes’ rule, this conditioned process is
a Markov chain with the following transition probabilities(0, 1) = 1 and forl < k < n,
plkk+1)=(k+1)/2k ; plkk—-1)=(k—-1)/2k. (5.13)

This is an instance of DoobH -transform, see Exercise 5.13. Taking- oo, this leads us
to definethesimple random walk onN = {1, 2,. ..} conditioned to avoid zero(forever)
as a Markov chain oiN with transition probabilities as in (5.13) for &ll> 1.

Lemma5.31Let{S(j): j = 0,1,...} be a simple random walk df and let{5(j): j =
0,1,...} be a simple random walk dd conditioned to avoid zero. Then fé6£= 1 and any
sequencézy, . . ., x¢) of positive integers, we have

P{p(1) = x1,...,p(f) = ¢ | p(0) = 20}
xz
= ép{su) =z1,...,5(0) =] S(0) =0}
Proof. ~ We prove the result by induction ah The case = 1 is just (5.13). Assume
the lemma holds fof — 1 and let(xq, . .., 2¢) be a sequence of positive integers such that

|z; —xj_1| = 1forj =1,...,¢ Clearly, the probability on the right hand side of the
equation is jus2—*. Moreover, using the induction hypothesis and the Markopgprty,

P{p(1) = a1,...,p(0) = x| p(0) = zo}
= 2B {p(t) = e | (L~ 1) = wea)

— xé—l 21—2 mé — ﬂ 2—@7
Zo 2me T
as required to complete the proof. [ |

Define thethree-dimensional Bessel proces$p(t): t > 0} by taking a3-dimensional
Brownian motion{W (¢): ¢ > 0} and putting

p(t) = W(H)].
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Fix i > 0 and assuméiV (0)| = h. Define the stopping timegr;": j = 0,1,...} by
r4” = 0and, forj > 0,

T;Z_)l = min {¢ > T;h) p(t) — p(T;"))\ =h}.

Given thatp(7;"’) = kh for somek > 0, by Theorem 3.18, we have that

O]

p(1i4h) = 2k (5.14)

{ (k+1)h,  with probability &%
(k—1)h, with probability £-1 .

We abbreviate; = 7;". By (5.13) and (5.14), the sequenge(7;): j = 0,1,...} has
the same distribution as the simple random walkNoconditioned to avoid zero, with the
initial condition (0) = 1.

Lemma 5.32The sequencér,, — n: n > 0} is a martingale and there exists > 0 with
Var(r, —n) < Cn.

Proof. If {B(t): ¢ > 0} is standard linear Brownian motion, then we know from
Lemma 2.47 thaf B(t)? —t: t > 0} is amartingale. A§p(t)2 — 3t: t > 0} is the sum of
three independent copies of this martingale, it is also dingale. Given thap(7,,—1) = &,
optional sampling (recall Theorem 12.27 of the appendix}His martingale at times,_,
andr, yields

(k+1)3 N (k—1)3
2k 2k

henceE[r,, — 7,—1 | Tn—1] = 1, so that{r,, — n: n > 0} is a martingale. To bound its
variance, consider the scalar product

]fz — 3Tn_1 =

—3E[7 | Th—-1],

Z:=(W(t+1) - W(t), mrd)

Given F(t), the o-algebra generated b/ (s), for s € [0,¢], the distribution ofZ is
standard normal. This is clearli¥ (¢) is on a coordinate axis; and the general case follows
by rotational symmetry of 3-dimensional Brownian motionofdover,

Z=(W(t+1), gra) — WE) < [W(Et+1)| - [W()].

ThereforeP{|W (t + 1)| — |[W(¢)| > 2| F(t)} = P{Z > 2}. For anyn,
k
U{W@Eaa + )= IW(rn1 +5 = 1) > 2} C {rn — a1 <k},
j=1

so that, givenr,,_1, the differencer,, — 7,,_1 is stochastically bounded from above by a
geometric random variable with parameper= P{Z > 2}. Hence,

2
Var(r, — o1 — 1) < E[(Tn — Tn,l)Q] <=,
p
By orthogonality of martingale differences, see e.g. (Lthlthe appendix, we conclude

thatVar(r,, — n) < 2n/p, which completes the proof. [
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We use the following notation,

e {S(j): 7=0,1,...} is asimple random walk i,

o {M(j): j =0,1,...} defined byM (j) = maxo<a<; S(a) is its maximum process;

e {p(j): j=0,1,...} is asimple random walk oN conditioned to avoid zero,

o {I(j): =0,1,...} defined byl (j) = mins>; 5(k) is its future minimum process.

Let {I(¢): t > 0} defined byI(t) = mins>: p(s) be the future minimum process of the
process{p(t): ¢t > 0}.

Proposition 5.33Let1(0) = 5(0) = 0, and extend the processg&(j): j = 0,1,...} and
{I(j): j=0,1,...} 100, 0) by linear interpolation. Then

{hp(t/h?): 0<t <1} S {p(t): 0<t <1} ash O, (5.15)
and

{hI(t/h?):0<t <1} S {I(t):0<t <1} ash |0, (5.16)

d . . .
where— indicates convergence in law as random elemen|[6f 1].

Proof.  For anyh > 0, Brownian scaling implies that the proceigs”: n = 0,1, ...}
has the same law as the procéasr,: n = 0,1,...}. Doob’sL? maximal inequality, see
Theorem 12.30, and Lemma 5.32 yield that

E[Ogljagn( -j)?] <Cn,

for a suitable constarit’ > 0. Therefore, taking: = |h=2¢],

E[ max (7 Lh 2t ~ h?|h 2 J)Q} = h4E|:OI£?<Xl(TLh—2” — |h2%t])?| < Ch?,

0<t<1

whence also (for a slightly larger constant)

E[Org%(ffglm — 12 <on?. (5.17)

Since{p(t): 0 <t < 1} is uniformly continuous almost surely, we infer that

Qax. Ip(T h) 2¢)) — p(t)] — 0 in probability ash | 0,
and similar reasoning gives the analogous result wheis replaced by -]. Sincej(t/h?)

is, by definition, a weighted average pf|»=2t]) and s([h~2t]), the proof of (5.15)
is now concluded by recalling thdp(7; My:j = 0,1,...} has the same distribution as
{hp(4): j = 0,1,...}. Similarly, {I(7; “‘ ): j = 0,1,...} has the same distribution as
{hI(j): j=0,1,...},s0(5.16) follows from (5.17) and the continuity bf [
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Theorem 5.34 (Pitman's2M — B theorem) Let {B(t): ¢ > 0} be a linear Brown-
ian motion and letM/ (t) = maxo<s<: B(s) denote its maximum up to tine Also let
{p(t): t = 0} be a three-dimensional Bessel process and I¢t): ¢t > 0} be the corre-
sponding future infimum process givenlgy) = inf,>, p(s). Then

{(2M (1) = B(t), M) t > 0} = {(p(), I(1)): ¢ > 0}

In particular, {2M (t) — B(¢): t > 0} is a three-dimensional Bessel process.

Proof. Following the original paper [Pi75], we prove the theorenthia discrete setting,
i.e. we show that, fo6(0) = 5(0) = 0,

{@M(5) = S(), M) §=0,1,...} T {(3(j),1()): j=0,1,...}.  (5.18)

The theorem then follows directly by invoking Donsker’'sanance principle and Propo-
sition 5.33. First note that (5.18) is equivalent to

{(SG), M(j): j=0.1,... } £ {IG) - p(j). 1()): 5 =0,1,...},

which we establish by computing the transition probaleiitilf S(j) < M (), then clearly

, _ B (S(j) +1,M(j)), with probability 1 ,
(SG+1), MG +1)) = { (S(j) — 1, 37(j)),  with probability . (519)
If S(j) = M(j), then
, o [ (S()+1,M(j) + 1), with probability 5 ,
(SG+1), MG +1) = { (S(j) = 1, M(5)), with probability 1 . (5.20)

We now compute the transition probabilities {d21(j) — 5(4), 1(j)): j = 0,1,...}. To
this end, we first show that/(j): j = 0,1,...} is the maximum process dRI(j) —
p(5): 5 =0,1,...}. Indeed, for allj < k, since(I — j)(j) < 0, we have

21(5) = p(j) = 1() + (L = p)(5) < (k).

On the other hand, let. be the minimalj. < k such that/(j.) = I(k). Thenj(j.) =
I(j.) and we infer that2l — p)(j.) = I(j.) = I(k).

Assume now tha2l(j) — 5(j) < I(j), i.e.,p(j) > I(j). Lemma 5.31 and the fact that
{S(5): 1 =0,1,...} is recurrent imply that, for integeés> i > 0,

P{3; with 5(j) =i |p(0) = k} = %]P{Elj with S(j) =i S(0) =k} = %
Thus, fork > 1 > 0,
P{I(j) =i|p(j) = k}
= P{3;j with 5(j) = i| p(0) = k} — P{3j with 5(j) =i — 1| p(0) = k} = % :
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Therefore,
P{p(j+1) =k —1|p(j) = k, I(j) = i}
PG+ ) =k - LIG) =i p0) =k}

P{I(j) =i | p(j) = k} (5.21)
k—1 1
_ et _ L
1 2
We conclude that i21(j) — 5(j) < I1(j), then
1(+1) = p(j +1),1( +1))
| 2I() = p(5) + 1.1(j)),  with probability 3, (5.22)
| (2IG) = 5(j) —1,1(j)), with probability .

Assume now thab(j) = I(j) = k. Thenp(j + 1) = k + 1, and a computation analogous

to (5.21) shows that
- I(j)+1, with probability 2,
IG+1) = ' . 2 (5.23)
1(5), with probability £ .

Indeed,
P{I(j+1) = k+ 1] 1(7) = p(j) = k}
_ PG+ D) =k 1] p(G) = KIPIG+1) =k+1]p( +1) =k +1}
PULG) = k[ p(7) = k}

k+1 1
~ 1

2k k+1

= ZEEL
k
By (5.23), if 5(j) = I(j) = k, then we have

21( +1) = p(j +1),1(j + 1))

(21(j) — p(j) +1,1(j) + 1), with probability L , (5.24)
| @IG) - 5G) - L,IG)), with probability 1 .
Finally, comparing (5.19) and (5.20) to (5.22) and (5.24nptetes the proof. [ |

We now use the combinatorial technique developed for Pisnal/ — B theorem to
prove a result of Ciesielski and Taylor [CT62], which retathe occupation times of a
3-dimensional Brownian motion to exit times of one-dimensibBrownian motion. An
alternative proof based on a Feynman—Kac formula will bergim Section 7.4.

Theorem 5.35 (Ciesielski—Taylor identity)Let {W (¢): ¢t > 0} be a3-dimensional Brow-
nian motion and lef” = [ 1{|W(s)| < 1} ds be the total amount of time it spends in
the unit ball. Let{ B(¢): t > 0} be al-dimensional Brownian motion and let= min{¢ :
|B(t)| = 1}. Then we have

A (5.25)
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Remark 5.36 The statement of Theorem 5.35 remains true if, for dng 3, we let
{W(t): t > 0} be ad-dimensional Brownian motion andB(¢): ¢ > 0} be a(d — 2)-
dimensional Brownian motion, but the proof we present heseksionly ford = 3. o

Lemma 5.37Let{S(j): j = 0,...,~} be simple random walk started 8(0) = 0 and
stopped at the random time= min{j: S(j) = n}. Then{n — S(y—4): 7 =0,...,7}
has the same distribution d$(j): j = 0,..., L}, wherep(0) = 0 and L = max{j :
p(j) = n}. In particular, v and L have the same law.

Proof. Fix zp = 0 and consider a possible pathy, x1, . .., z¢) for the simple random
walk stopped aty, where|z; — z;—1| = 1foralli > 1 andz; < nforalli < ¢
with z, = n. The probability that{S(j): 7 = 0,...,~} takes this path i2 ‘. The
probability that{s(j): j = 1,..., ¢} takes the patfn — z,—;: j = 1,...,£} is2'~‘n
by Lemma 5.31. Furthermore, conditioned §¥(j): j = 1,...,¢} taking this path, the
probability that/ (¢ +1) =n + 1 is

P{p(l+1)=n+1]p(0) —n}IP’{If—i—l =n+1|p(l+1)=n+1}
n+1 1 1
2n n+1  2n

Combining these facts yields the result. [ |

Proof of Theorem 5.35. We prove the theorem in the discrete setting, namely we denot
7 =min{j > 0: |S(j)| = n}, and show that fon >
#liz1: i —1),5() €{0,...,n}} T 7. (5.26)

Dividing both sides of (5.26) by? and lettingn T oo yields (5.25), see Exercise 5.15.

As a warm up, observe that far= 1 both sides of (5.26) are identically and forn = 2
each side of (5.26) is a geometric random variable with pateng, multiplied by 2. For
the full argument lety = min{j: S(j) = n} as in Lemma 5.37, which implies that

#{ie{l,...,7}: S(i—1),5() €{0,...,n}}
S #{i=1: (i - 1), 4(i) € {0,...,n}}.

But deleting the negative excursions between two pointshithv{S(i): i = 0,1,...}
is zero gives a reflected simple random walk with the law{|f(¢)|: « = 0,1,...} and
therefore

#{ie{l,...,7}: S(i—1),5() € {0,...,n}}
Loufie{t,..., 7} [S(i—1)|,8()| € {0,...,n}} = 7,

as required to prove (5.26). [ |

In a similar spirit the following theorem relates occupattomes and exit times for a stan-
dard linear Brownian motion.
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Theorem 5.38Let {B(t): ¢ > 0} be a standard linear Brownian motion and, fer> 0,
let7, = inf{t > 0: B(t) = a} ando, = inf{t > 0: |B(t)| = a}. Then

/ 1{0 < B(t) <a}dt & o,
0

The key to the proof is the fact, due to David Williams, thahoxing the negative excur-
sions from a standard linear Brownian motigB(s): s > 0} leads to a reflected Brownian
motion{|B(s)|: s = 0}.

Lemma 5.39Let s(t) = fot 1{B(s) > 0}ds and lett(s) = inf{t > 0: s(t) > s} its
right-continuous inverse. Then

{B(t(s)): s >0} £ {|B(s)|: s > 0}.

Proof. Let{S(n): n=0,1,...} beasimple random walk and considé&f:(s): s > 0}
defined as in Donsker’s invariance principle. Removing tbgative excursions from the
simple random walk leads to a reflected simple random wadkefore

{Sx(t(s,S5)): s >0} 4 {155 (s)]: s = 0}, (5.27)

wheres(t, f) = [} 1{f(s) > 0} ds andt(s, f) = inf{t > 0: s(t, f) > s}. For everyt >
0 the mappingf — f(¢(-, f)) is continuous inf € CJ0, t] with respect to the supremum
norm provided that

hf(()lﬁ{s €0,t]: —e< f(s) <e} =0,

a property which Brownian motion has almost surely. HencadRer’s invariance princi-
ple gives the claim by letting — oo in (5.27). [ |

Proof of Theorem 5.38. We obviously have that
/ "1{0 < B(s) < a} ds = inf{s > 0: B(t(s)) = a}.
0
By Lemma 5.39 we further have

inf{s > 0: B(t(s)) = a} 4 inf{s > 0: |B(s)| = a} = g4,

which implies the result. [

Exercises
Exercise 5.18 Suppose B(t): t > 0} is a standard linear Brownian motion. Show that

i B(t) — B(n)
imsup sup —————=
n10  n<t<nt+l V2logn

Exercise 5.28 Derive from Theorem 5.1 that, for&adimensional Brownian motion,

Bt
lim sup 1B =1 almost surely.

t1oc V2tloglogt o

=1 almost surely.
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Exercise 5.38 Supposg B(t): t > 0} is a linear Brownian motion andthe first hitting
time of levell. Show that, almost surely,

lim sup B(r) — B(r 1) <

ho \/2hloglog(1/h)

Exercise 5.48 Let {Sy: k > 0} be a simple, symmetric random walk on the integers.
Show that there are positive consta@tsandC, such that

& <P{S;>0forall 1<i<n}< 53 foralln > 1.

N vn
Hint. For simple random walk geflection principleholds in quite the same way as for
Brownian motion. The key to the proof is to verify that

P{S; >0 forall 1<i<n}=P{S, >0} —-P{S! < —2}

whereS;: is the random walk reflected at the stopping timg = min{k: S = —1}.

Exercise 5.58 Prove that, for any random walS; : j > 0} on the line,

Zzzopkpn—k
[n/2] 2
k=0 Pk

)

P{So,...,S, has apoint of increage< 2
wherepy, ..., p, are asin (5.4).

Exercise 5.6. An eventA c R¢ is anincreasing eventif,
(T1y. ey Ti1, T4y Ty 1, - - - Tq) € Aandz; > z;
— (T1y ooy Tim1, Tiy Tig1,. .. Ta) € A.
If AandB are increasing events, show that
P(AN B) > P(A)P(B),
i.e. A andB are positively correlated.
Exercise 5.78 Show that we can obtain a lower bound on the probability thainalom

walk has a point of increase that differs from the upper boomlgt by a constant factor.
More precisely, for any random walk on the line,

ZZ:O PkPn—k

P{So, ..., S, has apoint of increage> s
2 Z/Lc:/o : P%

9

wherepy, . ..,p, are asin (5.4).

Exercise 5.8. Let {B(t): 0 < t < 1} be alinear Brownian motion.
(a) Use the Cameron—Martin theorem to show that, for Any DJ0, 1], the process
{Bt)+ F(t): 0 <t <1}

almost surely has no point of increase.



148 Brownian motion and random walk

(b) Find aF € C[0,1] such tha{ B(t) + F(t): 0 < t < 1} has a point of increase.

Exercise 5.9.SupposeXy, ..., X,, are independent and identically distributed and con-
sider their ordered relabelling given B,y > X5y > ... > X,y . Show that

E[X ) X)) = E[X5|E[X (5],
provided these expectations are well-defined.
Exercise 5.108 Given a centred random variabkg, show that there exist centred random

variablesX,, taking only finitely many values, such that, converges toX in law and,
for ¥,,(z) = E[X,, | X,, > ], the embedding stopping times

T = inf{t > 0: M(t) > U, (B(t))}

converge almost surely ta Infer thatB(7) has the same law a8, andE[r] = E[X?2].

Exercise 5.11§ Suppose tha{s,,: n > 0} is a random walk with mean zero and positive,
finite variance. Defind.S(¢): 0 < ¢ < 1} as in Donsker’s invariance principle. Show
that

L{t€0,1]: Si(t) >0} — L #{k e {1,...,n}: S >0}
converges to zero in probability.
Exercise 5.128 Let {B(t): t > 0} be a standard linear Brownian motion amd> 0.

Define stopping times, = inf{¢t > 0: B(t) = a}, 750 = inf{t > 7,: B(t) =0} and a
random time

oo =sup{0 <t < 7,: B(t) =0}.
The procesge(t): 0 < ¢ < 7¢} given by
e(t)=B(og+t), 7°=T40— 00
is aBrownian excursiorwonditioned to hit levet, andr* is called itslifetime

(a) For any0 < b < a denote byr¢ the first hitting time of leveb by the excur-
sion{e(t): 0 < t < 7°}. Show that, for0 < b < q, the procesqe(ry +
t): 0 < t < 75— 75} is a Brownian motion conditioned to hit level before
level zero.

(b) Show that the time-reversed excursiprii7¢ —t): 0 < t < 7.} is also a Brownian
excursion conditioned to hit level

Hint. For (b) show an analogous statement for simple random walkugae Donsker’s
invariance principle to transfer the result to the Browmaation case.
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Exercise 5.13Letp(z, y) be the transition matrix of an irreducible Markov ch&iK; : j =
0,1,...} on afinite state spadé. Fora,b € V, consider the hitting time

T =T, :min{j >0: X, ¢ {a,b}}

and writeH () = P,{X7 = b}. Show that the chaifX;: j = 0,1,...} conditioned to
reachb beforea and absorbed athas the same law as the Markov chéif): j =0,1,...}
onV \ {a} with transition probabilities

_ _ H(y)

M%w—p@whﬂa'fmx#b

The chain{Y;: j = 0,1,...} is called theDoob H-transform of the original chain
{X;:7=0,1,...}.

Exercise 5.14Let {p(t): t > 0} be a three-dimensional Bessel process.

(@) Verify that the proces$X (t): t > 0} given by X (¢) = p(t)* — 6t2p(t)? + 3p(t)?
is a martingale.
(b) Use (a) to derive a tighter bound f¥ar (7, — 7,,—1) in Lemma 5.32.

Exercise 5.15.Let {S(j): j = 0,1,...} be a simple random walk on the integers started
atS(0) =0, and{p(j): j =0,1,...} be a simple random walk di conditioned to avoid
zero, withp(0) = 0.

(@) Show that, as T oo,
. . d_ .
- min {j: [S(j)| =n} — min{t > 0: |B(t)| = 1},
where{B(t): ¢t > 0} is al-dimensional Brownian motion.

(b) Show that, as 1 oo,
1 oo
1= D0 € (0t} - [Taw) < s
0

where{W (¢): t > 0} is a3-dimensional Brownian motion.

Notes and comments

Historically, the law of the iterated logarithm was first ped for simple random walk by
Khinchin [Kh23, Kh24] and later generalised to other randeaiks by Kolmogorov [Ko29]
and Hartman and Wintner [HWA41]. The original arguments ofrk@jorov, Hartman and
Wintner were extremely difficult, and a lot of authors havecsi provided more accessible
proofs, see, for example, de Acosta [dA83]. For Brownianiamthe law of the iterated
logarithm is also due to Khinchin [Kh33]. The idea of usingadding arguments to trans-
fer the result from the Brownian motion to the random walkecasdue to Strassen [St64].
For a survey of laws of the iterated logarithm, see Binghai@gB



150 Brownian motion and random walk

An extension of the law of the iterated logarithm is Strasskemv, which is first proved
in [St64]. If a standard Brownian motion on the inter{@lt] is rescaled by a factar/¢
in time and a factok/2t log log(1/t) in space, the set of limit points 8[0, 1] are exactly
the functionsf with f(0) = 0 and fol(f’(t))2 dt < 1. Strassen’s law also explains the
approximate form of the curve in the right half of Figure 5Any function in this class
with f(1) = 1 satisfies

1> /Ol(f'(t))z dt > (/Olf’(t)dt)2 =1,

which implies thatf’(t) is constant and thug(¢) = ¢ for all ¢ € (0,1). Therefore, for
larget, the Brownian path conditioned on ending near to its uppeelepe resembles a
straight line in the sup-norm, as can be seen in Figure 5.1.

The nonincrease phenomenon, which is described in TheorEmttolds for arbitrary
symmetric random walks, and can thus be viewed as a combiglatonsequence of fluc-
tuations in random sums. Indeed, our argument shows thisbjesto a generalisation of
Lemma 5.8. The latter result holds if the incremekitshave a symmetric distribution, or if
the increments have mean zero and finite variance, see eipr&Xl11.8 in Feller [Fe66].

Dvoretzky, Erds and Kakutani [DEK61] were the first to prove that Browniaotion
almost surely has no local points of increase. Knight [Kn&idl Berman [Be83] noted
that this follows from properties of the local time of Browanimotion; direct proofs were
given by Adelman [Ad85] and Burdzy [Bu90]. The proof we giggaken from [Pe96c].

A higher-dimensional analogue of this question is whetloeiBrownian motion in the
plane, there exists a line such that the Brownian motion, gatijected onto that line, has
a global point of increase, or equivalently whether the Brian motion path admits cut
lines. We say a lind is acut linefor the Brownian motion if, for some&, € (0, 1) with
B(tg) € ¢, the pointsB(t) lie on one side of for all ¢t € [0,ty) and on the other side
of ¢ for all t € (o, 1]. It was proved by Bass and Burdzy [BB97] that planar Brownian
motion almost surely doesot have cut lines. Burdzy [Bu89], with a correction to the
proof in [Bu95], however showed that Brownian motion in tHarng almost surely does
havecut points which are points3(¢) such that the Brownian motion path with the point
B(t) removed is disconnected. It was conjectured that the Hafistimension of the set
of cut points is3/4. This conjecture has recently been proved by Lawler, Schramd
Werner [LSWO01c], see also the discussion in our appendixptehd 1.

For Brownian motion in three dimensions, there almost guggist cut planes, where
we sayP is acut planeif for somet, the set{B(s): 0 < s < t} lies on one side of
the plane and the s¢fB(s): 1 > s > t} on the other side. This result, originally due to
Pemantle, is also described in Bass and Burdzy [BB97]. Aaraemt of Evans, which is
closely related to material we discuss in the final sectioGludpter 10, shows that the set
of times corresponding to cut planes has Hausdorff dimersioo.
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Pemantle [Pe97] has shown that the range of planar Brown@imalmost surely
does not cover any straight line segment. Which curves canvaiah cannot be covered
by a Brownian motion path is, in general, an open questioso Ahknown is the minimal
Hausdorff dimension of curves contained in the range ofgl&rownian motion, though
it is known that it contains a curve of Hausdorff dimensio, #¥amely its outer boundary,
see Lawler, Schramm and Werner [LSWO01c] and Chapter 11.

Harris’ inequality was discovered by Harris [Ha60] and sogknown a$-KG inequal-
ity in recognition of the work of Fortuin, Kasteleyn and GiniljfgKG71] who extended
the original inequality beyond the case of product measu@zsrelation inequalities’ like
these play an extremely important réle in percolation thewod spatial statistical physics.
Exercise 5.9 indicates the important réle of this idea initlvestigation of order statistics,
see Lehmann [Le66] and Bickel [Bi67] for further discussamd applications.

The Skorokhod embedding problem is a classic, which s#iti$eto some attractive
research. The first embedding theorem is due to Skorokhdb|SKhe Russian original
of this work appeared in 1961 and the Dubins embedding, whichave presented is not
much younger, see [Du68]. Our presentation, based on theoidginary splitting martin-
gales, follows Ex. 11.7, p 34 in Neveu [Ne75] and we thank Jiitman for directing us to
this reference. Another classic embedding technique it &Rembedding, see [R069]. The
Azéma-Yor embedding was first described in [AY79], but wéokwIMeilijson [Me83] in
the proof. One of the attractive features of the Azéma-Yodbeahding is that, among all
stopping timed” with ET" < oo which represent a given random variable it maximises
themaxo<:<r B(t). Generalisation of the embedding problem to more genesakek of
probability laws requires different forms of minimalityrfthe embedding stopping time, or
more general processes in which one embeds. A survey oitulegelopments is [Ob04].

The idea of an invariance principle that allows to transifeititheorems from special
cases to general random walks can be traced t6Eathd Kac [EK46, EK47]. The first
general result of this nature is due to Donsker [Do51] folfayan idea of Doob [Do49].
Our treatment of Donsker’s invariance principle is closé¢hiat of Freedman [Fr83]. Be-
sides the embedding technique there is also a popular atitegrproof, which goes back
to Prohorov [Pr56]. Suppose that a subsequend&pf n > 1} converges in distribution
to a limit X. This limit is a continuous random function, which is easien to have sta-
tionary, independent increments, which have expectatoa and variance equal to their
length. By a general result this implies thatis a Brownian motion. So Brownian motion
is the only possible limit point of the sequenc®: : n > 1}. The difficult part of this proof
is now to show that every subsequencd §f : n > 1} has a convergent subsubsequence,
thetightness property

Many interesting applications and extensions of Donskevariance principle can be
found in [Bi99]. Central limit theorems also hold in the cexitof martingales, see Hall
and Heyde [HH80] for an extensive treatment of this subjéat.important class of ex-
tensions of Donsker’s invariance principle are the stropgreximation theorems which
were provided by Skorokhod [Sk65] and Strassen [St64]. é&sétresults the Brownian
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motion and the random walk are constructed on the same gtitypapace in such a way

that they are close almost surely. An optimal result in tlisdion is the famous paper of
Komlés, Major and Tusnady [KMT75]. For an exposition of thebrk and applications,

see [CR81], and an alternative, more transparent, treawhtre simple random walk case
is given in [ChO7].

The arcsine laws for Brownian motion were first proved by LéwyjlLe39, Le48].
The proof of the first law, which we give here, follows Kallemg [Ka02]. This law can
also be proved by a direct calculation, which however ish$ljglonger, see for example
Durrett [Du95]. Our proof of the second arcsine law goes ltaeh idea of Baxter [Ba62].
Arcsine laws also hold for symmetric random variables witheny moment assumptions,
see Feller [Fe66]. Some more recent developments relataddme laws can be found in
Pitman and Yor [PY92] and [PYO03].

Pitman's2M — B theorem, often also callezi/ — X theorem, is from [Pi75]. We
follow Pitman’s original approach with some small modifioas. A closely related area
is the subject of path decompositions due to Williams, se(WWi74]. Lemma 5.39
offers a first glimpse: Removing the negative excursionmftbe path of a Brownian
motion leads to a reflected Brownian motion. A nice treatntérRitman’s theorem and
related path decomposition results is Le Gall [LG86¢]. Hbmat al. [HMOO01] discuss
a generalisation of the discrete variant, whose proof idbas part on a reversibility
argument that has a queueing interpretation. Furtherfgignt generalisations lead to
interesting connections to families of non-colliding Bruan motions and eventually to
random matrix theory, see e.g. Grabiner [Gr99]. The protiiefCiesielski—Taylor identity
is adapted from Pitman’s paper [Pi75], but the idea goes tm@¥illiams [Wi70].
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Brownian local time

In this chapter we focus on linear Brownian motion and adsitlies question how to mea-
sure the amount of time spent by a Brownian path at a given. li&d&we already know
from Theorem 3.26 that the occupation times up to tiraee absolutely continuous mea-
sures, their densities are a viable measure for the timet spidavel e during the time
interval [0,¢]. We shall show that these densities make up a continuousmarfie|d
{L(t): a € R, t > 0}, which is called the Brownian local time. Interesting infa-
tion about the distribution of this process is contained thesorem of Lévy (studying it as
function of time) and the Ray—Knight theorem (studying ifasction of the level). We
finally show how to interpret local time as a family of Haudtlareasures.

6.1 The local time at zero

How can we measure the amount of time spent by a standard Brewnian motion
{B(t): t > 0} at zero? We have already seen that, almost surely, the 2drasEausdorff
dimensionl/2. Moreover, by Exercise 4.14, thg'2-dimensional Hausdorff measure of
the zero set is zero, so Hausdorff measure as defined so famdbgive an interesting
answer.

We approach this problem by counting the number of downergsf a nested sequence
of intervals decreasing to zero. More precisely, for a lirBr@wnian motior{ B(t): t > 0}
with arbitrary starting point, given < b, we define stopping timeg = 0 and, forj > 1,

oj =inf {t > 7;_1: B(t) = b}, 7j =inf {t > 0;: B(t) = a}. (6.1)

We call the random functions
BY: (0,7, — o] — R, BY(s) = B(oj +s)
the jth downcrossing ofa, b]. For everyt > 0 we denote by
D(a,b,t) =max {j € N: 7; <t}

the number ofdowncrossing®f the interval[a, b] before timet. Note thatD(a,b,t) is
almost surely finite by the uniform continuity of Brownian titm on the compact inter-
val [0, t].

153
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Theorem 6.1 (Downcrossing representation of the local timat zero) There exists a
stochastic proces§L(t): ¢ > 0} called thelocal time at zerosuch that for all sequences
a, 7 0andb, | 0witha, < b,, almost surely,

lim 2(b, — an) D(an,bn,t) = L(t) foreveryt > 0.

n—oo

Moreover, this process is almost surely locajyHo6lder continuous for any < 1/2.

Remark 6.2 To see why the normalisation in this formula is plausibleatieftom Theo-
rem 5.38 that the time spent in the interjal, b,,] during a full downcrossing has the same
law as the first exit time fronfu,,, 2b,, — a,,] by a Brownian motion started it},, which

by Theorem 2.49 has a mean @f, — a,,). By the law of large numbers the total time
spent in[a,, b,] is therefore approximate®(b,, — a,,)? D(a,, by, t) taking into account
that about the same time is spent in up- and downcrossinggefdreL(¢) plays the role
of the density at zero of the occupation measure of Browniatiam. o

In the following we will use two types of both geometric dibtitions: X is geometrically
distributed on{1, 2, ...} with success parametgr(or, equivalently, mearli)) if

P{X =k} =p(1l—p)ltforke{1,2,...}.
Similarly, X is geometrically distributed of0, 1, 2, ...} with success parametgiif
P{X =k} =p(1—p)rforke{0,1,2,...}.
If the type is not clear from the context we will always stdte tlomain for clarification.

The key ingredient of the proof of Theorem 6.1 is the follogvfact.

Lemma 6.3Suppose that < m < b < cand let{B(¢): t > 0} be a linear Brownian
motion, and!" the first time when it hits level Let

e D be the number of downcrossings of the inteffuab] completed at timé&",
e D, be the number of downcrossings of the interﬁualm] completed at timé&",

e D, be the number of downcrossings of the interjval b] completed at timé".

There exist two independent sequen&gsXy, ... andYy, Yy, ... of independent nonneg-
ative random variables, which are also independenbepfuch that forj > 1 the random
variables X; are geometric on{1,2...} with mean(b — a)/(m — a) and the random
variablesY; are geometric oq1,2 ...} with mean(b — a)/(b — m), and

D D
D1:X0+ZX]‘ and Du:YO—FZ}/J‘.
j=1 j=1

Proof.  Recall the definition of the stopping times, 7; from (6.1). Forj > 0, define
the j** downcrossings, resp. upcrossingsjab] by

B”:[0,7 —oj] =R, B[’(s) = Bloj +5),if j > 1,
BY:[0,0511 — 7] =R, BY(s) = B(1j + s).
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m

Tj Tj Oj+1

Fig. 6.1. The downcrossing @i, b] contains one downcrossing faf, m] and the following upcross-
ing of [a, b] contains one further downcrossing|of m].

By the strong Markov property all these pieces of the Browipath are independent. Note
that D depends only on the family3|”: j > 1) of downcrossings.

First look at D, and denote by, the number of downcrossings pf, m] before the first
downcrossing ofa, b]. Thej** downcrossing ofa, b] contains exactly one downcrossing
of [a, m] and thej*" upcrossing ofa, b] contains a random numbéf; — 1 of downcross-
ings of [a, m], which, by Theorem 2.49, satisfies

P{X; =k} = (7:__;) (I;__?Z)kil for everyk € {1,...}.

In other wordsX ; is geometrically distributed ofil, 2, . . .} with success parameter given
by (m — a)/(b— a).

Secondook at D,, and denote by, the number of downcrossings pf, b] after the last
downcrossing ofa,b]. No downcrossings ofm, b] can occur during an upcrossing of
[a,b]. Fix aj and look at the downcrossin@j"’ : [0,00) — R formally extended to have
infinite lifetime by attaching an independent Brownian rootiat the endpoint. Define
stopping times, = 0 and, fori > 1,
7~—i = inf {t > 5'1'712 Bi])(t) = m}, &z = inf {t > ’7~'Z BY)(t) = b}
This subdivides the path difj” into downcrossing periods;_1, 7;], and upcrossing peri-
ods|7;, ;] of [m, b], such that the pieces
B{"): 0,7 —6i1] =R, By)(s) = B(6i—1 + ), fori >0,
B [0,6:—7] =R, Bfi(s) = B(fi +s), fori > 1,

are all independent. As > b the first hitting time of levek must lie in a downcrossing
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G)
By

Y|
i

9j i Tj+1

Fig. 6.2. The downcrossing ¢&, b] contains three downcrossings [of, b] and the following up-
crossing of{a, b] contains no further downcrossings|ef, b].

period, while the lifetimer; — o; of B|” expires when the lower boundaayis hit for
the first time, which can only occur during an upcrossingqeeriBy Theorem 2.49 the
probability thata is hit during any upcrossing period equéls— m) /(b — a).

Hence the number of downcrossings[of, b] during the;** downcrossing ofa, b] is a
geometric random variabl€; on {1,2,...} with (success) parametés — m)/(b — a),
which completes the proof. [ |

For the proof of Theorem 6.1 we first prove the convergencéhtcase when the Brown-
ian motion is stopped at the tiffe = T, when it first reaches some level> b,. This has
the advantage that there cannot be any uncompleted uptyessi

Lemma 6.4 For any two sequences, T 0 andb, | 0 with a,, < b,, the discrete time
stochastic proces§2(b,, — a,,) D(an,b,,T): n € N} is a submartingale with respect to
the natural filtration(F,,: n € N).

Proof. We may assume that, for eaghwe have

either (1) a, = an+1 or (2)b, =byy1,

which is no loss of generality, as we may replace a step whatedy andb,, are changed
by two steps, where only one is changed at a time. The origiglience is then a subse-
guence of the modified one and inherits the submartingalespty

Now fix n andfirst assume that we are in case @) = a,1. By Lemma 6.3 forDy,
the total numbeD(a,,, b,,1+1,T) of downcrossings ofa,,, b,+1] given 7, is the sum of
D(an, by, T) independent geometric random variables with paraniétern, — a,,)/ (b, —
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an) plus a nonnegative contribution. Hence,
E[(bn—&-l —apn) D(an,byy1,T) ’ }—n] = (by — an) D(an, bn, T),

which is the submartingale property (for thth step).

Secondassume that we are in case §2)= b,,+1. Then Lemma 6.3 foD,, shows that the
number of downcrossings ¢, 1, b,,] givenF,, is the sum ofD(a,, b,,T) independent
geometric random variables with parametgt — a,+1)/(b, — a,) plus a nonnegative
contribution. Hence

E[(bn - an+1) D<an+17bn7T) ’-7:71] 2 (bn - an) D(anabnaT)v

and together with the first case this establishes {pét, — a,,) D(an,b,,T): n € N} is
a submartingale with respect to its natural filtration. [ |

Lemma 6.5For any two sequences, T 0 andb,, | 0 with a,, < b,, the limit
L(Ty) := nlLH;o 2(by, — an) D(an, by, Tp) (6.2)
exists almost surely. It is not zero and does not depend ochibiee of sequences.

Proof.  Observe thaD(a,,, b,,T;) is a geometric random variable ¢f, 1, ...} with
paramete(b,, — a,,)/(b — a,). Recall that the variance of a geometric random variable on
{0,1,...} with parametep is (1 — p)/p?, and so its second moment is boundedpy?.
Hence

]E[4(bn - an)2 D(an7 b7u Tb)2] g 8 (b - an)27

and thus the submartingale in Lemma 6.4.%bounded. By the submartingale conver-
gence theorem, see Theorem 12.21 in the appendix, the limit

lim 2(bn — Cln) D(ana bm Tb)
nToo

exists almost surely, and by Theorem 12.28 alsb3rensuring that the limit is nonzero.
Finally, note that the limit does not depend on the choicehefdequence,, T 0 and
b, | 0 because if it did, then given two sequences with differenit in (6.2) we could
construct a sequence of intervals alternating betweendbeesces, for which the limit
in (6.2) would not exist. [ |

Lemma 6.6For any fixed time > 0, almost surely, the limit

L(t) := lim 2(b, — an) D(an,bp,t) exists.

n—oo

Proof. We define an auxiliary Brownian motigfB;(s): s > 0} by B;(s) = B(t + s).
For any integeb > b, we denote byD;(a,, b,, T;) the number of downcrossings of the
interval[a,,, b,] by the auxiliary Brownian motion before it hits Then, almost surely,

Ly(Ty) = 71LITICI>IO2(b" — an) Di(an, by, Tp),
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exists by the previous lemma. Giveérn> 0 we fix a Brownian path such that this limit
exists for all integers > b;. Pickd so large thafl;, > t. Define

L(t) := L(Ty) — L(Ty) -
To show that this is the required limit, observe that
D(an7 bn; Tb) - Dt(ana bna 111)) -1 < D(avu bny t) < D(an7 bny Tb) - Dt(an7 bn; Tb)v

where the correction-1 on the left hand side arises from the possibility thatterrupts
a downcrossing. Multiplying b®(b,, — a,,) and taking a limit gived.(T;) — L+(T3) for
both bounds, proving convergence. [ |

We now have to study the dependencd.¢f) on the timet in more detail. To simplify the
notation we write

I,(s,t) = 2(b, — ayn) (D(an, bn,t) — D(ay, by, 8)) forall0 <s<t.

The following lemma contains a probability estimate, whigbufficient to get the conver-
gence of the downcrossing numbers jointly for all times anelstablish Holder continuity.

Lemma 6.7Lety < 1/2 and0 < & < (1 — 2v)/3. Then, forallt > 0and0 < h < 1, we
have

P{L(t+h) — L(t) > K} <2 exp{—3 h™°}.
Proof. As, by Fatou’s lemma,
P{L(t+h)—L(t) > h"} = P{liminf I,(t,t+h) > h"'} < liminf P{I,(¢,t+h) > b7 }

we can focus on estimatirig{ I,, (¢, ¢ + h) > h"} for fixed largen. It suffices to estimate
P,{I,(0,h) > Rh7} uniformly for all z € R. This probability is clearly maximal when
x = by, SO we may assume this. LB{ = inf{s > 0: B(s) = b, +h(179)/2} and observe
that

{I,,(0,h) > K} C {I,(0,T}) > h"} U{T), < h}.

The number of downcrossings 6f,,, b,] during the period beford}, is geometrically
distributed on{0, 1, ...} with mean(b,, — a,,)"'h(1=%)/2 and thus

p-e)/2 L2t am 77
bn —anp + h(lig)/2)

" exp i - %hV*%JF%} <exp{—-3n°}.

Py, {1,(0,Ty) > h'} < (

With {W(s): s > 0} denoting a standard linear Brownian motion,

IPb"{Th < h} = IP’{ max W(s) > h(l_E)/Q} < 4/ WhQ_E exp{ — %h_s}

0<s<h

where we have used Remark 2.22 in the last step. The redolvfoby adding the last two
displayed formulas. [ |
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Lemma 6.8Almost surely,

L(t) := lim 2(b, — an) D(an,bn,t)

n—oo

exists for every > 0.

Proof. It suffices to prove the simultaneous convergence fdb &llt < 1. We define a
countable set of gridpoints

G=J Gmufl}, forG,={L:kefo,...,m—1}}

meN

and show that the stated convergence holds on the event

Ey = () {L(t) = lim 2(b, — a,) D(ay, by, t) exists}
teg

n () () {Zt+2%) - L) < (1/m)7}.

m>M tEG,

which, by choosing\/ suitably, has probability arbitrarily close to one by theypous two
lemmas. Given any € [0,1) and a largen we findt;,t2 € G,,, with to — t; = % and
t € [t1,t2]. We obviously have

2(bp, — an) D(an, bn, t1) < 2(byy — an) D(ap, by, t) < 2(by, — an) D(an, by, t2).

Both bounds converge ofiy,, and the difference of the limits i5(¢2) — L(t1), which is
bounded byn~" and thus can be made arbitrarily small by choosing a latge [ |

Lemma 6.9 For v < 1, almost surely, the procedd.(t): t > 0} is locally y-Holder
continuous.

Proof. It suffices to look atl < ¢ < 1. We use the notation of the proof of the
previous lemma and show thatHolder continuity holds on the set constructed there.
Indeed, whenever < s <t < 1 andt — s < 1/M we pickm > M such that

1

1
mrr St=s <5

We taket; < switht; € G,, ands — t1 < 1/m, andty > ¢ with t, € G, and
to —t < 1/m. Note thatt; — ¢t; < 2/m by construction and hence,

L(t) = L(s) < L(ta) — L(ty) < 2(1/m)" < 2(ZEL) (£ — 57,

m

The result follows as the fraction on the right is bounde@ by [ |

This completes the proof of the downcrossing represemtalibeorem 6.1. It is easy to
see from this representation that, almost surely, the lboal at zero increases only on the
zero set of the Brownian motion, see Exercise 6.1.
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Observe that the increasing procégst): ¢t > 0} is nota Markov process. Heuristically,
the size of the incremerii(t + k) — L(t) depends on the position of the first zero of the
Brownian motion after time, which is strongly dependent on the position of the last zero
before timet. The last zero however is the position of the last point oféase of the local
time process before timg and therefore the pathL(s): 0 < s < t} contains relevant
information beyond its endpoint.

Nevertheless, we can describe the law of the local time gmdaanks to the following
famous theorem of Paul Lévy, which describes the law of thalltme at zero in terms of
the maximum process of Brownian motion. It opens the doomierfiesults on the local
time at zero, like those presented in Section 6.4 of thistemap

Theorem 6.10 (Lévy)The local time at zerd L(¢): ¢ > 0} and the maximum process
{M(t): t = 0} of a standard linear Brownian motion have the same distrdsut

Remark 6.11In fact, a similar proof shows that the proces§es(¢), |B(t)|): ¢ > 0} and
{(M(t),M(t) — B(t)): t = 0} have the same distribution. Details are deferred to Exer-
cise 6.2 as we present a different argument for this in Theat88. See also Exercise 6.5
for an alternative approach, which goes back to Lévy himself o

The proof of Theorem 6.10 uses the simple random walk emlokiddiae Brownian mo-
tion, a technique which we will exploit extensively. Defirtefging timesr, := 7" := 0
and

7 =7 i=inf {t > 71 |[B(t) — B(re—1)| = 27"}, fork>1.
Thenth embedded random wa{kX,”: k = 1,2,...} is defined by
Xy = X,i") = 2”B(T,i")) .
The length of the embedded random walk is
N := N™(t) := max{k € N: 7, < t},

which is easily seen to be independent of the actual walk.
Lemma 6.12For everyt > 0, almost surely,lim 272" N (t) = t.

Proof. First note tha{¢,": k = 1,2,...} defined by
b im g0 =~y

is a sequence of independent random variables, for eadBy Theorem 2.49 the mean
of &, is 272" and its variance is, by Brownian scaling, equat?c*” for some constant
¢ > 0. (See, for example, Exercise 2.15 for instructions how td fire constant.) Define

’—2271 t'l

ST = Y &
k=1
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ThenES™(t) = [22"t]272" — t andVar(S™ (t)) = c27*"[2?"{], hence
EY " (S™(t) —ES™(1)” < 0.
n=1

We infer that, almost surelyim,, ., S™ (t) = t. For fixede > 0, we pickn, large so
that

St —e) <t < S™(t+e) foralln > ng.

The sum ovet;, up to N™(¢) + 1 is at least, by definition, and hence we gat™ (¢) +
1 > [22(t — €)]. Conversely, the sum ovel, up to N™(¢) is at mostt and hence
N@(t) < [22"(t + €)]. The result follows as > 0 was arbitrary. ]

Lemma 6.13Almost surely, for every > 0,

liTm 27" #{k e {1,...,N™(®)} : | Xp—1| =0,|Xp| =1} = L(¢)

Proof. By Theorem 6.1 applied to the sequenags= —2~" andb,, = 0 we have

liTm 27" #{ke{l,....N”(t)} : Xpu1 =0,X = -1} = 3L(1).

Applying Theorem 6.1 to the sequenegs= 0 andb,, = 2~ " we get
liTm 27" #{ke{l,...,N™(t)} : Xpo1=1,X, =0} = 3L(t).

As#{k < N: X;_1 = 1,X;, =0} and#{k < N: X}_; = 0, X = 1} differ by no

more than one, the result follows by adding up the two disgliaprmulas. [ |
)r A
3 3
Yi = My, — X,
2+
1r
k k
> 0
2t : :
N (t) N (1)

Fig. 6.3. On the left an embedded random wak; : & > 0} together with its maximum process
{My: k > 0}. On the right the associated difference procg€ss: £ > 0} defined byY, =
My — Xg.
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We define the maximum proce¢d/,”: k = 1,2,...} associated with the embedded
random walk by

Mk} = M]i") — maX{XJ(-n)Z j € {0,,k}} .

Then the proces§Y, ™ : k = 1,2,...} defined byy}, := Y, := M — X, is a Markov
chain with statespac, 1, 2, . ..} and the following transition mechanism

o if jAO0thenP{Y,y1 =j+1|Yp =4} =3 =P{Yey1=7—1|Vs =},
e P{V41=0[Y, =0} =1 =P{Vp4; =1|Y, =0} .
One can recover the maximum procéddy: k = 1,2,...} from {Y,: k = 1,2,...} by
counting the number of flat steps
My=#{je{l,...,k}:Y;=Y,_1}.

Hence we obtain, asymptotically, the maximum process oBtlog/nian motion as a limit
of the number of flat steps if;\"”: k£ =1,2,...}.

Lemma 6.14For any timet > 0, almost surely,
M(t) = TlliTrglo 27 #{je{l,... ., N"@®)}: Y/ =Y" }.
Proof. Note that#{;j € {1,...,N™(t)}: Y; = Y;_, } is the maximum of the random

walk {X;: k = 1,2,..., N™(¢)} over its entire length. This maximum, multiplied by
2, differs from M (¢) by no more thar2~", and this completes the argument. [ |

Removing the flat steps in the procd3§™: j = 1,2,...} we obtaina procesy; ™ : k =
1,2,...}, which has the same law &5X|: £k = 1,2,...}. By Lemma 6.13 we therefore
have the convergence in distribution,ra$ oo,

2" {k e {1,...,N™ ()} : V" = 0,7 =1} <L L(1), (6.3)

jointly for any finite set of times.

Lemma 6.15AImost surely,
lim 27 (#0j € 1, . N} V2, = V)
—#{ke{l,... . N™(@®)} : V2 =0, = 1}) —0.

Proof. First note that whedY;: j = 1,2,...} returns to zero for théth time, the
number of steps before it moves to one is given by a randorablaZ; with distribution

P{Z =k} =2""T1fork=0,1,....

Denoting byZ, the number of steps before it moves initially, the randoneddes”z,, 71, . ..
are independent and independent of the pro¢®ss : k = 1,2,...}. Let

AW =#{jefl,...,N™(@)}: Y =1, =0}
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R

1 /\ s
: A

<> <> - N () — Moy SM N 1y
N (1) . :

Fig. 6.4. On the left a sample of the proces§Es: 0 < j < N (¢)}. On the right the associated

{Yi: 0 < k < N™(t)}, which is obtained by removing the two flat steps and extending the path to
its original length.

be the total number of returns to zero before tivie®’ (¢). With a possible small modifi-
cation of the final valu& 4., we get, almost surely, as 1 oo,

27" (# {je{l,....N®@)}: v =Yy}

—#l e L NOW) Y =070 = 1))

Al Al
—n —n n 1
i=0 1=0

because the first factor converges by Lemma 6.13 and the ddxothe law of large
numbers, irrespective of the actual valuef.,. To study the effect of the removal
of the flat pieces, recall that almost surely the length”(¢) of the walk is of order
227¢, by Lemma 6.12, and the number of flat piece?Mgﬂm(t), which is of order2™,
by Lemma 6.14. Hence, for all> 0, if n is large enough,

N (t =€) + My gy < N™(t).
We infer from this that
9 (#{j €{l,..., NP0} : Y = 0,7 =1}
—#{j e {1, NP} Y =0,y = 1})
S2#{jE{NPV(t—e)+1,... ,NO@t)} : Y =0, =1},
and the right hand side converges almost surely to a randdable, which has the law of

L(t) — L(t — €) and hence can be made arbitrarily small by choice of0. ]

Proof of Theorem 6.10. Note that both processes in Theorem 6.10 are continuous, so
that it suffices to compare their finite dimensional disttidos. Equality of these follows
directly by combining Lemma 6.14, Equation (6.3) and Lemnmi&6 [ |
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Theorem 6.16 (Occupation time representation of the localine at zero) For all se-
quences:,, T 0andb,, | 0 with a,, < b,, almost surely,

lim
n—oo

t
/ {a, < B(s) <b,}ds = L(t) foreveryt> 0.
0

n — On

The proof is prepared by the following lemma, which is a dirsansequence of Theo-
rem 5.38. See also Exercise 6.6 for an alternative proof.

Lemma 6.17Let {W (s): s > 0} be a standard linear Brownian motion andg its first
hitting time of levell. ThenE [ 1{0 < W(s) < 1}ds = 1.

Proof. By Theorem 5.38 we havié [ 1{0 < W(s) < 1} ds = Eoy, whereo, is the
first exit time from[—1, 1]. By Theorem 2.49 we havéo; = 1. ]

Proof of Theorem 6.16.  Recall the stopping times; defined fora,, < b, as in (6.1).
For the proof of the lower bound note that

D(an,bn,t)

t
/ 1{ay < B(s) < by} ds > Z / 1{ay < B(s) < by} ds.
By Brownian scaling

Tj 7(3)
/ Yan < B(s) < by} ds = (by — ay)? / 1{0 < W;(s) < 1} ds,
T 1 0

where{W;(s): s > 0} are independent standard linear Brownian motions &g =
inf{s > 0: W;(s) = 0 and there exists < s with W;(¢) = 1}. Hence

D(an,bn,t)

by, : Z / l{an X ) < bn}ds

— Gn

D(an,bp,t) 7(4)

:(bn—an)D(an,bmt)[D(ambmt) Z / 1{0 < Wy(s) < 1} ds] .

The first factor converges almost surelyg@(t), by Theorem 6.1. From the law of large
numbers we get for the second factor, almost surely,

D(an,bn,t)

1 T
[ — < = < < .
7111%10 D{an.bnid) E / {o < W(s) < 1}ds IE/O o< W(s) < 1}ds
Applying Lemma 6.17 first td 1V (s): s > 0}, and thentd 1 —W(s+7): s > 0} yields

IE/ o< W(s) <1}ds=2.
0

This verifies the lower bound. The upper bound can be obtéigddcluding the period
[7;,Tj+1] for j = D(ay, by, t) in the summation and using the same arguments as for the
lower bound. This completes the proof of Theorem 6.16. [ |
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6.2 A random walk approach to the local time process

Given a levela € R the construction of the previous chapter allows us to defire t
local time at levela for a linear Brownian motiod B(t): t > 0}. Indeed, simply let
{L%(t): t > 0} be the local time at zero of the auxiliary Brownian motigB“ (¢): ¢t > 0}
defined byB*(t) = B(t) —a. Using Theorem 6.16 it is not hard to show thét*(¢): a €
R} is the density of the occupation measpgantroduced in Theorem 3.26.

Theorem 6.18For linear Brownian motior{ B(¢): ¢t > 0}, almost surely, for any bounded
measurable;: R — R andt > 0,

t o
Jst@dimi@ = [ a(Bsyas = [ gte) £7(1)da

Proof. First, observe that for the statement it suffices to Ka@/&(¢) : ¢ > 0} defined for
L-almost everyw. Second, we may assume thas fixed. Indeed, it suffices to verify the
second equality for a countable family of bounded measa@bR — R, for example the
indicator functions of rational intervals. Having fixed bugg both sides are continuous
in t. For fixedt, we know from Theorem 3.26 that < £ almost surely, hence a density
f exists by the Radon—Nikodym theorem and may be obtained as

F(a) = lim - Atl{a—sgB(s) <a+elds,

which equalsL®(t) by Theorem 6.16, almost surely fdralmost every:. [

A major result about linear Brownian motion is that the dgn$iL®(¢): a € R} of the
occupation measures can be chosen to be continuous, a fatt wh now prove. To
exploreL“(t) as a function of the levels we extend the downcrossing representation to
hold simultaneouslyat all levelsa.

Givena € R and a large integet we letI(a,n) be the unique dyadic interval such that
a € I(a,n) =[j(a)27™,(j(a) + 1)27™). For a standard Brownian motidiB(¢): t > 0}

we denote byD™ (a, t) the number of downcrossings of the interyé&, n) before timet.

In the notation of the previous section we can write

D™ (a,t) == #{k € {0,...,N™(t) = 1}: X;" = j(a) + 1, X};"); = j(a)} .
Theorem 6.19 (Trotter's theorem) Let {B(¢): ¢ > 0} be a standard linear Brownian

motion and letD™ (a, t) be the number of downcrossings before tinwd then'" stage
dyadic interval containing.. Then, almost surely,

L(t) = lim 27" D™ (qa,t) exists for alla € R andt > 0.

Moreover, for everyy < % the random field
{L*(t): a € R, t > 0}

is almost surely locallyy-Holder continuous.
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Remark 6.20Note that{L*(¢): a € R, ¢t > 0} is a stochastic process depending on more
than one parameter, and to emphasise this fact we use tloa rextidom field. o

The proof uses the following estimate for the sum of indepehdeometric random vari-
ables with mean two, which we prove as Exercise 6.7.

Lemma 6.21Let X1, X, ... be independent geometrically distributed random variable
on{1,2,...} with mean2. Then, for sufficiently smal > 0, for all nonnegative inte-
gersk < m,

k
]P’{‘ (Xij)‘ksm}gélexp{f%szm}.

j=1

The following lemma is the heart of the proof of Theorem 6.19.

Lemma 6.22Suppose that < b and let{B(t): 0 < t < T'} be a linear Brownian motion
stopped at the tim& when it first hits a given level above Let

e D be the number of downcrossings of the intefuab],
e D) be the number of downcrossings of the interjal®ft],

e D, be the number of downcrossings of the intera}®, b].
Then, for sufficiently smadl > 0, for all nonnegative integerg < m,

P{|D— 3Dy >emor|D—4Dy|>em|D=k}<12exp{—+c*m}.

Proof. By Lemma 6.3 we have that, givelD = k}, there exist independent random
variablesXy, X1, X5 ..., such that

k
Di=Xo+ Y X;,
j=1
andX, X», ... are geometrically distributed ofi, 2, ...} with mean2. An inspection of
the proof of Theorem 6.3 reveals tha&t, is either zero or also geometrically distributed
with mean2, depending on the starting point of the Brownian motion.
Using Lemma 6.21 and Chebyshev’s inequality, we get > 0 is small enough,

k
P{|4D1=D| > em|D =k} <P{|S(X; = 2)| > em | D = k} +P{Xo > em}

< 4exp{ — %m} + 2 exp{—emlog2} < 6exp{ — %m} .
The argument is analogous fbr,, and this completes the proof. [ |
We now fixy < % and a large integelW. We stop the Brownian motion at tiffey when it

first hits level NV, and abbreviat® ™ (a) := D™ (a,Ty). We denote theith dyadic grid
by D,, := D,,(N) := {k2~": k € {~N2",—N2" +1,... N2" — 1} }.
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Lemma 6.23Denote by2(m) the event that, for alh > m
@) [D™(a) — 2 D"V (a)| < 2"~V forall a € [-N, N),

(b) [ D™ (a) — D™ (b)| < 2271~ forall a,b € [N, N) with |a — b|<27".
Then
lim P(Q(m)) =1.

mToo
Proof. The event in itenfa) follows by combining the following three events,

(i) |D™(a) — 3 D"V (a)| < %277 D™ (a) fora € [N, N) with D™ (a)>2",
(i) [D™(a) — & D"V ()] < 27077 foralla € [-N, N) with D™ (a) < 2,

(i) D™ (a) <n?2"foralla € [-N,N).

We observe that it is equivalent to show (i), (ii) for ale D,,,; and (iii) for all a € D,,.
To estimate the probability of (i) we use Lemma 6.22 with- # 27" andm = k. We
get that

oo
Z Z ]P’{|D<n)(a) — %D<n+1> (a)’ > n% 9—nY D(")(a) and D™ (a) > 2n}

n=m a€Dy 1

< i Z 12 exp{ — #2”(1_27)}

n=m a€Dy1
o0
<(8N) Y 2mexp { — gk 27070} g,

For event (ii) we get from Lemma 6.22 with= 277" andm = 2" > k. This gives that

> Y P{|D"(a) - $ D" (a)| > 2" and D™ (a) < 2"}

n=m ac€Dy41

< i Z 12 exp { — %2"(1’27)}

n=m a€Dy, 41

(48N) Z 2" exp { — L2n(172} 2,
For event (iii) we use that, given that the walk hjt@n) the random variabled™ (a)
is geometrically distributed with paramet%»L . We therefore obtain, for some
sequencé,, — 0,

21-9

n22mn—1
) \ eXp{_n 2Nn, 9

P{D™(a) >n*2"} < (1 - %45

hence, for sufficiently large,

Z Z ]P){D(n) > n22n} Z (2N)2n exp{ B 712% m—eo g
n=m a€D,, n—m

This completes the estimates needed for item (a).
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The event in iten{b) need only be checked for all b € D,, with |a —b| = 27™. Note that
D™ (a), resp.D™ (b), are the number of downcrossings of the lower, resp. uppéfroh
an interval of lengtt2="*!, which may or may not be dyadic. Denote By"~V(a) =

D=1 (b) the number of downcrossings of this interval. Then
P{|D"™ (a) — D™ (b)| > 22"~}
<P{|D™(a) — 1 D"V (a)| > 2"} + P{|D™(b) — $ D"V (b)| > 2",

and summability of these probabilities overalb € D,, with |a — b| = 27" andn > m
has been established in the proof of item (a). This compteproof. [ |

Lemma 6.240n the sef)(m) we have that

L%(Ty) := lim 27" D™ (q)

n—oo

exists for every, € [-N, N).

Proof.  We show that the sequence defined2oy* ™ D™ (a), forn € N, is a Cauchy
sequence. Indeed, by item (a) in the definition of thefXet ), for anya € [— N, N] and
n > m, we get that

27" D™ (a) — 27" D" (a)| < 27
Thus, for anyn > m,

sup’27"+1[ﬂ”xa)472*k+llﬂm(aﬂ
k>n

< Y [2HIDM(a) —27F DE @) < Y27 I
k=n k=n
and thus the sequence is a Cauchy sequence and therefoeegmnty [ |

Lemma 6.250n2(m) the proces§{L*(Tn): a € [-N, N)} is~y-Hdlder continuous.

Proof. Fixa,b € [-N,N)with2 "1 < a—b < 27" for somen > m. Then, using
item (a) and item (b) in the definition 6i(m), for all & > n,

’27k+1D(k>(a) _ 27k+1D<k)(b)| < |2*"+1D(")(a) _ 27”+1D<”>(b)’

k—1 k—1
%sz:|27jl)“+”(a)472*j+1[ﬂ”(a)’%sz:|2*jl)“+”(b)4—2*j+11)“xbﬂ
j=n Jj=n

<427 4 4) 277,

j=n
Lettingk T oo, we get

IL(Tn) = LY(Tw)| < (4+ =3) 277< (2777 + 2575) la — B[,

which completes the proof. [ |
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Lemma 6.26For any fixed time > 0, almost surely, the limit

L%(t) := lim 27" D™ (a) exists for alla € R

n—o0

and moreovef L*(t): a € R} isy-Ho6lder continuous.

Proof. Givent > 0 define the auxiliary Brownian motiofiB.(s): s > 0} by
Bi(s) = B(t + s) and denote byD;" (a) the number of downcrossings associated to
the auxiliary Brownian motion. Then, almost surelyf (7 ) := lim,joo 27! D{™ (a)
exists for alla € R and integersV. On this event we pickV so large thafl’y > ¢. De-
fine L*(t) := L*(Tny) — L¢(Tw), and observe thaiL®(¢): a € R} defined like this is
~-Holder continuous by Lemma 6.25. It remains to show that thafinition agrees with
the one stated in the lemma. To this end, observe that

D™ (a,Ty) — D{"(a,Tn) — 1 < D™ (a,t) < D™ (a,Ty) — Di"(a,Tx).

Multiplying by 2="*! and taking a limit proves the claimed convergence. [ |

Lemma 6.27Almost surely,

L(t) := lim 27" D™ (a,t)

exists for every > 0 anda € Rand{L%(t): a € R,t > 0} is y-Holder continuous.

Proof. It suffices to look at € [0, N) anda € [-N, N). Recall the definition of the
dyadic pointsD,, in [N, N) and additionally define dyadic points i, N) by

Hpy ={k27": k€ {0,...,N2" —1}}, H= U Hom -

m=1

We show that the claimed statements hold on the set
ﬂ {L*(¢) exists for alla € [N, N) anda — L“(t) is y-Hélder continuoug

teH
N N N {EeE+2m) - Lo <27},

m>M teEH .y a€Dp,

which, by choosing\/ suitably, has probability arbitrarily close to one by Lem@i26 and
Lemma 6.7.

Given anyt € [0,N) anda € [—N,N], for any largem, we find¢,,t2 € H,, with
to —t; = 27™ andt € [t1,t2]. We have

27" D™ (a 1) < 27" D(a,t) < 27" D(a, ty).

Both bounds converge on our set, and the difference of theslisiL(¢2) — L%(t1). We
can then find € Hy, for k > M with |L%(t;) — LP(¢1)| < 2™ and|L%(ty) — Lb(t2)| <
27™7 and get
0 < L%(tz) — L (t1) < |L%(t2) — LO(t2)| + [LO(t2) — LO(t1)| + [L%(t1) — L*(t1)]
<

3x 27

which can be made arbitrarily small by choicerof proving simultaneous convergence.
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For the proof of continuity, supposeb € [-N, N) ands,t € [0, N) with 27™ < |a —
bl <27™and2™™ < t — s < 27™ for somem > M. We picksy, so € H,, andty,ts €
Hp,suchthat —27™ <51 <s<sog<s+27"andt —27™ <t <t <ty <t4277,
anday, by € D,, with |a — a1| < 27" and|b — b1| < 27™. Then

LA(t) = L*(s) < L°(t2) — L*(s1)
|L%(ta) — L (t2)] + L% (t2) — L (s1)| + | L (s1) — LO(s1)],
L%(s) — Lb(t) < L%(sp) — Lb(ty)

<L (s2) = L% (s2)] + [L% (s2) — L (t1)| + [L (t1) — L*(t1)],

/

N

and all contributions on the right are bounded by constaritiptes of 2—"™7, by the con-
struction of our set. This completes the proofiefidlder continuity. [ |

This completes the proof of Trotter’s theorem, Theorem 6.19

6.3 The Ray—Knight theorem

We now have a closer look at the distributions of local tinfi€¢7") as a function of the
level z in the case that Brownian motion is started at an arbitrangt@nd stopped at the
time T" when it first hits level zero. The following remarkable disttional identity goes
back to the work of Ray and Knight.

Theorem 6.28 (Ray—Knight theorem)Suppose > 0 and{B(t): 0 < t < T} isalinear
Brownian motion started at and stopped at tim& = inf{¢t > 0: B(t) = 0}, when it
reaches level zero for the first time. Then

(L*(T): 0< 2 < a} 2 {W(2)?: 0< z < a},

where{W (z): « > 0} is a standard planar Brownian motion.

B(t) W (2)> = L*(T)

Fig. 6.5. The Brownian path on the left, and its local time as a function of tke, len the right.
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Remark 6.29The procesg§|W (z)|*: > 0} of squared norms of a planar Brownian mo-
tion is called the squaretvo-dimensional Bessel process-or any fixedr, the random
variable|W (z)|? is exponentially distributed with mea, see Lemma 12.16 in the ap-
pendix. o

We carry out the proof of the Ray—Knight theorem in three stéys a warm-up, we look
at one point) < = < a. Recall from the downcrossing representation, Theorentiéat
lim 2 D, (z) = L*(T) almost surely,

where D,,(z) denotes the number of downcrossings of the intefvat 1/n, 2] before

time 7. Recall that basic facts about convergence in distribytiodicated withg, are
collected in Section 12.1 of the appendix.

Lemma 6.30For any0 < = < a, we haveZ D,,(z) 4 W (2)? asn 1 co.

Proof. By the strong Markov property and the exit probabilitiesnfran interval

described in Theorem 2.49, itis clear that, provided 1/z, the random variabl®,, (z) is

geometrically distributed with (success) paraméténz), i.e. P{D,(z) = k} = = (1 —
Lyk=1forallk € {1,2,...}. Hence, as — oo, we obtain that

nx

P{D,(z) > ny/2} = (1 — L)/ emv/@o)

nx

and the result follows, a8V (x)|? is exponentially distributed with mezn-. [

Lemma 6.30 is the ‘one-point version’ of Theorem 6.28. Theease of the Ray—Knight
theorem is captured in the ‘two-point version’, which weyemext. We fix two points:
andz + h with 0 < = < z + h < a. The next three lemmas are the crucial ingredients for
the proof of Theorem 6.28.

Lemma 6.31Let0 < x < z + h < a. Then, for alln > h, we have

Dn(”")
Dy(z+h)=D+ Y LN,
j=1
where
e D = D™ is the number of downcrossings of the interjua- h — L, z + h] before
the Brownian motion hits level,
e for anyj € N the random variabld; = Ié’” is Bernoulli distributed with mean
nh1+1 ’
e for anyj € N the random variableV; = N;") is geometrically distributed with
meannh + 1,

and all these random variables are independent of each athdrfD,, ().
Proof. The decomposition ab,,(z + %) is based on counting the number of downcross-

ings of the intervalx + h — 1/n, 2 + h] that have taken place between the stopping times
in the sequence



172 Brownian local time

A B2i-1)

-
. g
- ;

Tp =

T2j-2 Toj—1

Fig. 6.6. The random variablds and N; depend onIy on the piecd3® " for j > 1. For this
samplel; = 1 as the path hits + h beforex — L andN; = 2, because the path downcrosses

[z + h — L,z + h] twice before hittingr — £.

7o = inf {¢t > 0: B(t) = =}, m=inf{t>7m:Blt)=2— 1},

n

Toj = inf {t > Toj-1' B(t) = I}, T2j+1 = inf {t > T4 B(t) = — l},

n

for j > 1. By the strong Markov property the pieces

BO:[0,m) =R,  B©(s) = B(s)
BY: [O Tj — Tj— 1]—>R B(j)(s)zB(Tj_l—FS),j}l,

are all independent. The crucial observation of the prodhé the vectorD,,(z) is a
function of the piece$3” for j > 1, whereas we shall define the random varlatﬂles
I, I5,...and Ny, N, ... depending only on the other piecBS” and B>/~ for j >

First, let D be the number of downcrossings [of + h — 1/n,z + h] during the time
interval [0, 79]. Then fixj > 1 and hence a piecB®*~". Definel; to be the indicator
of the event thatB®'~" reaches levek + h during its lifetime. By Theorem 2.49 this
event has probability/(nh + 1). Observe that the number of downcrossingg3¥ —* is
zero if the event fails. If the event holds, we defiNg as the number of downcrossings of
[ +h—1/n,z+ h] by B®~Y which is a geometric random variable with medn+ 1

by the strong Markov property and Theorem 2.49.

The claimed decomposition follows now from the fact thatpgleesB 2 for j > 1 do not
upcross the intervdk+h—1/n, z+h] by definition and thaB® -V for j = 1,..., D, ()
are exactly the pieces that take place before the Brownidiomreaches level zero. =
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Lemma 6.32Supposewu,, are honnegative, even integers amg — u. Then

Nnuy

2 2 d my - Mo
ZpmZ (n) A7(m) 2 2 ‘
~D —|—nZIj N -5 X7 4+Y +QZZJ asn 1 oo,

j=1 Jj=1
where X, Y are normally distributed with mean zero and variancethe random vari-
able M is Poisson distributed with parameter/(2h) and Z;, Z,, . .. are exponentially
distributed with meark, and all these random variables are independent.

Proof. ByLemma 6.30, we have, foX, Y as defined in the lemma,
2 - N
Epm L wm)PLX2+Y? asn | oo
n

Moreover, we observe that

nupn

2

B

2 d 2 =~

-z § I Nm S Z E N™,

n L=d T . J
Jj=1 Jj=1

whereB,, is binomial with parametersu,,/2 € {0,1,...} and1/(nh + 1) € (0,1) and
independent ofV{™, N5, .. .. We now show that, when T oo, the random variableB,,
converge in distribution td/ and the random variablé;sN](.”) converge ton, as defined
in the lemma. For this purpose it suffices to show convergehtige Laplace transforms,
see Proposition 12.8 in the appendix.

First note that, forn\, 6 > 0, we have

Eexp{ —)\Zj} =

s EI0Y] =exp { - #52Y,

and hence

M
7 1 _ 1 \M _ Y, _ A
]Eexp{ —A ZZJ} = E()\h+1) =exp{ — 5 pyEs i exp { — 2,\171+2}‘
j=1
Convergence of N;" is best seen using tail probabilities

P{LN® >a} = (1- 24" —exp{ -2} =P{Z; > a}.

Hence, for a suitable sequente— 0,

Eexp{— AL N} = i}:f’; .
For the binomial distributions we have
B[07] = (e + (- i) e - 1070
and thus
1 & B
e { -0 D N = B[ ()™ ] = tim e {5 S
=

M
zexp{—%}:ﬂiexp{—/\zzj}. u
j=1
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Lemma 6.33SupposeX is standard normally distributed?;, 75, . .. standard exponen-
tially distributed andN Poisson distributed with parametéf /2 for somel > 0. If all
these random variables are independent, then

(X +0)? X2+2ZZ

Proof. It suffices to show that the Laplace transforms of the randariakiles on the two
sides of the equation agree. Let> 0. Completing the square, we find

Eexp{—\ (X + )%} r/exp{ Az +0)? —2%/2) do

M2 2 | 222
= = [eo{ - (VBT T+ B A B e

1 Ae2
- 7o e -]

From the special cage= 0 we getE exp{—\ X?} =

\/W For anyd > 0,

E[6V] = exp{—(*/2} Z O — exp{(6 — 1)¢2/2} .

Using this and thall exp{—2A Z,} = we get

2A+1

al 1 1 \N 1
Eexp{f)\(X2+2ZZj)}:mE(”\_’_l) = 2)\+1exp{—2§‘\fl},

j=1
which completes the proof. [
Remark 6.34An alternative proof of Lemma 6.33 will be given in Exercis8.6 o

By combining the previous three lemmas we obtain the folh@aéonvergence result for
the conditional distribution oD,,(z + h) given D,,(x), which is the ‘two-point version’
of the Ray—Knight theorem.

Lemma 6.35Supposewu,, are honnegative, even integers amg — u. For any\ > 0

lim E[exp{ —A2Dn(z+h)} | 2Dn(z) = un] = Eq, ) [exp { = AW (R)]*}],

n—oo

where{W (z): z > 0} denotes a planar Brownian motion started(in ,/u) € R2.
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Proof. Combining Lemmas 6.31 and 6.32 we get

nler;oE[exp{ —A2Dn(z+h)} | 2Dy (2) = uy]
5o { - (477423 2) )]

efon( v )]

where X, Y are standard normally distributed;, 7, . . . are standard exponentially dis-
tributed andV/ is Poisson distributed with parametéy2, for ¢ = \/u/h. By Lemma 6.33
the right hand side can thus be rewritten as

E[exp { — A (X +Vu/h)? +Y?)}] =E o ya [exp { = AW (R)*}],
which proves the lemma. [ |
Now we complete the proof of Theorem 6.28. Note that, as B&th(T): = > 0} and
{|W(z)|?: x > 0} are continuous processes, it suffices to show that, for any
<< <y <a
the vectors

(L*(T),...,L* (1)) and (W (1), .., W (zm)[?)

have the same distribution. The Markov property of the dowsging numbers, which
approximate the local times, allows us to reduce this prabie the study of the ‘two-
point version’.

Lemma 6.36For all sufficiently large integers, the process
{Dyp(z): k=1,...,m}
is a (possibly inhomogeneous) Markov chain.

Proof. Fixk € {2,...,m}. By Lemma 6.31 applied to = z;_; andh = z, — x4
we can writeD,,(zx) as a function ofD,,(x,—1) and various random variables, which

by construction, are independentdf,(z1), ..., D,(zr—1). This establishes the Markov
property. ]
Note that, by rotational invariance of planar Brownian raoti{|W (x1)|?: k = 1,...,m}

is a Markov chain with transition probabilities given by

E[exp{ =AW (zr41)]} | W (2)|* = u] = Eg ym [exp{=A W (zx11 — 21)*}],

for all A > 0. The following general fact about the convergence of familbf Markov
chains ensures that we have done enough to complete thegirdoéorem 6.28.
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Lemma 6.37Suppose, fon = 1,2,..., that{X;”: k = 1,...,m} is a Markov chain
with discrete state spac®,, C [0,00) and that{X}: k = 1,...,m} is a Markov chain
with state spacé, oo). Suppose further that

(1) (X{™,..., X() converges almost surely to some random vegYer. . ., Y,,),
@) x\" % X, asn 1 oo,
3) forallk=1,...,m —1, A > 0 andy, € Q, withy,, — y, we have

nleréoE[eXp{—AX,iﬁl} ’ X,(C”) = yn] = E[exp{—)\Xk.H} | X, = y] ‘

Then
(X7, X)) =5 (X X

and, in particular, the vector&Xy, ..., X,,,) and(Y1, . ..,Y,,) have the same distribution.

Proof. Recall from Proposition 12.8 in the appendix that it suffiteshow that the

Laplace transforms converge. LEt, ..., \,, > 0. By assumption (2) we hav& ™ LN
X, and hence we may assume, by way of induction, that for somgfixe 1,...,m — 1,
we have

nyy  d
(X{7, 0, X00) — (X1 Xg) -

This implies, in particular, thatXy, ..., Xx) and(Y1, ..., Y;) have the same distribution.
Define

Cp: Uy — [0,1], @u(y) =E[exp{-Mn1 X3} | X7 =]
and

®: [0,00) — [0, 1], D(y) = B[ exp{—Arr1Xp1} | Xp = y] -
Then, combining assumption (1) and (8),(X,") — ®(Y}) almost surely. Hence, using
this and once more assumption (1),

k+1

e (-0} = Eew{ - 34X 6,07

—E|exp{ - ixm}@(m)]

As the vectorg X, ..., X;) and(Y7,...,Y,) have the same distribution the limit can be
rewritten as

k+1

E[exp{ — zk:/\ij}‘I)(Xk)] = E[GXP{ - Z:)‘jxj}}

j=1

and this completes the induction step.
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Finally, as(X;",..., X ") converges almost surely, and hence also in distribution to
(Y1,...,Y,,), this vector must have the same distribution(3s, ..., X,,). This com-
pletes the proof. [ |

Proof of Theorem 6.28. We use Lemma 6.37 Witk ;" = 2D, (), X, = |[W (z)|?
andY; = L*(T). Then assumption (1) is satisfied by the downcrossing reptas
tion, assumption (2) follows from Lemma 6.30 and assump{&)nfrom Lemma 6.35.
Lemma 6.37 thus gives that the random vectb¥! (T),..., L*(T)) and the random
vector(|W (z1)|%, ..., |W(z,,)|?) have the same distribution, concluding the proof.m

As an easy application of the Ray—Knight theorem, we andwgegtiestion whether, almost
surely,simultaneouslyor all levelsz € [0, a) the local times at levet are positive.

Theorem 6.38 (Ray’s theorem)Suppose:r > 0 and {B(t): 0 < t < T,} is a linear
Brownian motion started at zero and stopped at tifpe= inf{¢t > 0: B(t) = a}, when it
reaches leved for the first time. Then, almost suref? (7,) > Oforall 0 < z < a.

Proof. The statement can be reworded as saying that the pr¢déss’ (T,): 0 <
x < a} almost surely does not hit zero. By the Ray—Knight theoreppl{ad to the
Brownian motion{a — B(t): t > 0}) this process agrees withiW (z)|?: 0 < = < a}
for a standard planar Brownian motidfl (z): « > 0} which, by Theorem 3.20, never
returns to the origin. ]

Ray’s theorem can be exploited to give a result on the Haffsdionension of the level
sets of the Brownian motion, which holdsnultaneouslyor all levelsa € R. We prepare
the proof by a lemma.

Lemma 6.39AImost surely, for alb € R, we have

{t > 0: B(t) = a andt is not locally extremak
={t>0: L*t+h)— L*(t —h) > 0forall h > 0}.

Proof. The inclusion o’ follows directly from Trotter’s theorem and the uniqueaes
local extrema, see Theorem 2.11. For the inclusiohwe note that, by the strong Markov
property and Ray’s theorem, almost surely for any ratignal 0 ande > 0 and stopping
timer,(¢) := inf{¢t > ¢: B(t) = B(q) + ¢} we have

L*(14(e)) — L*(q) > Oforall B(q) < = < B(q) + ¢.

SupposeB(t) = xz andh > 0. If ¢ is neither a local minimiser from the left nor a local
maximiser, there exist a rationgk (t—h, t) with B(q) < =z < B(g)+¢ andr,(e) < t+h.
From the monotonicity of local time we infer thaf (¢t + h) — L*(t — h) > 0. A similar
argument for the time-reversed Brownian motion can be gigeteal with those which
are neither a local minimiser from the right nor a local masien [ |
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Theorem 6.40AImost surelydim{t > 0: B(t) =a} > ,foralla € R.

Proof.  Obviously, it suffices to show that, for every fixed> 0, almost surely,
dirn{0<t<Ta:B(t):x}>% forall0<z<a.

This can be achieved using the mass distribution princidensidering the increasing
function L*: [0,7*) — [0,00) as distribution function of a measuf&, we infer from
Lemma 6.39 that, almost surely, for everye [0, a), the measuré” is a mass distribution
on the sef{0 < t < T,: B(t) = z}. By Theorem 6.19, for any < 1/2, almost surely,
there exists a (randond) > 0 such that, for alkx € [0, a), t € [0,7T,) ande € (0, 1),

Ct—et+e)<|L%(t+e)—L¥(t—e)| < C(2).

The claim therefore follows from the mass distribution pijohe, Theorem 4.19. [ |

Remark 6.41 Equality holds in Theorem 6.40. We will obtain the full reslater as an
easy corollary of Kaufman’s dimension doubling theorene, Eeeorem 9.28. o

6.4 Brownian local time as a Hausdorff measure

In this section we show that the local tinié(¢) can be obtained as an intrinsically defined
measure of the random s&éros N [0, t]. The only family of intrinsically defined measures
on metric spaces we have encountered so far in this book i&thiéy of a-dimensional
Hausdorff measures. As thedimensional Hausdorff measure of the zero set is always
either zero (ifa > %) or infinity (if a < %) we need to look out for an alternative construc-
tion.

We need not look very far. The definition of Hausdorff dimemsstill makes sense if
we evaluate coverings by applying, instead of a simple poswrearbitrary non-decreasing
function to the diameters of the sets in a covering.

Definition 6.42. A non-decreasing functios: [0,¢) — [0, co) with ¢(0) = 0 defined on
a nonempty intervdl, ¢) is called a(Hausdorff) gauge function
Let X be a metric space arfd C X. For every gauge functiop andé > 0 define

HL(E) = inf{Zqﬁ(|Ei|): E\,E,, Es,... coverE, and|E;| < 6} .

i=1
Then

HO(E) = sup HY(E) = im H% (E)
§>0 610

is thegeneralisedg-Hausdorff measureof the setE. o
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Theorem* 6.43There exists a constant> 0 such that, almost surely, for all> 0,
L°(t) = H?(Zeros N [0,1]) ,

for the gauge functiop(r) = ¢ \/rloglog(1/r).

The remainder of this section is devoted to the proof of théotem. The material devel-
oped here will not be used in the remainder of the book. An it@mb tool in the proof is
the following classical theorem of Rogers and Taylor.

Proposition 6.44 (Rogers—Taylor Theorem) et ;. be a Borel measure dR¢ and let¢ be
a Hausdorff gauge function.

(i) If A c R%is aBorel set and

B(x,r)

lim sup K <«

10 o(r)
forall z € A, thenH?(A) > o= u(A).

(i) If A c R?is aBorel setand

lim s K
im sup

rl0 ¢(7,.)

forall = € A, thenH?(A) < kg0~ 'u(V) for any open set C R¢ that contains
A, wherek, depends only od.
Moreover, ind = 1 one can also obtain an analogue of (i) for one-sided integval
(i) If A c Risaclosed set and
. t,t+1r
A= {t €A: hnrlfbupﬂ[gb(?a)] < a},
thenH?(A) > a1 u(A).

Remark 6.451f 4 is finite on compact sets, ther(A) is the infimum ofu (V) over all
open setd” D A, see for example Section 2.18 in [Ru87]. Hepg& ) can be replaced by
1(A) on the right hand side of the inequality in (ii). o

Proof. (i) We write
Ac={zeA: sup “l;((if’)r)<a}
re(0,e)

and note thati(A.) — p(A) ase | 0.
Fix e > 0 and consider a covefA;} of A.. Suppose thatl; intersectsA. andr; =
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|A;| < eforall j. Chooser; € A; N A, for eachj. ThenuB(z;,r;) < ag(r;) for every
4, whence

Yo o) za™t Yy pBlryry) = a p(A).

jz1 j=21

ThusHZ(A) > H?(A.) > a~tu(AL). Lettinge | 0 proves (i).

(i) Lete > 0. For eachz € A, choose a positive, < e such that3(z,2r,) C V and
uB(xz,ry) > 0¢(ry); then among the dyadic cubes of diameter at moghat intersect
B(z,r;), letQ, be a cube withu(Q,) maximal. (We consider here dyadic cubes of the
form Hle[ai/2m7 (a;+1)/2™) whereq,; are integers). In particula, C V and|Q,| >
r,/2 so the side-length af), is at leastr, /(2v/d). Let Ny = 1 + 8[v/d] and letQ be
the cube with the same centey as@,, scaled byN, (i.e., Q% = z, + Ng(Qz — 22)).
Observe thaf)* containsB(z, r,.), S0B(x, r.) is covered by at mosv¢ dyadic cubes that
are translates af,.. Therefore, for every. € A, we have

w(Qr) = Ny uB(x,ry) > Ny Ob(r,) .
Let {Q.(j): 7 = 1} be any enumeration of the maximal dyadic cubes ami@pg: = €
A}. Then

p(V) = ) (Quiy) = Ny d(rag)) -
iz1 iz1
The collection of cube$@;, ;) j > 1} forms a cover ofA. Since each of these cubes is
covered byN¢ cubes of diameter at most ), we infer that
H2(A) S NG D (i) < N30~ (V).
iz1
Lettinge | O proves (ii).
(iii) Without loss of generality we may assume thdtas no atoms. Given> 0 we find
0 > 0 such that
. t,t+h
As(a) = {t € A: ]szli%% <a—6}

satisfiesu(As(a)) > (1 — <) u(A). Observe thatis;(a) is closed. Given a covelil;} of
A with |I;] < 6 we look at/; = [a;, b;] wherea; is the maximum and; the minimum of
the compact sefl I; N As(«). Then{I;} coversA;(«) and hence

Yool = D el = (=07t ) uly)

j=z1 j=z1 ji=1
> (a—0)"" p(As(0)) = (a—80)" (1 —2) p(4A),
and (iii) follows ford | 0, ase > 0 was arbitrary. [ |

For the proof of Theorem 6.43 we first note that, by Theorer,étis equivalent to show
that, for the maximum proceqs\/ (¢): ¢ > 0} of a Brownian motion{ B(¢): ¢ > 0}, we
have, almost surely,

M(t) = H?(Recn [0,]) forallt >0, (6.4)
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whereRec denotes the set of record points of the Brownian motion. Towsthis, recall
from Exercise 4.12 theRec = {s > 0: M(s+ h) > M(s—h)forall0 < h < s}. We
define the measurne on Rec as given by the distribution functiokt, i.e.

wu(a,b) = M(b) — M(a) for all intervals(a, b] C R.
Theny is also the image measure of the Lebesgue meastujfe at) under the mapping
a— T, :=inf{s > 0: B(s) = a}.
The main part is to show that, for closed sats [0, oo),

cpu(A) < H?(ANRec) < C pu(A), (6.5)

where¢(r) = /rloglog(1/r) ande, C are positive constants.

The easier direction, the lower bound for the Hausdorff megsfollows from parfiii)
of the Rogers—Taylor theorem and the upper bound in the latheofterated logarithm.
Indeed, for any level > 0 letT, = inf{s > 0: B(t) = a}. Observe that
lim sup M(T,+r)— M(Ty) — limsup BT, +r) - B(Ta)’
10 2rloglog(1/r) rlo +/2rloglog(1/r)
where we use that/ (T,,) = B(T,) and that for any- > 0 there exist$) < 7 < r with
M(T, +r) = B(T, + 7). Combining this with Corollary 5.3 applied to the standard
Brownian motion{ B(T, +t) — B(T,): t > 0} we get, almost surely,
M(T, — M(T,
lim sup (Ta+1) (Ta) =
10 2rloglog(1/r)

Defining the set
A= {s€Rec: limsup puls,s +r]/d(r) < V2},
rl0

this means that, for every > 0, we havel, € A almost surely. By Fubini’s theorem,
Eu(A°) = E/ WT, ¢ A} da = / P{T, & A} da =0,
0 0

and hence, almost surely{ A°) = 0. By part(iii) of the Rogers—Taylor theorem, for every
closed sef\ C [0, c0),

HP(ANRec) > HP(ANA) > L u(AnA) = L u(A),

S
S

showing the left inequality in (6.5).

For the harder direction, the upper bound for the Hausdog#sure, it is important to
note that the lower bound in Corollary 5.3 does not sufficetdad, we need a law of the
iterated logarithm which holds simultaneously f@f-almost all record times. Recall that

o(r) = /rloglog(1/r).

Lemma 6.46For everyy > 0 small enough, almost surely,

. M(s+h)— M(s—h)
H?! s € Rec: limsu
{ hlo o(h)

<ﬁ}:0.
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Proof. We only need to prove that, for sorfle> 0, the set

A(f) = {s € Recn (0,1): 1in;f(}1p% <0}

satisfieSHd’(A(é)) = 0. Moreover, denoting

As(6 {SGRGCH[&l—é}ZSUpW<é}7
h<s
we have
0) = U As(6)
§>0

It thus suffices to show, for fixedl > 0, that, almost surely,

hmlnf'H (A 5(0))=0.

ntToo
Fix § > 0 and a positive integer such thatl /\/n < §. For parameters
A>1,0>60andg > 2,

which we choose later, we say that an interval of the fdrm [(k — 1)/n, k/n] with
ke {l,...,n}isgoodif

(i) I contains a record point, in other words,
=inf {t > =1 B(t) = M(t)} < £,
and either of the following two conditions hold,
(ii) there existsj > 0 with 1 < ¢+ < y/n such that
B(r+%)—B(r) < —A¢(L);

(iii) forall j > 0with 1 < ¢! < \/n we have that

B(r+Z2) - B(r+ L) < 0p(L=2).

We now argue pathwise, and show that, given- 1, § > 6 we can findg > 2 such that
the good intervals cover the s&§(6). Indeed, suppose thatis not good but contains a
minimal record point- € [(k — 1)/n, k/n]. Then there existg > O with 1 < ¢/ < \/n
such that

B(r+%2)-B(r)> - A¢(L) and B(r+Z-)-B(r+%)>0¢(T7).

This implies that, for any € [(k — 1)/n, k/n] N Rec,
M (4 50) = M (6= 5) > M(r + ““%ﬂﬂﬂ>3&+ﬁ3—3@
> 00(40) — Ao(%) > 60(7),

if ¢ is chosen large enough. Hence the intefvdbes not intersects(#) and therefore the
good intervals cover this set.
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Next we show that, for anyl > /2 > 6 and suitably chosed® > 0, for everyl =
[(k—1)/n,k/n)with I N[5,1— 48] # 0,

2

. 1 1 -5 -1
P{[%1, £]is good} < O% (logn) S (6.6)

By Lemma 4.22 in conjunction with Theorem 2.34 we get, for sazonstantCy > 0
depending only o > 0,
1
P{r < £l <Cy—.
{T n} 0 vn

We further get, for some constaft > 0, for all j with ¢/+! < \/n,

P{B(r+%) - B(r) < ~A(%) } <P{B(1) < ~Aloglog(n/a)}

1 (A2

) 2
logn '

< exp{ — 4 loglog(vn)} < O (

Using the independence of these events and summing oveeallwith 1 < ¢/ < \/n,
of which there are no more thar, log n, we get that

P{[A=L, £] satisfies (i) and (i)} < CoC1Cs % (@) L 6.7)

To estimate the probability thatk — 1)/n, k/n] satisfies (i) and (iii) we first note, for
sufficiently largen, that

P{B(L"=0) < 90(72) } <P{B(1) < 0,/loglog (;2) }

1 exp { — gloglog (29)} |

0 . /loglog (ﬁ)

using Lemma 12.9 of the appendix. From this we infer thatstotablecs > 0,

J+1 J +1_d ;
B{B(r+22) = B(r+ %) < 00(2 L) forall 1 < o'*) < Vi)
92 log n
< ] — ol gloslogn}ty g 1 ZTog q
. I;Ig ( 0 vioglogn )< 8 (logn) % (log log n) 3
IS 32Tog q
< exp{ —C 7(1%")17% }
= 3 (loglogn)% ’

Combining this with the estimate far < k/n we get that

P{[E=1, £] satisfies (i) and (i)} < Co

n

R (logn)! =% 6.8
NG S p{ C3 (loglogn)% } (6.8)

As 0 < /2, the right hand side in (6.8) is of smaller order than thetrigind side in (6.7)
and hence we have shown (6.6).
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Finally, we look at the expectegtvalues of our covering. We obtain that

[n(1-4)]

EM{,(As(0) < Y- o(1/m)P{[*7E, E] is good} < C plosigEns — 0,
k=[én]

and, by Fatou’s lemma we get, almost surely,
lim ing(f/n(Ag(é)) =0,

as required to complete the proof. [ |

The right inequality in (6.5) now follows easily from Lemmad46 and part (ii) of the
Rogers—Taylor theorem. We define the set

A = {s € Rec: limsup uB(s,7)/¢(r) = 9},
r]0

and note that{?(Recn A°) = 0, for 9 sufficiently small. By part (ii) of the Rogers—Taylor
theorem we get, for every Borel s&tcC [0, c0),

HP(ANRec) = HY(ANA) < k19 (AN A) < k1971 p(A).

This implies the right inequality and hence completes tlo®pof (6.5).
To complete the proof of Theorem 6.43 we look at the pro¢és&:): a > 0} defined by
X(a) = H?(Recn [0,T5]) .

The next lemma will help us to show that this process is, ini@bsle sense, degenerate.

Lemma 6.47 Suppose(Y (¢): t > 0} is a stochastic process starting in zero with the
following properties,

¢ the paths are almost surely continuous,
¢ the increments are independent, nonnegative and statgpnar
e there exists & > 0 such that, almost surelY; (¢) < Ct forall ¢ > 0.

Then there exists > 0 such that, almost surel¥; (¢) = ¢t for everyt > 0.

Proof.  We first look at the functiomn: [0,00) — [0, 00) defined bym(t) = EY (¢).
This function is continuous, as the paths{®f(¢): ¢ > 0} are continuous and bounded on
compact sets. Further, because the pro¢&<¢): ¢ > 0} has independent and stationary
increments, the functiom is linear and hence there exists: 0 with m(t) = ¢t.

It thus suffices to show that the varianceYoft) is zero. Indeed, for eveny > 0, we have

n

VarY () = Y Var (Y(%) - Y(@)) — nVarY () <nE[Y ()]

and henc&’(t) = EY (¢) = ¢t as claimed. [
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Let us check tha{ X (a): a > 0} satisfies the conditions of Lemma 6.47. We first note
that

X(a+h) — X(a) =H?(RecN [0, Tutn]) — H? (Rec N [0, T5])
= H?(Rec N [Ty, Tusn)),

as can be seen easily from the definition of the Hausdorff oreds?.
Using this, continuity of the paths follows from the factthay (6.5),

H?(Rec N [To, Togn]) < C (M(Tosn) — M(T,)) = Ch.

The strong Markov property implies that the increments adependent and stationary,
and they are obviously nonnegative. And finally, by (6.5n@st surely, for any. > 0,

X(a) =H?(Recn[0,T,]) < CM(T,) =Ca.
Lemma 6.47 thus implies that there exigts 0 with
H?(Recn [0,T,]) = éa = M(T,)

for all ¢ > 0. It remains to show that this holds not only for the stoppinges7,, but in
fact for all elements oRec.

Lemma 6.48Almost surely, the s€tT}, : a € R} is dense irRec.

Proof. Obviously,{T,: a € R} C Rec. Conversely, if € Rec, then eitheB(s) < B(t)
forall 0 < s < t, in which case = T, for a = B(t), or there exists a minimal < ¢ with
B(s) = B(t). Inthe latter case = T, for a = B(t) by definition.

Because, by Theorem 2.11, every local maximum is a stri@l lo@ximum and no two
local maxima are the same, we have

t= %nn Tb,

b>a

in particulart is in the closure of the séfl},: a € R}. [ ]

Using this lemma and continuity of both sides, we infer tlzdiost surelyﬂ¢(Rec N
[0,¢]) = ¢ M(¢t) for all t € Rec. For generat > 0 we letr = max(Rec N [0,¢]) and note
that

H?(Rec N [0,]) = H?(RecN [0,7]) = EM(1) = EM(t).
By the lower bound in (6.5) we must ha#e> 0 and hence we can put= 1/¢ and get
M(t) = cH?(Rec N [0,]) = H’(Recn [0,]),

as required to complete the proof of Theorem 6.43.
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Exercises

Exercise 6.1.Using the downcrossing representation of the local timegss{L(¢): ¢ > 0}
given in Theorem 6.1, show that, almost surdlys) = L(¢) for every interval(s, t) not
containing a zero of the Brownian motion. In other words,ltdeal time at zero increases
only on the zero set of the Brownian motion.

Exercise 6.2. Show, by reviewing the argument in the proof of Theorem 6that for
a standard linear Brownian motion the procesgeés(t)|, L(t)): ¢ > 0} and{(M (¢) —
B(t), M (t)): t = 0} have the same distribution.

Hint. In Theorem 7.38 we give a proof of this result using stockastegration.

. . . 2t
Exercise 6.3. Show that, for a standard Brownian moti@®¥,(¢) = / —.
s

Exercise 6.4.Show thatP,{L(¢t) > 0 for everyt > 0} = 1.
Hint. This follows easily from Theorem 6.10.

Exercise 6.5.Derive Theorem 6.10 from Theorem 2.34.

Hint. Show that the maximum proce$3/(t): ¢t > 0} can be computed frofiM (t) —
B(t): t > 0} by counting downcrossings, so th@k(¢): ¢t > 0} is the same measurable
function of {|B(t)|: ¢t > 0} as{M (t): t > 0} isof {M(¢t) — B(¢): t > 0}.

Exercise 6.6 Let {W(s): s > 0} be a standard linear Brownian motion andits first
hitting time of levell. Use Exercise 2.17 to show that

-
IE/ H{o< W(s) < 1}ds=1.
0

Exercise 6.78 SupposeX, X»,... are independent geometrically distributed random
variables o1, 2, ...} with mean2. Then, for sufficiently smal > 0, for all nonnegative
integersk < m,

k
]P’{‘Z(Xj 72)‘ >€m} §4exp{f%62m}.
j=1

Exercise 6.88 Give an alternative proof of Lemma 6.33 by computing the diessof the
random variable$X + ()2 andX? + 237, Z;.

Exercise 6.9. Use the Ray—Knight theorem and Lévy’s theorem, Theorem, Gol€how
that, for a suitable constant> 0, the function

p(h) = ey/hlog(1/h) for0 < h <1,

is @ modulus of continuity for the random fiefd.*(¢): a € R,t > 0}.
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Exercise 6.10. Let X be a metric space ang, - two gauge functions such that
0 < H (X)), H??(X) < 0.
Show that

lim sup 216 >0 and liminf 216
clo p2(e) 10 pa(e)

< 0

Exercise 6.11. Show that, forp(r) = \/r loglog(1/r), almost surely,

/A dL(t) =0

simultaneously for all setd C [0, oo) with H?(A) = 0.

Notes and comments

The study of local times is crucial for the Brownian motiondimension one and good
references are Revuz and Yor [RY94] and the survey artici®do [Bo89]. Brownian
local times were first introduced by Paul Lévy in [Le48] ancharbugh investigation is
initiated in a paper by Trotter [Tr58] who showed that theseaiversion of local time
continuous in time and space. An alternative constructidiocal times can be given in
terms of stochastic integrals, using Tanaka’s formula asfiaition. We shall explore this
direction in Section 7.3.

A crucial aspect which is not covered by our treatment is éhation of local times to
excursion theory and point processes, which allows a désou®f more general Markov
processes. An excellent reference for this is Williams [W}ji'his treatment appears also
in Rogers and Williams [RW00a]. Greenwood and Pitman [GP80jxshow to use the
same kind of argument to construct local time for a recurpamnt of a strong Markov
process. The basic insight comes from Lévy and I1td’s thebBoisson point processes of
excursions, see Pitman and Yor [PYQ7] for a recent reviewlskiV@Va78] also discusses
downcrossings and local time, leading to the Ray Knight o

The equality for the upcrossing numbers in Lemma 6.3 agréégive functional equa-
tion for a branching process with immigration. The relasioip between local times and
branching processes, which is underlying our entire treatprcan be exploited and ex-
tended in various ways. One example of this can be found irelend Pitman [NP89],
for more recent progress in this direction, see Le Gall anddre [LL98]. A good source
for further reading is the discussion of Lévy processes egabthy Duquesne and Le Gall
in [DLO2]. For an introduction into branching processeshwand without immigration,
see the classical book of Athreya and Ney [ANO4].



188 Brownian local time

In a similar spirit, a result which is often called the secétaly—Knight theorem de-
scribes the procesgle: a > 0} whenT = inf{t > 0: L? = z}, see [RY94] or the
original papers by Ray and Knight cited above. The resuliregess is a Feller diffusion,
which is the canonical process describing critical bramghiith initial masse. The local
times of Brownian motion can therefore be used to encoderteching information for
a variety of processes describing the evolution of pagialaich undergo critical branch-
ing and spatial migration. For more information on this pdwidink between Brownian
motion and the world of spatial branching processes, seextinple Le Gall [LG99].

The concept of local times can be extended to a variety ofgases like continuous
semimartingales, see e.g. [RY94], or Markov processes @Gbhe idea of introducing
local times as densities of occupation measure has beéfufinia variety of contexts, in
particular in the introduction of local times on the intert$en of Brownian paths. Impor-
tant papers in this direction are Geman and Horowitz [GH80@] &eman, Horowitz and
Rosen [GHR84].

The Ray—Knight theorem was discovered by D. Ray and F. Kriiglépendently by
different methods in 1963. The proof of Knight uses dissadton, see [Kn63] for the
original paper and [Kn81] for more information. Ray’s apgeb to Theorem 6.28 is less
intuitive but more versatile, and is based on the Feynman-fanula, see [Ra63b] for
the original paper. Our presentation is simpler than Krégmethod. The distributional
identity at its core, see Lemma 6.33, is yet to be explainetatilistically. The analytic
proof given in Exercise 6.8 is due to H. Robbins and E.J.Gn#&it[RP49].

Extensions of the Ray—Knight theorem includes a charaetiéon of{ L*(T): = > 0}
for parameters exceeding This is best discussed in the framework of Brownian exoursi
theory, see for example [RY94]. The Ray—Knight theorem carextended into a deep
relationship between the local times of symmetric Markowcgsses and an associated
Gaussian process, which is the subject of the famous Dyskimorphism theorem. See
Eisenbaum [Ei94] or the comprehensive monograph by MarodsRosen [MRO06] for
more on this subject.

According to Taylor [Ta86], Hausdorff measures with adniyrgauge functions were
introduced by A.S. Besicovitch. General theory of outer suees, as presented in Rogers
[R099] shows that{? indeed defines a measures on the Borel sets of a metric space.
The fact that, for(r) = \/2rloglog(1/r), the local time at zero agrees with a constant
multiple of the¢-Hausdorff measure of the zero set is due to Taylor and Wdiié66].
Perkins [Pe81] showed that the constant is one and furthethb local timed.*(¢) agree
with the ¢-Hausdorff measure of the sét < [0,t]: B(s) = a} simultaneously for all
levelsa and timeg. His proof uses nonstandard analysis.

The Rogers—Taylor theorem is due to C.A. Rogers and S.JofTayl [RT61]. The
original statement is slightly more general as it allowseplaceu (V) by u(A) on the
right hand side without any regularity condition pn Most proofs in the literature of the
harder half, statement (ii) in our formulation, use the Begitch covering theorem. We
give a self-contained proof using dyadic cubes instead.
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Other natural measures related to Brownian motion can asshbwn to agree with
Hausdorff measures with suitable gauge functions. The matsble example is the occu-
pation measure, whose gauge function is

car? loglog(1/r) if d> 3,
P =9 eyr2 log(1/r) logloglog(1/r) if d = 2.

This result is due to Ciesielski and Taylor [CT62] in the ftase, and to Ray [Ra63a] and
Taylor [Ta64] in the second case. A stimulating survey of thibject is Le Gall [LG85].
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Stochastic integrals and applications

In this chapter we first construct an integral with respedBitownian motion. Amongst
the applications are the conformal invariance of Browniantiom, a short look at windings
of Brownian motion, the Tanaka formula for Brownian locah¢is, and the Feynman—Kac
formula.

7.1 Stochastic integrals with respect to Brownian motion
7.1.1 Construction of the stochastic integral

We look at a Brownian motion in dimension ofi&(¢): ¢ > 0} considered as a random
continuous function. As we have found in Theorem 1.35, thigfion is almost surely of
unbounded variation, which is why we cannot Wedesgue—Stieltjes integratiom define
integrals of the formfot f(s)dB(s). There is however an escape from this dilemma, if
one is willing to take advantage of the fact that Brownianiom arerandomfunctions
and therefore one can make use of weaker forms of limits. iSHise idea ofstochastic
integration

Before explaining the procedure, we have a look at a reas¢omddss of integrands, as
we would like to go beyond the Paley—Wiener integral comséd in Lemma 1.41 and
admit random functions as integrands. A suitable classrafam integrands is the class
of progressively measurable process¥¥e denote by (2, A, P) the probability space on
which our Brownian motio{ B(¢): ¢t > 0} is defined and suppose th@&(t): ¢t > 0) is

a filtration to which the Brownian motion is adapted such thatstrong Markov property
holds.

Because we also want the integral up to titrte be adapted to our filtration, we assume
that the filtration(F(¢): ¢ > 0) is complete i.e. contains all sets of probability zero
in A. Note that every filtration can be completed simply by addilighese sets and their

complements, and that the completion preserves the stramgdv property.

Definition 7.1. A process{X (t,w): t > 0,w € Q} is calledprogressively measurable
if for eacht > 0 the mappingX : [0,¢] x @ — R is measurable with respect to the
algebraB([0,t]) @ F(t). o

190
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Lemma 7.2 Any processe$X (t): t > 0}, which is adapted and either right- or left-
continuous is also progressively measurable.

Proof. Assume thaf X (¢): ¢ > 0} is right-continuous. Fix > 0. For a positive
integern and0 < s < t defineX,,(0,w) = X(0,w) and

Xo(s,0) = X(EEDE ) forkt2 " < s < (k+ 1)127".

on

The mappings,w) — X, (s,w) is B([0,t]) ® F(t) measurable. By right-continuity we
havelim, ., X, (s,w) = X(s,w) for all s € [0,t] andw € Q, hence the limit map
(s,w) — X (s,w) is alsoB([0,t]) @ F(t) measurable, proving progressive measurability.
The left-continuous case is analogous. [ |

The construction of the integrals is quite straightforwané start by integrating progres-
sively measurable step proces$és(t,w): t > 0, w € 2} of the form

k
H(t,w) = ZAi(w)l(ti,tM](t), for0 <t; < ... < tgs1, andF(¢;)-measurabled;.
=1

In complete analogy to the classical case we define the mitagr

0o k

/O H(s)dB(s) = 3 Ai(B(tis1) — B(t)).
i=1

Now let H be a progressively measurable process satis@igﬁgf H(s)?ds < co. Sup-

poseH can be approximated by a family of progressively measurstiele processed,,,

n > 1, then we define

H(s)dB(s) := lim H, (s)dB(s). (7.1)
0 n—oe Jo
At this stage we focus ah?-convergence, though we shall see later that the stochiatstic
gral can also be constructed as an almost sure limit, seeflR&nTa For the approximation
of H by progressively measurable step processes we look at the no

|H|3 := IE/ H(s)*ds.
0
What we have to show now to complete the definition is that,

(1) every progressively measurable process satistrfgf’O H(s)?ds < oo can be
approximated in thg - ||2 norm by progressively measurable step processes,

(2) for each approximating sequence the limit in (7.1) existtheL?-sense,

(3) and this limit does not depend on the choice of the apprating step processes.

This is what we check now, beginning with item (1).

Lemma 7.3For every progressively measurable proc€#s(s,w): s > 0, w € Q} satis-
fyingE fO°° H(s)? ds < oo there exists a sequenéél,, : n € N} of progressively measur-
able step processes such thiat,, ., | H, — H||2 = 0.
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Proof. We approximate the progressively measurable processssicely by

e a bounded progressively measurable process,
e a bounded, almost surely continuous progressively mellgeupaocess,
¢ and finally, by a progressively measurable step process.

Let {H(s,w): s = 0, w € 2} be a progressively measurable process itH|, < oo.
We first define the cut-off at a fixed time > 0 by letting H,,(s,w) = H(s,w) for s <n
andH, (s,w) = 0 otherwise. Clearlyim, 1 ||H, — H||2 = 0.
Secongdwe approximate any progressively measurdblen a finite interval by truncating
its values, i.e. for large we defineH,, by letting H,,(s, w) = H(s,w) A n. Clearly H,, is
progressively measurable alith, 1 ||H, — H||2 = 0.
Third, we approximate any uniformly bounded progressively medsa H by a bounded,
almost-surely continuous, progressively measurablegssacLeth = 1/n and, using the
conventionH (s,w) = H(0,w) for s < 0 we define

1 S

H,(s,w)=— H(t,w)dt.

h s—h
Because we only take an average over the gdstis again progressively measurable. It
is almost surely continuous and it is a well-known fact that,everyw € Q and almost
everys € [0, 1],

lﬁrolh/ H(t,w)dt = H(s,w).

SinceH is uniformly bounded (and using progressive measurapiliy can take expecta-
tions and an average over time, and obtain from the boundacogence theorem that

1iTm |H, — H||2=0.
Finally, a bounded, almost-surely continuous, progrefgimeasurable process can be ap-
proximated by a step process, by taking H,,(s,w) = H(j/n,w) forj/n < s < (j +

1)/n. These functions are again progressively measurable anelaxily seeSm,, ;. | H,,—
H||2 = 0. This completes the approximation. [

The following lemma describes the crucial property of thegmal of step processes.

Lemma 7.4Let H be a progressively measurable step processng@o H(s)?ds < oo,

then
/ H(s)dB(s / H(s

Proof. We use the Markov property to see that, for every progrelysimeasurable step
processH = 3| Aila,

Jli+1]7

/H aB(s))’] = [ZAA (as1) = B(a) (Blags1) — Blay))|

3,j=1
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k k
=23 3 B[4 (Blas) - Bla)B[Blays) — Bloy) | Fla)]

k o0
Z azH — al = E/ H(s)2 ds. u
i=1 0
Corollary 7.5 Suppose{H,,: n € N} is a sequence of progressively measurable step
processes such that
IE/ (Hy(s) — Hm(s))2 ds — 0, asn,m — oo,
0

then N
IE[(/O H,(s) — Hn(s) dB(s))Q} — 0, asn, m — 0.

Proof. Because the difference of two step processes is again arstegsg, Lemma 7.4
can be applied téf,, — H,, and this gives the statement. [ |

The following theorem addresses issues (2) and (3), thupletimg our construction of
the stochastic integral.

Theorem 7.6Supposd H,,: n € N} is a sequence of progressively measurable step pro-
cesses andi a progressively measurable process such that

lim E/OOO (Ho(s) — H(s))*ds =0,

n—oo

then

lim / H,(s)dB(s / H(s)dB(s

exists as a limit in thd.?-sense and is independent of the choic¢@f,: n € N}. More-

over, we have
/ H(s)dB(s / H(s (7.2)

Remark 7.7 If the sequence of step processes is chosen such that

Z]E/OOO (H,(s) — H(s))? ds < oo,

then, by (7.2), we ge}_~ | E[([,~ Hn(s) — H(s) dB(s))?] < oo, and therefore, almost
surely,

i {/OOO Hy(s) dB(s) /OOO H(s)dB(s) * < 0.

n=1
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This implies that, almost surely,

oo

lim | Ho(s)dB(s) = /0 ~ H(s) dB(s). o

n—oo 0

Proof of Theorem 7.6. By the triangle inequality H,, : n € N} satisfies the assumption
of Corollary 7.5, and hencgf,~ H,(s) dB(s): n € N} is a Cauchy sequence If. By
completeness of this space, the limit exists, and Corollabyalso shows that the limit is
independent of the choice of the approximating sequence |aih statement follows from
Lemma 7.4, applied té{,,, by taking the limitn — co. [ |

Finally, we describe the stochastic integral as a stoahasticess in time. The crucial
properties of this process are continuity and the martengedperty.

Definition 7.8. Suppose{H (s,w): s > 0,w € Q} is progressively measurable with
Efg H(s,w)?*ds < co. Define the progressively measurable procgdé(s,w): s > 0,
w € Q} by

H'(s,w) = H(s,w) 1{s < t}.

Then thestochastic integral up tot is defined as,
t [e%e}
/ H(s)dB(s) ::/ H'(s)dB(s). S
0 0

Remark 7.9Provided they both exist, the Paley—Wiener integral agne#sthe stochastic
integral just defined, see Exercise 7.1 for more details. o

Definition 7.10. We say that a stochastic proc€ss(¢): ¢ > 0} is amodification of a
processY (t): t > 0} if, for everyt > 0, we haveP{X (t) =Y (¢)} = 1. o

The next result shows that we can modify stochastic integralsuch a way that they
become almost surely continuous in time. From this point bemweferring to the process
{fot H(s)dB(s): t = 0} we will always refer to this modification.

Theorem 7.11 Suppose the procegd! (s,w): s > 0,w € Q} is progressively measur-
able with

t
E/ H(s,w)?*ds < oo foranyt > 0.
0

Then there exists an almost surely continuous modificatio{nf(fi)H(s) dB(s): t > 0}.
Moreover, this process is a martingale and hence
t

E [ H(s)dB(s)=0 foreveryt > 0.
0
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Proof. Fix a large integet, and letH, be a sequence of step processes such that
|H,, — H'||y — 0, and therefore

E[(/OOO (Ho(s) — H'(s)) dB(s)ﬂ 0.

Obviously, for anys < ¢ the random variablg; H,,(u) dB(u) is F(s)-measurable and
f H,(u) dB(u) is independent of (s), meaning that the process

{/t H,(u)dB(u): 0 <t < to}

is a martingale, for every. For any0 < t < ty define

- E[/Oto H(s)dB(s)

sothat{ X (¢): 0 < t < to} is also a martingale and

X(to) = /O " H(s) dB(s)

By Doob’s maximal inequality, Proposition 2.43, foe= 2,

2|, / (o) d(s) = X0) | < 4 /Ot°<Hn<s>—H<s>)dB<s>)2],

which converges to zero, as — oo. This implies, in particular, that almost surely, the
process{ X (t): 0 < t < to} is a uniform limit of continuous processes, and hence centin
uous. For fixed) < t < to, by takingL2-limits from the step process approximation, the
random varlablefO s)dB(s) is F(t)-measurable angftto H(s)dB(s) is independent
of F(t) with zero expectatlon. TherefO[[?f H(s)dB(s) is a conditional expectation of
X (to) givenF(t), hence coinciding withX (¢) almost surely. [

F).

We now have a basic stochastic integral at our disposal. dDbly, a lot of bells and
whistles can be added to this construction, but we refr@imfdoing so and keep focused
on the essential properties and eventually on the apmitsito Brownian motion.

7.1.2 1t6’s formula

For stochastic integration I1td’s formula plays the same &3 the fundamental theorem of
calculus for classical integration. Lgthe continuously differentiable and [0, c0) — R,
then the fundamental theorem can be written as

f(x(t))—f(x(o)):/0 f'(x(s)) da(s)

and this formula holds whenis continuous and of bounded variation. 1té’s formula cffer
an analogue of this for the case thais a Brownian motion. The crucial difference is that
a third term enters, which makes the existence of a secorvhtiee of f necessary. The
next result, a key step in the derivation of this formula,risatension of Exercise 1.16.
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Theorem 7.12Suppose : R — Ris continuoust > 0, and0 = ¢\ < ... <t = tare
partitions of the interval0, t], such that the mesh converges to zero. Then, in probability,

S () (Biegt - B — [ 08

j=1

Proof. Let T be the first exit time from a compact interval. It suffices tove
the statement for Brownian motion stoppedlatas the interval may be chosen to make
P{T < t} arbitrarily small. By continuity off and the definition of the Riemann integral,
almost surely,

tAT
(n) (") (") _

T}LH;OZf AT)) (£, AT - /\T)—/O f(B(s))ds.
It thus suffices to show that

n—1 9 2
lim B( Y F(BUAT)) (B AT) =B AT)) = (12, ATt AT)) ) = 0.

Jj=
Recall that{ B(t)? — t: t > 0} is a martingale, by Lemma 2.47, and hence, foradl s,

E[(B(s) — B(r))* — (s — )| F(r)] =

This allows us to simplify the previous expression as folpw

[

= S B[A(B AT (B AT) — B AT)) — (3, AT — £ AT)) |-

n—1

FBEY AT)) ((BUL AT) = B AT))? = (65, AT =15 A T)))z]

™

1

| <
=l

<.
Il

We can now bound’ by its maximum on the compact interval, and multiplying dug t
square and dropping a negative cross term we get an uppedbwadnich is a constant
multiple of

n—1 n—1
STE[(BU, AT) - B AT) |+ B[ AT -1 AT (73)
j=1 j=1

Using Brownian scaling on the first term, we see that this &sgion is bounded by a
constant multiple of

n—1
n n 2
Z (t§+)1 t;‘ )" <tAn),
j=1
whereA(n) denotes the mesh, which goes to zero. This completes thé proo [ |

We are now able to formulate and prove a first version of Itotelula.
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Theorem 7.13 (Itd’s formula I) Let f: R — R be twice continuously differentiable such
thatE |, f’ (B(s))2 ds < oo for somet > 0. Then, almost surely, for all < s < ¢,

F(B(s)) - F(B(0)) = / 7(B(w) dB(u) + } / 7 (B(w)) du.
0 0
Proof. We denote the modulus of continuity ¢f on [— M, M] by

w(d, M) = swp ()= f"(y).
elul<s

Then, by Taylor's formula, for any, y € [— M, M] with |z — y| < 4,
[f(y) = (@) = f'(2)(y — ) = 51" (@) (y — 2)?| S w(6, M) (y —)*.

Now, for any sequendeé=t; < ... < t, = tWith 5 := maxy<ign—1 \B(ti+1)—B(ti)]
andMp = maxogs<t | B(s)], we get

|3 (BlE)) ~ FBD) - Y 7 (B) (Bltson) - Bit)

ST L(B)) (B(tisr) — B(t:)®| < w(é5, Mp) Y (B(tixr) — B(t:))”.
i=1 i=1

Note that the first sum is simply(B(¢)) — f(B(0)). By the definition of the stochas-
tic integral and Theorem 7.12 we can choose a sequence dfiqrertwith mesh go-
ing to zero, such that, almost surely, the first subtracteah ten the left converges to
fot f'(B(s)) dB(s), the second subtracted term converge%yfat f"(B(s)) ds, and the
sum on the right hand side converges.t8y continuity of the Brownian patly (65, Mp)
converges almost surely to zero. This proves Itd’s formalafiked ¢, or indeed almost
surely for all rational time® < s < ¢. As all the terms in 1té’s formula are continuous
almost surely, we get the result simultaneously fobadl s < t. [ |

Next, we provide an enhanced version of Ité’s formula, whidbws the functionf to
depend not only on the position of Brownian motion, but als@@econd argument, which
is assumed to be increasing in time.

Theorem 7.14 (1td’s formula 1l) Suppos€((s): s > 0} is an increasing, continuous

adapted stochastic process. LetR x R — R be twice continuously differentiable in the
z-coordinate, and once continuously differentiable in gheoordinate. Assume that

B [ [pni(56).c6))] s < .

for somet > 0. Then, almost surely, for afl < s < ¢,
F(BO).4() = £(50),¢0) = [ 0. (Bu).cw) dB(w
S 1 S
+ [ 0B ) dcw + 5 [ 0uaf (B, ¢(0) e
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Proof. To begin with, we inspect the proof of Theorem 7.12 and setgttbarries over
without difficulty to the situation, whelifi is allowed to depend additionally on an adapted
procesg((s): s > 0}, i.e. we have for any partitiors= ¢\ < ... < ti;’ =t with mesh
going to zero, in probability,

n—1 2 ¢
S FBE)CE) (Bl - BE)) — /O F(B(s),¢(s)ds.  (7.4)

j=1

We denote the modulus of continuity f f by

wi(6, M) = sup |0y f (@1, 1) — By f (w2, 12|

—M<zy,20,y1,y2<M
ey —x2|V]yr —y2|<s

and the modulus of continuity @k, f by

wa (0, M) = sup ’amf(xl’yl) - amf(xz,yz)‘-
—M<zy,29,y1,y2 <M
lzy —zo|V]|y1 —ya| <8

Now takez, zo,y, yo € [—M, M]with |z —x0|V|y—yo| < . By the mean value theorem,
there exists a valug € [— M, M] with the property thag — y| V |§ — yo| < d such that

f(y) = f(@,90) = 0y f(2,9) (y — vo),
and hence
’f(xvy) — f(z,y0) — Oy f (0, 90) (y — yo)’ <wi(M,6) (y — vo)-
Taylor’s formula implies that
| f (2, 90)—f (w0, Y0) —0a f (0, Yo) (x—20) — 5 Oze f (0, y0) (z—70)?| < w2 (8, M) (z—m0)>.
Combining the last two formulas using the triangle inegyaliie get that

|f(z,y) = f(x0,90) — By f (20, 0) (¥ — Yo)
— 0uf (20, 90) (x — 20) — 30uaf (0, y0)(z — 20)?| (7.5)
< wi(8, M) (y — yo) + wa(8, M)(x — x0)*.

Now, for any sequenceé=t; < ... < t,, = t define

0= | Jhax |B(tis1) — B(t)| A \rax [C(ti1) = C(t)

9

and

M := max |B(s)| A max [((s)].

0<s<t 0<s<t
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We get from (7.5),

]f(B(t%C(t)) — f(B(0),¢(0)) — Z_:axf(B(ti),C(ti)) (B(tiz1) — B(ts))
n—1
=Y 0, f(B(t:), C(t:) (C(tigr) — C(t:))
i=1

-3 z_:amf(B(ti),C(ti)) (B(tis1) — B(ti))Q‘

n—1

2
< wi (8, M)(C() = C(0)) + w2 (6, M) Y (B(tis1) — B(t:)” .
i=1
We can choose a sequence of partitions with mesh going to gech that, almost surely,
the following convergence statements hold,

o the first sum on the left converges 09, f (B(s), ((s)) dB(s) by the definition of the
stochastic integral,

e the second sum on the left convergesfjoayf(B(s), ¢(s)) d¢(s) by definition of the
Stieltjes integral,

e the third sum on the left converges%ofg Ouaf(B(s),((s)) ds by (7.4),

¢ the sum on the right hand side converges by Theorem 7.12.

By continuity of the Brownian patty; (5, M) andws (6, M) converge almost surely to zero.
This proves the enhanced It6’s formula for fixecdnd looking at rationals and exploiting
continuity as before, we get the result simultaneously fiod & s < t. [ |

With exactly the same technique, we obtain a version of fd@'mula for higher dimen-
sional Brownian motion. The detailed proof will be an exsegisee Exercise 7.4. To give
a pleasant formulation, we introduce some notation fortions f: R%*™ — R, where
we interpret the argument as two vectars; R? andy € R™. We writed; for the partial
derivative in direction of thgth coordinate, and

vxf: (alfa"'7adf) and Vyf: (ad+lfa"'7ad+mf)

for the vector of derivatives in the directions:ofrespectivelyy. For integrals we use the
scalar product notation

t d

Vo f(B(u),((w) - dB(u) =Y | i f(B(u),{(u)) dBi(w),

0 i Jo

and
| 9t (B.cw) - dcw =3 [ 0w (B, cw) i)

Finally, for the Laplacian in the-variable we write

d
Anf =) 05f.
j=1
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Theorem 7.15 (Multidimensional Itd’s formula) Let{B(t): ¢t > 0} be ad-dimensional
Brownian motion and suppodé(s): s > 0} is a continuous, adapted stochastic process
with values inR™ and increasing components. Lt R — R be such that the partial
derivatives); f andd;, f existforalll < j, k < d,d+1 < i < d+m and are continuous.

If, for somet > 0,

t 2
E/O |Vaf(B(s),((s))|" ds < o0,

then, almost surely, for all < s < ¢,

F(B(s).¢(5)) — F(B0).¢(0)) = / "V F(Bu). C(w)) - dB(w)

. s (7.6)

+ / V£ (Bu), C(w) - dC(u) + & / Ao f(B(w), C(u)) du.
0 0

Remark 7.16As the Itd formula holds almost surely simultaneously fotiadess € [0, ¢],

it also holds for stopping times bounded bySuppose now that: U — R satisfies the
differentiability conditions on an open sét, and K C U is compact. Take a smooth
functiong: R™ — [0, 1] with compact support insid&, such thaty = 1 on K. Then

* = fg: R™ — R satisfiesf* = f on K and all relevant derivatives are bounded, so that
the conditions of Theorem 7.15 are satisfied. Tdte the first exit time fronk. Applying
Theorem 7.15 tg™* yields (7.6) forf, almost surely, for all times A T, for s < t. o

To appreciate the following discussion, we introduce allsation of the notion of a mar-
tingale.

Definition 7.17. An adapted stochastic proce§& (t): 0 < ¢ < T'} is called alocal
martingale if there exist stopping times,,, which are almost surely increasing®o such
that{X (¢t AT,,): t > 0} is a martingale, for every. o

The following theorem is a substantial extension of Corgl&53.

Theorem 7.18Let D C R¢ be a domain angf: D — R be harmonic onD. Suppose
that {B(t): 0 < ¢ < T} is a Brownian motion started inside and stopped at the timE
when it first exits the domaif.

(a) The procesg f(B(t)): 0 < ¢ < T} is alocal martingale.
(b) If we have

tAT
E/ |Vf(B(s))|2ds<oo forall ¢ > 0,
0

then{f(B(t AT)): t > 0} is a martingale.

Proof. Suppose thak(,,, n € N, is an increasing sequence of compact sets whose
union isD, and letT,, be the associated exit times. By Theorem 7.15 in conjunetitim
Remark 7.16,

F(B(tAT,)) = 1(B(©)) + /O "VF(B(s)) - dB(s)
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whence{f(B(t A T,)): t > 0} is a martingale, which proves (a).
Obviously, almost surely,

f(B(tAT)) = Lim F(BAT,)). (7.7)

For anyt > 0, the proces§ f(B(t A T,,)): n € N} is a discrete-time martingale by the
optional stopping theorem. By our integrability assummptio

TAt

E[f(B(tAT))"] = E/OT"M V£ (B(s))|* ds < E/O V£ (B(s))|* ds < o,
so that the martingale E2-bounded and convergence in (7.7) holds intHesense. Tak-
ing limits in the equation
E[f(BEATw)) | F(sAT,)] = f(B(sAT,)), form >n andt > s,
first form 1 oo, thenn T oo, gives

E[f(BEAT))|F(sAT)] = f(B(sAT)), fort > s.

This shows thaf f(B(t AT')): t > 0} is a martingale and completes the proof. [

Example 7.19The radially symmetric functions (related to the radialgudial),

1 if d=
f(x):{ oglz| i 2,

|z|2=4  if d > 3.

are harmonic on the domalf'\ {0}. For ad-dimensional Brownian motiof\B(t): t > 0}
with B(0) # 0, the proces$ f(B(t)): t > 0} is however not a martingale. Indeed, itis a
straightforward calculation to verify that

tliTmIEllog|B(t)\ = 00, if d=2,

and
tliTmIEHB(t)\z*d] =0, if d> 3,

contradicting the martingale property. Hence the intedjtploondition in Theorem 7.18(b)
cannot be dropped without replacement, in other words d toagtingale is not necessar-
ily a martingale. o

7.2 Conformal invariance and winding numbers

We now focus on planar Brownian motidB(¢): ¢ > 0} and formulate an invariance
property which is at the heart of the réle of Brownian motiontlie context of planar
random curves. Throughout this section we use the iderttditaf R? and C and use

complex notation when it is convenient.
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To motivate the main result suppose tifatC — C is analytic, i.e. everywhere complex
differentiable, and writ¢f = f; + if; for the decomposition of into a real and an imag-
inary part. Then, by the Cauchy—Riemann equationg = 0o f: anddsf; = —04 fa,
we haveA f; = Afy = 0. Then Ité’s formula (if applicable) states that almost $yrer
everyt > 0,

F(B(1) = / 1'(B(s)) dB(s),

wheredB(s) is short ford B (s) 4+ idBa(s) with B(s) = Bi(s) +iBz(s). The right hand
side defines a continuous process with independent incitspaamd it is at least plausible
that they are Gaussian. Moreover, its expectation vanishes

B( [ 1) ame)| =k [ 17 Be)) .

suggesting thaf f(B(t)): t > 0} is a Brownian motion ‘travelling’ with the modified
speed

— oy s))1% ds.
| /Olf(B())\d

To turn this heuristic into a powerful theorem we allow thadtion to be an analytic map
f: U — V between domains in the plane. Recall that such a map is cal&drmal if it
is a bijection.

Theorem 7.20Let U be a domain in the complex plane,e U, and letf: U — V be
analytic. Let{ B(¢): t > 0} be a planar Brownian motion started inand

7 =inf {t > 0: B(t) ¢ U}

its first exit time from the domaiti. Then the procesgf(B(t)): 0 < ¢ < 7y} is a time-

changed Brownian motion, i.e. there exists a planar Browm@otion{ B(¢): ¢ > 0} such
that, for anyt € [0, 7¢/),

FB(#) = BE(1),  where  ((t) = / |7 (B(s))[*ds.

If, additionally, f is conformal, ther () is the first exit time from’ by { B(t): ¢ > 0}.

Remark 7.21Note that, ag is complex differentiable, the derivative f (x) is just multi-
plication by a complex numbef’(x), and f can be approximated locally aroundy its
tangent: — f(x) + f'(z)(z — z). The derivative of the time change is

2

oC(t) = |/ (BW)? = (91 f1(BE))* + (9£1(B(£)*. o

Remark 7.22 The famousRiemann mapping theorestates that for any pair of simply
connected open set§ V' C C there exists a conformal mappinfg U — V, see, e.g.,
[Ru87] or [Ah78]. This ensures that there are plenty of exesifor Theorem 7.20. ¢
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Proof. Note first that the derivative gf is nonzero except for an at most countable set of
points, which does not have a limit pointin. As this set is not hit by Brownian motion,
we may remove it fron/ and note that the resulting set is still open. We may theeefor
assume thaf has nonvanishing derivative everywherelén

We may also assume, without loss of generality, thas a mapping betweehounded
domains. Otherwise choodé, C K, C U such thatlU, is open withl /U, = U
and K,, is compact, which implies thak,, = f(U,) is bounded. Then the process
{f(B(t)): t < 1y, } is atime-changed Brownian motion for all and this extends imme-
diately to the proces§f (B(t)): t < v }.

The main argument of the proof is based on stochastic irtiegraRecall that the Cauchy—
Riemann equations imply that the vectdvs; and V f, are orthogonal andlV f1| =

[V f2| = | f'|. We start by defining for each> 0, a stopping time

o(t)=inf{s>0: ((s) > t},

which represents the inverse of the time change {IBt): ¢ > 0} be a Brownian motion
independent of B(t): t > 0}, and define a procesdV (¢): t > 0} by

W(t) = f(B(a(t) Av)) + B(t) — B(t A{(1r)),  fort > 0.
In rough words, at the random tingér;) an independent Brownian maotion is attached at
the endpoint of the procegg (B(c(t))): 0 < ¢t < ((7v)}. Denote byg(t) theos-algebra
generated bW (s): s < t}. It suffices to prove that the proce§®/ (¢): ¢ > 0} is a
Brownian motion.
It is obvious that the process is continuous almost suretyhemce it suffices to show that
its finite dimensional distributions coincide with thoseasoBrownian motion. Recalling

the Laplace transform of the bivariate normal distributitims is equivalent to showing
that, for any0 < s < tand\ € C,

B[00 ()] = exp (JAR(E— ) + (0 V().

where we have usefl , -) to denote the scalar product. This follows directly once we
show that, forr € U,

E[e™W O [W(s) = f(2)] = exp (5 AP (t = 5) + (A, (). (7.8)
For simplicity of notation we may assume= 0. For the proof we first evaluate the
expectation with respect to the independent Brownian mdti®(¢): ¢ > 0} inside, which
gives

E[¢NWO) [W(0) = f(x)]
=E, exp ((\, f(B(a(t) Amv))) + 3AP (t = ¢(o(t) A ).
We use the multidimensional 1té’s formula for the boundegpiag
F(z,u) = exp (A, f(2)) + 3 NPt =),
which is defined oV x (—1,00), see Remark 7.16. To prepare this, note that? =
[0:i9 + (0:9)?e9] and hence
Aef = [Ag+|Vg[*] . (7.9)
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Forg = (\ f) we haveVg = S22 | A,V f;, which implies|Vg|? = |\ |f'|* as the
vectorsV f; are orthogonal with nornif’|. Moreover,Ag = 0 by the analyticity off.
Applying (7.9) gives

AN = NP [ (@)? N
Moreover, we have
uexp (5 A2 (t—u)) = —5 (A exp (A2 (t —u)) .

We now letU,, = {z € U: [z —y| > L forally € oU}. Then|f'(z)| is bounded
away from zero or/,, and therefore the stopping tinfe = o(¢) A 7y, is bounded. The
multidimensional version of Ité’s formula gives, almostely,

F(B(T).(T)) = F(B(0).¢(0)) + / V.F(B(s).(s)) -dB(s)

/6'UF /AF ,(s)) ds.

Looking back at the two preparatory displays and recalliveg d¢ (u) = |f/(B(u))|* du
we see that the two terms in the second line cancel each ditating use of bounded
convergence and the fact that the stochastic integral hasxpectation, see Exercise 7.2,
we obtain that

E[eMW O W (0) = f(2)] = E.[F(B(o(t) Av), {(o(t) ATy))]
= lim E,[F(B(T),((T))] = F(z,0) = exp (3|A*t + (X, f(2))) .

n—00

This shows (7.8) and thus completes the proof of the maiersitt. It remains to note
that, if f is conformal then as T 7, the pointf(B(t)) converges to a boundary point st
Hence((7y) is the first exit time fronl” by the proces$B(¢): t > 0}. ]

As a first application we look at harmonic measure and exjidonformal invariance in
order to give an explicit formula in an interesting specede.

Theorem 7.23 Supposé/, V' C R? are domains ang': U — V is continuous and maps
U conformally intoV/.

(@ Ifzel, then,u'(’)U(xv ) o fil - ,ua\/(f(x)v )

(b) Suppose additionally thdf = K° andV = L° are the complements of nonpolar
compact sets andim f(z) = oo. Then

pr o f~h = pr.

Proof. () follows from Theorem 7.20 together with the continuifyfoon U, which
ensures that the first hitting point 617 by a Brownian motion is mapped onto the first
hitting point of OV by its conformal image. For (b) take the limit— oo and recall The-
orem 3.46. [ |



7.2 Conformal invariance and winding numbers 205

Example 7.24We find the harmonic measure from infinity on the unit interval

[0,1] ={z+iy: y=0,0 <z < 1}.
The starting point is the harmonic measure on the citd3¢€0, 1), which we know is the
uniform distributionco. Let U be the complement of the unit bafi(0,1) and V' the
complement of the interval-1, 1], and take the conformal mapping

FUSV, f(z):%(z—i—%),

which satisfies our conditions. Henego f~! is the harmonic measure dr1,1]. If
z=x+iy=cosh+isinf € AB(0,1), then|f'(z)|? = sin? 4, and hencef’(z)| = |y| =
V1 —22. Recalling that every: € [—1, 1] has two preimages, we get that the density of
wo f~latx =cosfis

2 1 1

2 @]~ 7 Vi—a?
MappingV’ via z — 22 onto the complement df, 1], noting that| /()| = 2|z| and that
again we have two preimages, we obtain that the harmonicureeas|0, 1] is

1 1
dpjo,1)(z) = - m dz,

which is the Betés, 1) distribution. o

As a further important application of conformal invariawee calculate the probability that
a planar Brownian motion exits a cone before leaving a dese Fégure 7.1.

Fig. 7.1. The Brownian path does not exit the cone before leaving the dis

Theorem 7.25Leta € (0, 27] and denote byl [«] an open cone with vertex in the origin,
symmetric about the-axis, with opening angle. Let{B(¢): t > 0} be planar Brownian
motion started inc = (1,0), and denot&’(r) = inf{¢ > 0: |B(t)| = r}. Then, forr > 1,

P{B[0,T(r)] C W[a]} = % arctan (22:7%) .

ra —
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Proof.  For ease of notation we identif? with the complex plane. In the first step we
use the conformal map: Wa] — W/r] defined byf(x) = 2™/ to map the cone onto
a halfspace. LeB* = f o B, which by conformal invariance is a time-changed Brownian
motion started in the poinB*(0) = 1. We thus have that

{B[0,T(r)] € W[a]} = {B*[0,T("/*)] ¢ W]},

It therefore suffices to show the result in the case= 7. So let{B(t): t > 0} be a
Brownian motion started ilB(0) = 1 and look at the stopping tim§ = min{¢>0:
Re(B(t))<0}. We use reflection on the imaginary axis, i.e. fdr, y) = (—x,y) we let

_ [ B@)  ft<s,
B(t){ F(B() ift>S.

Then B is a Brownian motion started il(0) = 1 and, denotingl'(r) = inf{¢>0:
|B(t)| = r}, we have
P{Re(B(T(r))) > 0}
=P{Re(B(T'(r))) > 0,T(r) < S} +P{Re(B(T'(r))) > 0,T(r) > S}
= P{T(r) < S} + P{Re(B(T'(r))) < 0}.
As {T'(r) < S} is the event whose probability we need to bound, it just resto find
P{Re(B(T'(r))) > 0} — P{Re(B(T'(r))) < 0}.

By Brownian scaling we may assume that the Brownian motiestaged atB(0) = 1/r
andT = min{t > 0: |B(t)| = 1}. We apply the conformal map

z—1/r
: 1) — 1 =
J:BO) = BOY, ()= 7
which is a Mdbius transformation mapping the starting pointhe Brownian motion to
the origin and fixing the point. As this maps the segmefit € 953(0,1): Re(z) < 0}

onto a segment of lengtharctan T;ﬁl we obtain the result. [ |

The next result represents planar Brownian motion in palardinates. Again we identify
R? with the complex plane.

Theorem 7.26 (Skew-product representationpuppose B(t): ¢ > 0} is a planar Brow-
nian motion withB(0) = 1. Then there exist two independent linear Brownian motions
{W;(t): t > 0}, fori = 1,2, such that

B(t) = exp (W1 (H(t)) + iWa(H(t))), forall ¢ >0,

where

H(t)= /Ot |Bf(l§)|2 :inf{u >0: /Ouexp(2W1(s))ds > t}.

Remark 7.27 By the result, both the logarithm of the radius, and the caus deter-
mination of the angle of a planar Brownian motion are timasgfed Brownian motions.
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The time-change itself depends only on the radius of thean@thd ensures that the angle
changes slowly away from the origin, but rapidly near thegiori o

Proof. Note first thatH (¢) itself is well-defined by Corollary 2.26. Moreover, the
claimed equality forH (¢) follows easily from the fact that both sides have the sameeval
att = 0 and the same derivative.

As the continuous processé®/, (¢): ¢ > 0} and{Wx(¢): ¢ > 0} can be constructed
uniquely from{B(¢): ¢ > 0} and vice versa we may start with a planar Brownian motion
{W(t):t > 0} and letW (t) = Wi(t) + i Wa(t) be its decomposition into real and
imaginary part. It suffices to show that the procésX¢): ¢ > 0} constructed from this
pair of linear Brownian motions is a planar Brownian moti&y. Theorem 7.20,

exp (W(t)) = B(((1)), (7.10)

where{B(t): ¢t > 0} is a planar Brownian motion and

t
¢(t) = /0 exp(2W1(s)) ds.
By definition H is the inverse function of. Hence, using (7.10) far= H(s), we get
B(s) = exp (W(H(s))) = exp (Wl(H(s)) +i Wg(H(s))),

which is the desired result. [ ]

Example 7.28By the skew-product representation, for a planar Browniation { B(t):

t > 0}, we havelog |B(t)| = W1 (H(t)) and hence the proce$bg |B(t)| : t > 0} is
a time-changed Brownian motion in dimension one. Howesralt from Example 7.19
that it isnota martingale. S

For further applications, we need to study the asymptofitiseorandom clockd (¢t) more
carefully. To state the next result 1€¥1(¢): ¢ > 0} be a linear Brownian motion as
in Theorem 7.26 and, far > 0, let {W(¢): t > 0} be the Brownian motion given by
W(t) = a~1W;(a®t). For each such Brownian motion we look at the first hittingetiof
levelb, defined ag* = inf{t > 0: W{(¢t) = b}.

Theorem 7.29For everys > 0 we have

. 4H(t) 1 logt
lim P ‘ _TE
{ (log t)? !

>5}:O.

t—o0o

The proof uses the following simple fact, sometimes knowhagdace’s method

Lemma 7.30For any continuous': [0,¢] — R andt > 0,

lim 1logA exp(af(v))dv = max f(s).

aToo @ 0<s<t
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Proof. The upper bound is obvious, by replacifigoy its maximum. For the lower
bound, lets € [0, ¢] be a point where the maximum is taken. We use continuity tq ford
anye > 0, some0 < § < 1suchthatf(r) > f(s)—eforallr € (s—d,s+4). Restricting
the limit to this interval gives a lower bound ofaxo<s<; f(s) — ¢, and the result follows
ase > (0 was arbitrary. [}

Proof of Theorem 7.29. Recall thati?; (0) = 0. We abbreviate = a(t) = 1 logt. As
we have, for any > 0,

. 1logt 1logt .
E%P{leﬁ ~ T > 5 = 15%1@{:@5 ~T. > 6} =0

it suffices to show that

AH(t L lon AH(t .
limP{A > T2 1"“} —0, and lim P{J < T2 W} —0.
tToo

(logt)z = ~1te ttoo L(logt)2 = "17¢
We first show that
. 4H(t) slogt)
lim P{W > TR } —0. (7.11)
We have

(g > 7} ={ [ i <

1 CLQTIG'JFE
= {— log/ exp(2W1(u)) du < 1},
0
recalling thata = § log t. Note now that

1
—1
2a

a2T10'+5 Ty .
og/ exp(2W1(w)) du = + — 1og/ exp(2aW7(u)) du,
0
and the right hand side has the same distribution as

1 1 Tive
Oia + % log/o exp(2aW1i(u)) du.

Laplace’s method gives that, almost surely,

1 T11+/—:
lim — 1og/ exp(2aWi(u))du = sup Wi(s)=1+e.

aleo 2a 0 0<s<T .
Hence,
1 1 Tive
lim ]P’{‘ 8%, - log/ exp(2aWi(u))du — (1 4+ E)‘ > 5} =0.
aToo a 2a 0

This proves (7.11). In the same way one can show that

4H(t) Llogt
t%g P{ (logt)? . }

and this completes the proof. [ |

:0’
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Remark 7.31As {W{(t): t > 0} is a Brownian motion for every > 0, the law of T}
does not depend an> 0. Therefore, Theorem 7.29 implies that

4H(t) 4

—_

(log)? a
whereT; = inf{s > 0: W(s) = 1}. The distribution of7; is, by Theorem 2.35 given by
the density(27s%)~1/2 exp(—1/(2s)). o

We are now able to determine the asymptotic law of the windimgbers)(t) = W, (H(t))
of a planar Brownian motion, &s— oc.

Theorem 7.32 (Spitzer's law)For anyz € R,

2 v dy
lim Py — < = _—.
P {logt o(t) m} /Oo m(1+4y2)

In other words, the law of% converges to a standard symmetric Cauchy distribution.
Proof. We define{Wg(t): t > 0} by W¢(t) = (1/a)Wa(a?t). Then,
a tO(t) = a "Wo(H(t)) = Wi(a 2H(L)).

By Theorem 7.29 and the uniform continuity §f’$'(¢): ¢ > 0} on compact sets we get,

fora = a(t) = 3logt,

200
tlg{)l@[?’{‘ logt —W (TI)

> e} = lim P{|Wg (29) - wg (17)

{00 (logt)?

>8}=0.

The law of the random variabl#’§ (T7*) does not depend on the choice«f By Theo-
rem 2.37, see also Exercise 7.5, it is Cauchy distributed. [ |

7.3 Tanaka's formula and Brownian local time

In this section we establish a deep connection betweenftifrisula and Brownian local
times for linear Brownian motiofB(¢): ¢ > 0}. The basic idea is to give an analogue of
[td’s formula for the functionf: R — R, f(¢) = |t — a|. Note that this function is not
twice continuously differentiable, so Ité’s formula cahbe applied directly.

To see what we are aiming at, let’s apply Itd’s formula infaftp We have in the distri-
butional sense thaf’(x) = sign(z — a) and f”(z) = 26,. Hence Itd’s formula would
give

t

[B(t) — a| - [B(0) - a| = / sign(B(s) — a) dB(s) + / 5.(B(s)) ds,

0

The last integral can be interpreted as the time spent by Beswmotion at level and
hence it is natural to expect that it is the local tif&(t). Tanaka’s formula confirms this
intuition.
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Theorem 7.33 (Tanaka’s formula)Let { B(t): ¢ > 0} be linear Brownian motion. Then,
for everya € R, almost surely, for alt > 0,

IB(t) — a| - |B(0) — a| = / sign(B(s) - a) dB(s) + L(1),

wheresign = = 1,50} — L{z<0}-

Remark 7.34There is an easy analogue of Tanaka’s formula for simpleaanaalk on
the integers, see Exercise 7.8. o

Tanaka’s formula can be used to generalise It6’s formulanations which are not twice
continuously differentiable.

Corollary 7.35 Suppose thaf: R — R is twice differentiable such that' has compact
support, but do not assume thét is continuous. Then

t t
F(B()) - F(B(0)) = / F(B(s)) dB(s) + 1 / (B(s)) ds.
0 0
Proof. Under our assumptions gfithere exist constants ¢ such that
flx) =13 /Sign(m —a) f"(a)da+ candf(z) = § / |z —a| f""(a)da + cx + b.

Integrating Tanaka's formula with respectgf” (a) da and exchanging this integral with
the stochastic integral, which is justified by Exercise @ifes

f(B(#) - f(B(0) = /Ot f'(B(s)) dB(s) + 3 /L“(t) f"(a)da.
By Theorem 6.18 the last term equél%t f"(B(s)) ds. [ |
For the proof of Tanaka'’s formula we define, for fixed R,
L%(t) := | B(t) — a| — |B(0) — a| — /Ot sign(B(s) —a)dB(s) fort >0,
and show that this represents the density at pooiftthe occupation measure.

Lemma 7.36For everyt > 0 anda € R,

t
L(t) = lim © L(a,ate)(B(s))ds,  in probability.

elo € Jo
Proof. Using the strong Markov property the statement can be reftac¢he case
a = 0. The main idea of the proof is now to use convolution to makemooth, and then
use It6’s formula for the smooth function. For this purpaseall that, for any > 0 we
can find smooth functiong, : R — [0, 1] with compact support such that< 15 1) < h
and[g=1-4, [ h =1+ 4. This reduces the problem to showing that

t

LO(t) = lig)lé f(e7'B(s))ds, in probability,
€ 0
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for f: R — [0, 1] smooth, with compact supportjr-1,2] and [ f = 1. Let

folw) =& / @ — a f(e'a) da = / o — cal f(a) da.

The function f. is smooth. Moreoverf.(z) = [sign(z — ea)f(a)da and f/(z) =
2e " f(e o).
Ité’s formula gives

F-(B(®) — £.(B(0)) - / f1(B(s)) dB(s) = e / fE Bs) ds.  (7.12)

Now we lete | 0 for each term. From the definition ¢f we infer that| /. (z) — |z|| < 3e.

In other words,f.(x) — |«| uniformly and this ensures convergence in probability ef th
first two terms on the left hand side of (7.12). To deal withtthied term, we observe that,
forx #£ 0,

fl(z) = /sign(x — ¢a) f(a)da — sign(z) ase | 0.

Now we use the isometry property (7.2) to infer that
B[ ( [ sim(Bs)aB(s) - [ 11801 dB(s)) |
— & [ (sian(B(s) - f1(B() ds
0

The right hand side converges to zero by the bounded comeegbeorem. Hence we
have shown that, in probability,

timet [ g B(s) ds = lim £.(B(0) ~ £(BO) - | fB() Bl

10

=[B()] - |B(0)| 7/0 sign(B(s)) dB(s) = L°(t). u

Proof of Theorem 7.33. First fix t > 0 and recall from Theorem 6.19 that, almost
surely, the occupation measyug given by p,(A) = fg 14(B(s)) ds has a continuous
density given by{L*(t): a € R}. Therefore, for every € R, we have

. pe(a,a+¢) 1t

L) =lim———= =lim— | 1(4.a4e)(B(8))ds.

(t) lim 6 ;?015()(,”( (s))ds

On the other hand, givem € R, by Lemma 7.36 there exists a sequenge 0 such that,
almost surely,

1 t
Lot) = lim — [ (g are(B(s))ds.
(0= tim = [ 2o (B(s) ds
Hence, for everys € R andt > 0, we haveL®(t) = L°(t) almost surely. Finally, for
anya € R, both the local time{L%(t): t > 0} and{L%(t): t > 0} are almost surely
continuous and therefore they agree. [ |
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Corollary 7.37 For everya € R, almost surely, for alt > 0,

LLo(t) = (B(t) - a)* — (B(0) - a)* — / L (eysa 4B(s),

and
t

L) = (B — ) — (BO) ) + [ poen dBG).
0

Proof. The right sides in these formulas add ugit(¢), while their difference is zera

We now use Tanaka’s formula to prove Lévy's theorem desuilthe joint law of the
modulus and local time of a Brownian motion.

Theorem 7.38 (Lévy)The processes
{(B®),LO(t):t =0} and  {(M(t) - B(t),M(t)): t > 0}

have the same distribution.

Remark 7.39This result extends both Theorem 2.34 where it was showititbadrocesses
{IB(t)|: t > 0} and{M (t) — B(t): t > 0} have the same distribution, and Theorem 6.10
where it was shown thatL?(¢): ¢t > 0} and{M (t): t > 0} have the same distribution.
Exercise 6.2 suggests an alternative proof using randotkmethods. o

As a preparation for the proof we find the law of the processmylyy integrating the sign
of a Brownian motion with respect to that Brownian motion.

Lemma 7.40For everya € R, the proces§W (t): ¢t > 0} given by

t
W(t) = / sign(B(s) — a) dB(s)
0
is a standard Brownian motion.

Proof. Assume, without loss of generality, that< 0. Suppose thal’ = inf{t >

0: B(t) = a}. ThenW (t) = B(t) forallt < T and hencgW(¢): 0 < ¢t < T}isa
(stopped) Brownian motion. By the strong Markov property mocess{ﬁ(t): t > 0}
given by B(t) = B(t + T) — a is a Brownian motion started in the origin, which is
independent of W (t): 0 <t < T}. As

W(t+T)=W(T)+ /t+T

t
sign(B(s) — ) dB(s) = B(T) + / sign(B(s)) dB(s),

T 0
it suffices to show that the second term is a Brownian motiaiotoplete the proof. Hence
we may henceforth assume that= 0. Now fix 0 < s < ¢ and recall thatV (t) — W (s)
is independent ofF (s). For the proof it hence suffices to show th&t(t) — W (s) has
a centred normal distribution with varian¢e- s. Chooses = {" < ... < t3’ =t
with meshA(n) | 0, and approximate the progressively measurable probdss =

sign(B(u)) by the step processes

Hy(u) = sign(B(t")) if 157 < u <t
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It follows from the fact that the zero set of Brownian moti@na closed set of measure
zero, thatim E jf(Hn(u) — H(u))?du = 0, and hence
t

W(t) — W(s) = / H(u)dB(u) =L?— lim [ H,(u)dB(u)

n—oo
Js

n—o0 4

=12 = Jim 32 sign(B(t5”)) (B) - B)).

From the independence of the Brownian increments and elamygproperties of the nor-
mal distribution, one can see that the random variables erritht all have a centred
normal distribution with variance— s. Hence this also applies 1 (¢t) — W (s). ]

Proof of Theorem 7.38. By Tanaka’s formula we have
t
B(#)] = / sign(B(s)) dB(s) + LO(t) = W (t) + L°(¢) .
0

Define a standard Brownian motidV/ (¢): ¢ > 0} by

W(t) = -W(t) forall ¢t > 0,
and let{ M (t): t > 0} be the associated maximum process. We show that

M (t) = LO(t) forallt > 0,
which implies that{(|B(t)|, L°(t)): t > 0} and{(M(t) — W (t), M(t)): t > 0} agree
pointwise, and the result follows as the latter processesgiredistribution with

{(M(t) — B(t), M(t)): t > 0}.

To show thatV/ (t) = L°(t) we first note that

W (s) = L°(s) = |B(s)| < L(s),

and hence, taking the maximum over @k ¢, we getM (t) < L°(t). On the other hand,
the procesg{L°(¢): t > 0} increases only od¢: B(t) = 0}, and on this set we have
LO(t) = W (t) < M(t). Hence the proof is complete, §1(t): t > 0} is increasing. ®

7.4 Feynman—Kac formulas and applications

In this section we answer some natural questions about Baownotion that involve time.

For example, we find the probability that linear Brownian iooExits a given interval by a
fixed time. Our main tool is the close relationship betweenekpectation of certain func-
tionals of the Brownian path and the heat equation with pagn term. This goes under
the name ofFeynman—Kac formulaand the theorems that make up this theory establish a
strong link between parabolic partial differential eqoat and Brownian motion.

Definition 7.41. Let U C R< be either open and bounded, Br = R?. A twice
differentiable functioru: (0,00) x U — [0, 00) is said to solve théeat equation with
heat dissipation rateV: U — R and initial conditionf: U — [0, c0) onU if we have
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o lim u(t,z) = f(xo), whenever, € U,

t10

o lim u(t, ) = 0, whenever, € U,

t—tq

e du(t,z) = 1A u(t,z) + V(z)u(t,z) on(0,00) x U,

where the Laplaciarh,, acts on the space variables o

Remark 7.42The solutionu(¢, =) describes the temperature at timat = for a heat flow
with coolingwith rate—V (x) on the sef{z € U: V(z) < 0}, andheatingwith rateV (z)
onthe sef{z € U: V(z) > 0}, where the initial temperature distribution is given pir)
and the boundary df is kept at zero temperature. o

Instead of going for the most general results linking the bgaation to Brownian motion,
we give some of the more basic forms of the Feynman—Kac fanagether with appli-
cations. Our first theorem in this spirit, an existence ttgsulthe heat equation in the case
U = R?, will lead to a new, more analytic proof of the second arctime Theorem 5.28.

Theorem 7.43 Supposé’ : R? — R is bounded. Then: [0, 00) x R — R defined by

u(t,z) = EI{ exp (/Ot V(B(r)) dr)} ;

solves the heat equation @t with dissipation raté/ and initial condition one.

Proof.  The easiest proof is by a direct calculation. Expand the esptial in a power
series, then the terms in the expansionafe:, t) :== 1 and, forn > 1,

n(2,1) = ;!Ew{/ot--~/OtV(B(t1))"'V(B(tn))dtl...dt”}
:]Ez[/otdtl /ttdtQ...[ it V(B(t2)) -+ V(B(t))]

t t n
o [ [
0 t

dty, H V() Hp(ti —tio1, Tim1,T4)
n-1 =1

i=1
with the conventiongy = x andt¢y = 0. Using%Azp(tl,a;xl) = Oy, p(t1,z,z1) and
then integration by parts we get

1 t
§Azan(x) = /d.’LlV(iL'l)/ dtlatlp(tl,lﬂ,$1)an,1($1,t—tl)
. 0

_ —/dml‘/(xl)/o dtrp(tr, 2, 21)00, an 1 (2,1 — 1) — V(@) an1 (2, 1)
= Oran(z,t) = V(2) an—1(z,t).

Adding up all these terms, and noting that differentiatioder the summation sign is
allowed, verifies the validity of the differential equatiofihe requirement on the initial
condition follows easily from the boundednessiaf [ |
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As an application we give a proof of the second arcsine lawpfém 5.28, which does not
rely on the first arcsine law. We use Theorem 7.43 Witlx) = A 1jg o) (). Then

t
u(t,z) = E, {exp ( - /\/ 10,00)(B(5)) ds)}
0
solves
Owult,z) = £ Oppu(t, ©) — A o) (z) u(t, z) u(0,z) = 1forallz € R.

To turn this partial differential equation into ordinaryffdrential equations, we take the
Laplace transform

g(z) = / u(t,z) e Ptdt,
0
which satisfies the equation

pg(x) + AV (x)g(x) — 59"(x) = 1.
This can be rewritten as
(p+ XN g(x) = 59" (x) =1ifz>0,
pg(z) —1g¢"(z) =1if 2 <0.
Solving these two linear ordinary differential equationgeg

g(x) = %ﬂ + AeV?T 4 BemVTif 2> 0,

g(x) = % +C eV 4 De V2T if 1 < 0.
As g must remain bounded as | oo, we must haved = D = 0. Moreover,g must

be continuously differentiable in zero, hen€eand B can be calculated from matching
conditions. After an elementary calculation we obtain

1

Volp+ )

9(0) =

On the other hand, with

X0 =7 [ Lo (Bls)ds

we have, using Brownian scaling in the second step,
g(0) = Eq [/ exp (— pt — MX(t)) dt}
0

:EO[/Oooexp(—pt—)\tX(l))dt} :Eo[m]

Now we letp = 1 and from

Eo[l—i—)\lX(l)} - \/11+7)\

and the expansions
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and

=T 5

1 1 (21 (L 13, 2n—1
/x”fi (1—x)—%dac: (F(2 )1(2) 22 ' 2
0 n+1) n!

we get for the moments of (1), by a comparison of coefficients,

E

X =+ [ e

which by (3.11) in Chapter 2 of [Du95] implies that(1) is arcsine distributed.

Our second version of the Feynman—Kac formula is a uniqusaessilt for the case of zero
dissipation rate, which will allow us to express the probghihat linear Brownian motion
exits an interval before a fixed timen two different ways.

Theorem 7.44 If w is a bounded, twice continuously differentiable solutidérine heat
equation on the domaity, with zero dissipation rate and continuous initial conditig,
then

u(t,z) = E, [g(B(t)) 1t < T}] , (7.13)
wherer is the first exit time from the domain.

Proof. ~ The proof is based on I1td6’s formula, Theorem 7.15, and Reriidrg. We let
K C U be compact and denote bythe first exit time fromk'. Fixingt > 0 and applying
[td's formula with f(z,y) = u(t — y,x) and({(s) = s gives, for alls < ¢,

u(t —s Ao, B(sAo)) —u(t, B(0))
= /0 Vu(t — v, B(v)) - dB(v)

SNo SNo
—/ Opu(t — v, B(v)) dv + %/ Agu(t — v, B(v)) dv.
0 0

As u solves the heat equation, the last two terms on the rightstaHence, taking expec-
tations,

E,[u(t — s Ao, B(s Ao))] = Eg[u(t, B(0))] = u(t, z),

using that the stochastic integral has vanishing expectatExhausting/ by compact
sets, i.e. lettingr T 7, and distinguishing the evenis< o ands > o leads toE, [u(t —
s,B(s)) 1{s < 7}] = u(t, x). Taking a limits 1 ¢ gives the required result. [

As an application of Theorem 7.44 we calculate the prokghiliat a linear Brownian
motion stays, up to time, within an interval. As a warm-up we suggest to look at Exer-
cise 7.10 where the easy case of a halfline is treated. Hereaus bn interval$a, b}, for

a < 0 < b, and give two different formulas for the probability of sitay in [a, b] up to
time t. To motivate the first formula, we start with a heuristic aygamh, which gives the
correct result, and then base the rigorous proof on the Fagriac formula.
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For our heuristics we think of the transition (sub-)density [0,a] x [0,a] — [0, 1] of a
Brownian motion, which is killed upon leaving the inter{@Ja]. In a first approximation
we subtract from the transition densityt, =, y) of an unkilled Brownian motion the tran-
sition density for all the paths that reach ledeBy the reflection principle (applied to the
first hitting time of level0) the latter is equal tp(¢, =, —y).

We then subtract the transition density of all the pathsthath levek, which, again by

the reflection principle, equalgt, x, 2a — y), then add again the density of all the paths
that reach level after hittinga, as these have already been subtracted in the first step. This
gives the approximation term(t, z, y) — p(t,z, —y) — p(t, z, 2a — y) + p(t, x, 2a + y).

Of course the iteration does not stop here (for example we lkauble-counted some
paths that reach levélafter hittinga). Eventually we have to consider an infinite series of
alternating reflections at levellsanda to obtain the density

a(r,y) = Y {p(t,z,2ka+y) —p(t,z,2ka —y)} .

k=—o

Integrating this ovey € [0, a] makes the following theorem plausible.

Theorem 7.45Let0 < 2 < a. Then
P.{B(s) € (0,a) forall 0 < s <t}

- ata—zx a—x ata+x a+x (714)
_ Z{q)(Qk\J;{ )_(I)(Qk\/{ >_¢<2k;{+)+¢(2k\;{ )},

k=—o0

where®(z) is the distribution function of a standard normal distrikmrt.

Proof. The left hand side in (7.14) agrees with the right hand sid€heorem 7.44
for U = (0,a) and f = 1. The series on the right hand side is absolutely convergeut,
hence satisfies the boundary conditions at 0 andxz = a. It is also not difficult to verify
that it is bounded. Elementary calculus gives

O (Zhataze)y - _hate s p(s g oka ta) = § 0y, ®(Hetes),

and similarly for the other summands. Hence termwise difféation shows that the right
hand side satisfies the heat equation. To see that the icatnalition is fulfilled, note that
(ast | 0) the sums over alk > 0 andk < 0 converge to zero. Among the four terms
belonging tak = 0, two terms with positive sign and one term with negative signverge
to one, whereas one term converges to zero. [

The solution of the heat equation is not in the form one wowdtly a naive separation
of variables approach. This approach yields a differenta#tg valuable, expression for
the probability of interest. Indeed, writing(t, ) = v(t)w(x) one expectsv to be an

eigenfunction o% 0z 0N (0, a) with zero boundary conditions. These eigenfunctions are
sin (ArZr=a)) for k even,  cos (ATZI=a)), for k odd,

with eigenvalues-k272/(2a?). As we are only interested in solutions symmetric about
a/2 only the cosine terms will contribute. Forwe are looking for the eigenfunctions of
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0, with the same eigenvalues, which are
exp (— ’“2;; t), for k odd,

and considering the initial condition (and shifting theioesby 7 /2) leads to the solution

oo

4 1 n 2.2 . n T
u(t,x) = = go Tl exp ( - 42-;2) t) sin ((2 '21) ) . (7.15)

Therefore (7.15) is an alternative representation of tiobagoility in (7.14). For practical
purposes this series is more useful wida large, as the convergence is faster, whereas
the series in the theorem converges fast only for small gadfie > 0.

We now prove an elliptic, or time-stationary, version of feynman—Kac formula. This

will enable us to describe the distribution of the total tiegent by a transient Brownian
motion in unit ball in terms of a Laplace transform.

Theorem 7.46Letd > 3 andV : R? — [0, c0) be bounded. Define
h(z) :=E, exp / V(B } .
Thenh: RY — [0, o) satisfies the equation

x)=1- /G(ac,y)V(y) h(y)dy forall z € RY.

Remark 7.47 Informally, the integral equation in Theorem 7.46 implige\h, = VA,
which is also what one gets from letting] co in Theorem 7.43. See also Exercise 2.20
for a converse result in a similar spirit. o

Proof. Define the ‘resolvent operator’

RY f(x) := /ODO e ME, [f(B(t)) e Jo VBED ] gt

Using the fundamental theorem of calculus in the secondvetepbtain
RYf(z)~R} f(z) = E, /OOO dt e =Io VB s £(B(1)) (elo VBN s 1)
=E, /OO dt e M=Jo VIBG)ds ¢(p / V(B(s)) elo V(B dr g
0
Using Fubini’s theorem and the Markov property, we may curgiwith
=E, /OOO dse **V(B(s)) /OOO dt exp (— At — /Ot V(B(s+u))du) f(B(s+1))
=5, [ dse VB B (B() = BV R ),

The functionh is related to the resolvent operator by the equation

S H |4
h(z) = lﬁ% ARy 1(z).
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Letting f = 1 we obtainl — ARY1 = AR (VRY1),and as\ | 0 we get
L= h(a) = BV B)(@) = [ Glo.)V () y)dy. .

We use Theorem 7.46 to give an independent proof of the ireensional case of the
Ciesielski—Taylor identity, which we have obtained frormaam walk considerations in
Theorem 5.35. Key to this is the following proposition.

Proposition 7.48For a standard Brownian motioB(¢): ¢ > 0} in dimension three let
T = [;° 1{B(t) € B(0,1)} dt be the total occupation time of the unit ball. Then

E[e_/\T} = sech(V2\).
Proof. LetV(z) = Alg(o,1) and definei(z) = E,[e~**] as in Theorem 7.46. Then

h(z) =1-A / G(z,y) h(y)dy forall z € R,
B(0,1)

Clearly, we are looking for a rotationally symmetric furmetiz. The integral on the
right can therefore be split into two parts: First, the im&ggverB(0, |z|), which is the
Newtonian potential due to a symmetric mass distributiorBf, |=|) and therefore re-
mains unchanged if the same mass is concentrated at the.d8igtond, the integral over
B(0,1)\ B(0, |z|), which is harmonic on the open b#(0, |=|) with constant value on the
boundary, so itself is constant. Hence, foe 5(0, 1), to

A

1 h(z) = =2
2m|x| Jp(0,j2))

h(y) dy + A / hy)

BO\BO,z) 27yl
With u(r) = rh(x) for |z| = r we have, fol0 < r < 1,
T 1
r—u(r) = 2)\/ su(s)ds + 2)0“/ u(s)ds,
0 T
and by differentiation,” = 2\u on (0, 1). Hence
u(r) = AeVPT 4 BV

The boundary conditions(0) = 0 andu/(1) = 1 give A = 1/(v2X(eV? + e~ V2})) and
B =—A.Then

1
h(0) = lim ulr) =1- 2)\/ u(r) dr
rlo T 0

1 AN (VX L VIR o) 2 _ /X
=1-—AV2X(e¥* +e 2)—em+6_m—sech( 2X),
as required to complete the proof. [ |

Recall that the Ciesielski—Taylor identity, stated in Tiego 5.35, states that the first exit
time from the unit ball by a standard Brownian motion in dirsien one and the total
occupation time of the unit ball by a standard Brownian motiodimensiond = 3 have
the same distribution.
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Proof of the Ciesielski—Taylor identity.  The Laplace transform of the first exit time
from the unitinterval—1, 1) is given in Exercise 2.18. It coincides with the Laplace $ran
form of T given in Proposition 7.48. Hence the two distributions cale. [

Exercises

Exercise 7.18 Show that for” € DI0, 1] the Paley—Wiener integrgq]1 F’dBofLemmal.41
almost surely agrees with the stochastic integral of Défimi7.8.

Exercise 7.28 Suppose{H(s,w): s > 0,w € Q} is progressively measurable and
{B(t): t > 0} alinear Brownian motion. Show that for any stopping tifevith

E{/OTH<S)2CZS} < o,

we have

@) ]E[/OT H(s) dB(s)} =0,

(b) IEK/OT H(s) dB(s))z} :H«:[/OT H(S)st].

Exercise 7.3. Suppose thaf : [0, 1] — R is in the Dirichlet space, i.€f(t) = j(f f'(s)ds
forall ¢ € [0,1] and f’ € L?(0,1). Then, almost surely,

/ ) dB(s) = nl;ngcni (158 - 1) (BED - B(2)).

Exercise 7.48 Give a detailed proof of the multidimensional It6 formuld€brem 7.15.

Exercise 7.58 Give an alternative proof of Theorem 2.37 based on a conflammagping
of the halfplaneq(z,y): « > t} onto the unit disk, which exploits our knowledge of har-
monic measure on spheres.

Exercise 7.68 Let {B(t): t > 0} be a planar Brownian motion. Show thatfif) is the
continuous determination of the angle®ft), we have, almost surely,

liminf 0(t) = —oc0 and limsupé(t) = cc.

tToo tToo

Exercise 7.7.Formalise and prove the statement that, for every 0, a planar Brownian
motion winds around its starting point infinitely often inyaime interval(0, ].
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Exercise 7.8.Show that, for simple random walkS,,: n = 0,1,...} on the integers we
have the following analogue of Tanaka's formula: For every Z, almost surely,

|Sn —a| —|So —a|] = Z&gn S; —a)[Sj41 — Sj] + La(n),

whereL,(n) = 3777, ' 1{S; = a} is the number of visits ta before timen.

Exercise 7.98 Show that under suitable conditions, stochastic integnadsordinary inte-
grals can be interchanged: SuppaseR — [0, oo) is a continuous function with compact
support. Then, almost surely,

/00 h(a)(/ot sign(B(s) —a) dB(s)) da = /Ot (/Oo h(a)sign(B(s) —a) da) dB(s).

— o0 — 00
Hint. Write the outer integral on the left hand side as a limit of Ri@m sums and use
that the integrand has a continuous modification.

Exercise 7.10.

(a) Show that the functiom: (0, c0) x (0,00) — R given by

u(t, x) \/ / % dz

solves the heat equation on the dom@inco) with zero dissipation rate and con-
stant initial conditionf = 1.
(b) Infer from this that, forz > 0,

2 xr z'
]P’I{B(s) > 0forall s < t} = \/:/ 6*2% dz.
T Jo

(c) Explain how the result of (b) could have been obtained froar#flection principle.

Exercise 7.11. Prove the Ers—Kac theorem: LeK, X,... be a sequence of inde-
pendent identically distributed random variables with mearo and variance one. Let
Sp=X1+ -+ X, andT,, = max{|S1|,...,|S.|}. Then

nleréOP{Tn <z}= % i (=" exp ( _ M) .

:O2n+1 82

Exercise 7.128 Let T be the total occupation time in the unit ball by a standard\Bian
motion inIR3. Show that

€) h?ol \/%eflw IP’{T < a:} = %,

(®) lim eFTP{T >z} =

SIS
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Notes and comments

The first stochastic integral with a random integrand wasddfby 1t6 [It44] but stochas-
tic integrals with respect to Brownian motion with deterisiit integrands were known to
Paley, Wiener and Zygmund already in 1933, see [PWZ33] antidBelz4. Our stochastic
integral is by far not the most general construction possitle complete theory of Itd in-
tegration is one of the cornerstones of modern probabititgresting further material can
be found, for example, in the books of McKean [McK69], Chumg &Villiams [CW90],
Rogers and Williams [RW00a, RWO0O0b] or Durrett [Du96]. Ité’sriaula, first proved in
[It51], plays a central réle in stochastic analysis, quike the fundamental theorem of
calculus does in real analysis. The version we give is desigo minimise the technical
effort to get to the desired applications, but a lot more casdid if the discussion is ex-
tended to the concept of semimartingales, the reference®gdvovide the background for
this. The formula is also at the heart of the theory of stotbakfferential equations, a
recommended introduction into this theory is @ksendal [§)khd a standard reference is
Ikeda and Watanabe [IW89].

Conformal invariance was known to Lévy and a sketch of a pi®ogfven in the book
[Le48]. This fact does not extend to higher dimensiahs> 3. There are not many
interesting conformally invariant maps anyway, but edaéipthe only one, inversion on a
sphere, fails. This is easy to see, as the image of Brownidiomstopped on the boundary
of the punctured domaifi(0,1) \ {0} has zero probability of not hitting(0, 1).

There is rich interaction between complex analysis and Braw motion, which re-
lies on conformal invariance. The conformal invariance afmhonic measure, which we
proved in Theorem 7.23, is not easy to obtain by purely aitalymeans. Another result
from complex analysis, which can be proved effectively g&nownian motion is Picard’s
theorem, see Davis [Da75] for the original paper or Duri@tt§4] for an exposition. The
theorem states that a nonconstant entire function has a wmigh omits at most one point
from the complex plane. Only very recently a completely n@sspective on conformal
invariance has opened up through the theory of conformallgriant random curves de-
veloped by Lawler, Schramm, and Werner, see e.g. [We04].

The skew-product representation has many nice appliationmore examples see Le
Gall [LG92], which also served as the backbone of our exfmosifThe first result about the
windings of Brownian motion is Spitzer’s law, due to F. Spitin [Sp58]. There are plenty
of extensions of it, including pathwise laws, see Shi [SH@8M602], windings around
more than one point, and joint laws of windings and additivectionals, see Pitman and
Yor [PY86]. A discussion of some problems related to thisloafiound in Yor [Y092].

Spitzer’s paper [Sp58] also initiated substantial researcBrownian motion in a cone.
He shows that, ifr is the first exit time of a planar Brownian motion from a conehwi
opening angley, thenE7? < oo if and only if p < 5. This has been extended to higher
dimensions by Burkholder [Bu77] and to more general cormseXample, by Bafiuelos
and Smits [BS97]. The skew-product representation playisngortant réle in the latter
paper, which also contains a formula for the last time bedmes when a Brownian motion
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was in a cone, having started at its vertex. This is a nateralisation of the first arcsine
law to more than one dimension.

Tanaka’s formula offers many fruitful openings, among thiéwe Meyer—Tanaka for-
mula, which generalises 1t6’s formula to general convexfioms, see the original work of
Meyer [Me76] or the book by Durrett [Du96], and the theoryafdl times for semimartin-
gales, which is presented in [RY94]. The formula goes batkegaper by Tanaka [Ta63].
Alternative to our approach, Tanaka’s formula can be talem@efinition of Brownian lo-
cal time. Then continuity can be obtained from the Kolmogetntsov theorem and
moment estimates based on the Burkholder—Davis—Gundyaligigs, see for example
the book by Karatzas and Shreve [KS91].

The Feynman—Kac formula is a classical application in setib calculus, which is
discussed in more detail in [KS91]. It can be exploited tocagban enormous variety
of distributional properties of Brownian motion, see Bdrodnd Salminen [BS02] for
(literally!) thousands of examples. The converse, appticeof Brownian motion to study
equations, is of course equally natural. Del Moral [DMO4jes an impressive account of
the wide applicability of this formula and its variants.

The identity between the two formulas describing the prditaihat a Brownian mo-
tion stays between two barriers serves as a standard exdonphee Poisson summation
formula, see X.5 and XIX.5 in Feller [Fe66]. According to Ieelit was discovered origi-
nally in connection with Jacobi’s theory of transformasmf theta functions, see Satz 277
in Landau [La09]. The ‘iterated reflection’ argument, whigk have used to determine
the transition density of a Brownian motion with absorbiregriers may also be used to
determine transition densities for a Brownian motion whigteflected at the barriers, see
X.5 in [Fe66]. In higher dimensions Brownian motion reflete the boundaries of a
domain is an interesting subject, not least because of iteaxions to partial differential
equations with Neumann boundary conditions, see, for el@rBposamler [Br76].

The Erdds—Kac law plays an important role for the Kolmogorov—Simwriest known
from non-parametric statistics, see e.g. [Fe68]. Plentprobfs of the arcsine law are
known: Besides the two provided in this book, there is als@approach of Kac [Ka51]
based on the Meyer-Tanaka formula, and Rogers and Williaees,l11.24 in [RWO0O0a],
provide a proof based on local time theory.

The Ciesielski—Taylor identity was found by Ciesielski araylor in 1962 by an ex-
plicit calculation, see [CT62]. It extends to arbitrary @insionsd, stating that the law
of the exit times from the unit ball by a standard Brownian ioin dimensiond equals
the law of the total occupation time in the unit ball by thenskard Brownian motion in
dimensiond + 2. The argument given here is taken from Spitzer [Sp76], s&e [8.20
in Rogers and Williams [RWO00a]. Many proofs of this fact arekn, see for example
Yor [Y092], but none provides a geometrically intuitive éxpation and it may well be that
none exists. The tail estimates in Exercise 7.12 are criggaedients for the Hausdorff
dimension results of Dembo et al. [ DPRZ00a, DPRZ00b].
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Potential theory of Brownian motion

In this chapter we develop the key facts of the potential hed Brownian motion. This
theory is centred around the notions of a harmonic functiomenergy of a measure, and
the capacity of a set. The probabilistic problem at the hefattis chapter is to find the
probability that Brownian motion visits a given set.

8.1 The Dirichlet problem revisited

We now take up the study of the Dirichlet problem again andasgharp conditions on the

domain which ensure the existence of solutions, which allewo understand the problem
for domains with very irregular boundaries, like for exampbnnected components of
the complement of a planar Brownian curve. For this taslGhetstic integrals and 1té’s

formula will be a helpful tool. As a warm-up, we suggest to tisese tools to give a

probabilistic proof of the mean value property of harmoniedtions, see Exercise 8.1.

Recall from Example 3.15 that the existence of a solutiomefirichlet problem may be
in doubt by the fact that Brownian motion started at the beupd@U may not leave the
domainU immediately. Indeed, we show here that this is the only gnobthat can arise.

Definition 8.1. A point 2z € A is calledregular for the closed setl c R? if the first
hitting ime Ty = inf{t > 0: B(t) € A} satisfiesP,{T4 =0} = 1. A point which is not
regular is calledrregular . o

Remark 8.2 In the casel = 1 we have already seen that for any starting pairg R,
almost surely a Brownian motion started dnreturns tox in every interval|0, ) with
e > 0. Hence every point is regular for any set containing it. o

We already know a condition which implies that a point is fagunamely the Poincaré
cone condition introduced in Chapter 3.

Theorem 8.3If the domain/ C R¢ satisfies the Poincaré cone conditiomat U, then
x is regular for the complement éf.

Proof. Suppose: € U satisfies the condition, then there is an open déveth baser
and anglex > 0, such tha” N B(z,r) C U* for a suitable: > 0. Then the first exit time
Ty for the domain satisfies

224
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> P, {B(t) e VNnB(zx,r)}
2P {B(t) e V} —P.{B(t) & B(z,7)}
=P, {B(1) € V} - P,{B(1) & B(x,r/V1)},
where Brownian scaling was used in the last step. tFpr0 the subtracted term goes to

zero, and hencB,{ry = 0} = limy o P, {7y < ¢} > P{B(1) € V} > 0. By Blumen-
thal’s zero-one law we hau,{ry = 0} = 1, in other words is regular forUe®. [

PI{TU < t}

Remark 8.4 An alternative criterion for regularity, with a similar pf) will be given in
Exercise 8.2. At the end of the present chapter we will gigharpcondition for a point
to be regular, namelWiener's tesbf regularity. o

Theorem 8.5 (Dirichlet Problem) Supposé/ ¢ R? is a bounded domain and letbe a
continuous function oAU. Definer = min{t > 0: B(t) € oU}, and define:: U — R

by

(a) A solution to the Dirichlet problem exists if and only if the€tionw is a solution
to the Dirichlet problem with boundary conditian

(b) w is a harmonic function o/ with u(x) = ¢(z) for all z € 9U and is continuous
at every point: € 9U that is regular for the complement bf.

(c) Ifeveryz € 9U is regular for the complement 6f, thenu is the unique continuous
functionu: U — R which is harmonic o/ such thatu(z) = ¢(z) forall x € oU.

Proof. For the proof of (a) leb be any solution of the Dirichlet problem dn with
boundary conditiop. Define open sets,, T U by

Uy={zeU:|z—y|>LforallyecdU}.

Let 7,, be the first exit time of/,, andr the first exit time fromU, which are stopping
times. By the multidimensional version of 1td’s formula, wtain

d tAT, d tATH
v(B(tAT,)) = v(B(O))—f—Z/ 32, v(B(s)) dB;(s)+4 Z/ O, 0(B(s)) ds .
i=1"0 i=1"0
Note thatd,,, v is bounded on the closure 6f,, and thus everything is well-defined. The
last term vanishes a&v(z) = 0 for all z € U. Taking expectations the second term on
the right also vanishes, by Exercise 7.2, and we get that

E,[v(B(t AT,))] = Eg[v(B(0))] = v(z), forz e U,.

Note thatv, and hence the integrand on the left hand side, are boundeded\Ver, it is
easy to check using boundednesg/odnd a reduction to the one-dimensional case,that
is almost surely finite. Hence, ag§ oo andn — oo, bounded convergence yields that the
left hand side converges 1, [v(B(7))] = E.[p(B(7))]. The result follows, as the right
hand side depends neither tnor onn.

The harmonicity statement of (b) is included in Theorem 8t&lu = ¢ on QU is obvious
from the definition. It remains to show the continuity claifar a regular: € OU we now
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show that if Brownian motion is started at a pointinwhich is sufficiently close ta, then
with high probability the Brownian motion hi&g¢, before leaving a given baBi(z, §).
We start by noting that, for every> 0 andn > 0 the set

O(t,n) :={z€U:P.{r <t} >n}

is open. Indeed, if € O(t, ), then for some small > 0 andd > 0 and largeM > 0, we
have

P.{|B(s) — z| < M, B(u) € U° for somes < u <t} > n+4.
By the Markov property the left hand side above can be writen
/ Pe{B(u) € U° for some0 < u <t — s} p(s, 2,§) d&.
B(z,M)
Now lete > 0 be sufficiently small, so thap(s, z,£) — p(s, y,§)| < §/L(B(0, M)) for
all |z — y| < e and¢ € R9. Then we have
Py{r <t} >P,{B(u) € U° for somes < u < t} >,

hence the balB(z, ¢) is in O(t, n), which therefore must be open. Given- 0 andé > 0
we now choose > 0 small enough, such that fef = inf{s > 0: B(s) & B(xz,0)} we
have

P.{r' <t} <e/2 forall|z—z| <d/2.

By regularity we have: € O(t,1—¢/2), and hence we can choodec 0 < §/2 to achieve
B(z,0) C O(t,1 — ¢/2). We have thus shown that,

lz—z2|<0=P{r<7r'}>1-c (8.1)

To complete the proof, let > 0 be arbitrary. Then there is@&> 0 such thafy(z) —
o(y)| < eforally € OU with |z — y| < §. Choosed as in (8.1). For alk € U with
|z — x| < d A 6O we get

u(z) — u(2)] = |E.[p(z) — @(B(M))]] < 2ll¢lloc Po{7" < 7} +¢ < e 2]l +1).

As ¢ > 0 can be arbitrarily smalk: is continuous at: € 0U. Finally, part (c) follows
easily from (b) and the maximum principle. [ |

A further classical problem of partial differential equuats, the Poisson problem, is related
to Brownian motion in a way quite similar to the Dirichlet ptem.

Definition 8.6. Let U c R be a bounded domain and U — R be continuous. A
continuous function.: U — R, which is twice continuously differentiable @nis said to
be thesolution of Poisson’s problem forg if

e u(x)=0forallz € 9U, and
o —1Au(z) =g(z)forallz € U. ©

A probabilistic approach to the Poisson problem will be digwed in Exercises 8.3 and 8.4.
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Remark 8.7
(a) Forg bounded, any solution of Poisson’s problem fog equals

u(z) = E, [/OT 9(B(t)) dt} forz e U,

whereT' := inf{¢t > 0: B(t) ¢ U}. Conversely, ifg is Holder continuous and
everyz € 90U is regular for the complement &f, then the function: defined by
the displayed equation solves the Poisson problery.for

(b) If u solves Poisson’s problem fgr= 1 in a domain/ C R?, thenu(z) = E, [T
is the average time it takes a Brownian motion startedto leave the se/. ¢

8.2 The equilibrium measure

In Chapter 3 we have studied the distribution of the locabibtmefirst entryof a Brownian
motion into a closed set, the harmonic measure. In the case of a transient (or killed)
Brownian motion there is a natural counterpart to this byking at the distribution of
the position of thdast exitfrom a closed set. This leads to the notion of &ggiilibrium
measurewhich we discuss and apply in this section.

To motivate the next steps we first look at a simple random Walk: n € N} ind > 3.
Let A C Z¢ be a bounded set, then by transience the last exityimenax{n € N: X,, €

A} is finite on the event that the random walk ever bltsNote thaty is not a stopping
time. Then, for any: € Z¢ andy € A,

P.{X hits A andX, =y} =Y P.{X, =y, X, ¢ Aforallj > k}
k=0

= P.{X, =y}P{y =0},

k=0
and introducing the Green’s functiéi(z, y) = >~ P. { Xx = y} we get, for ally € A,
P,{X hits A andX, =y} = G(z,y) P,{y = 0}.
This holds also, obviously, for all € Z? \ A. Summing over alj € Z¢ gives

P.{X everhitsA} = > G(x,y)P,{y = 0}.
yeZa

The formula allows us to describe the probability of evetiinit a set as a potential with
respect to the measuge— P,{~y = 0}, which is supported orl. Our aim in this section
is to extend this to Brownian motion.
Note that the argument above relied heavily on the transiefthe random walk. This is
no different in the case of Brownian motion. In order to imgithe two-dimensional case
we ‘kill" the Brownian motion, either when it exits a large ™ain or at an independent
exponential stopping time. Note that both possibilitiessgrve the strong Markov prop-
erty, in the case of exponential killing this is due to thekla¢-memory property of the
exponential distribution.
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To formally explain our setup we now suppose that(¢): 0 < ¢ < T} is a transient
Brownian motion in the sense of Chapter 3. Recall that thisma¢ha{ B(¢): 0 <t < T'}
is ad-dimensional Brownian motion killed at tini€, and one of the following holds:

(1) d = 3andT = oo,
(2) d = 2 andT is an independent exponential time,
(3) d > 2 andT is the first exit time from a bounded domaihcontaining0.

We use the convention th& = R< in cases (1) and (2). In all cases, transient Brownian
motion is a Markov process and, by Theorem 3.30 its tramskérnel has a density, which
we denote by*(¢, z,y). Note that in case (2,3) the functiph(¢, z, y) is only a subprob-
ability density because of the killing, indeed it is stiycmaller than the corresponding
density without killing. The associated Green'’s function

G = [ vty
0
is always well-defined and finite for atl £ y.
Theorem 8.8 (Last exit formula) Supposg B(t): 0 < ¢ < T} is a transient Brownian
motion andA C R¢ a compact set. Let
v =sup {t € (0,T]: B(t) € A}

be thelast exit timefrom A, using the convention = 0 if the path does not hih. Then
there exists a finite measureon A called theequilibrium measure, such that, for any
Borel setA ¢ Aandz € D,

]Pw{B(’y) e A 0<~vy< T} = /AG(x,y) dv(y).

Remark 8.9 Observe that, giver, the equilibrium measure is uniquely determined by
the last exit formula. The proof of Theorem 8.8 is similartie simple calculation in the
discrete case, the equilibrium measure is constructedrdtsdf the measure =P, {0 <

v < e}dy. ©

Proof of Theorem 8.8. Let U, be a uniform random variable df, <], independent of the
Brownian motion and the killing time. Then, for any bounded @ontinuous: D — R,

E. [f(B(y = U.)) 1{U. < 7}]

=gt /oo E,[f(B(t)1{t <y <t-+e}]dt
0

= [ BB < TV Pae {0 < <<} ar.
Using the notation). (z) = e P, {0 < v < ¢} this equals
| Bl vmone<a= [ [ vt fovdya
0 0 JD

_ /D F(y) Gz, y) ¥ (y) dy.
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This means that the subprobability measyrelefined by
Ne(A) =P, {B(y—U.) € A, U. <y < T}
has the densitz(z, y) ¥ (y). Therefore also,
G(z,y) ™ dn=(y) = ¢=(y) dy. (8.2)

Observe now that, by continuity of the Brownian pdthy. o 7. = o in the sense of weak
convergence, where the measygen A is defined by

no(A) =P {B(y) € 4,0 <y < T},

for all Borel setsA C A. As, for fixedz € D, the functiony — G(z,y)~! is continuous
and bounded on, we infer that, in the sense of weak convergence

hﬁ)l G(I, y)il dn& = G(‘:Cay)il an
g

By (8.2) the measuré@.(y) dy therefore converges weakly to a limit measutewhich
does not depend an, and satisfie&:(z,y) ™! dno(y) = dv(y) forallz € D. As 5y has
no atom inxz we therefore obtain thatn,(y) = G(z,y) dv(y) forall x € D. Integrating
over any Borel sefl gives the statement. [ |

A direct representation of the equilibrium measure as abkistlistribution can be obtained
in cases (1) and (3) when the Brownian motion is started at@ora point.

Theorem 8.10Supposé\ is a compact nonpolar set and
A C B(z,r).

Let{B(t): 0 < t < T} be atransient Brownian motion started uniformly®8(z, r) and
stopped as in case (1) or as in (3) with = B(z, R) for R > r. Lety be the last exit
time fromA, as in Theorem 8.8. Then the equilibrium measusatisfies, for any Borel
setA C A,
v(4)
v(A)

=P{B(y) € A|0 <y <T}.

The proof follows from the following interesting lemma.

Lemma 8.11In the setup of Theorem 8.10, the value of the integral

[ ctadoia)
is independent of the choice gk B(z,r).

Proof. By Theorem 3.35 the mapping— I(y) = [ G(z,y) do. ,(z) is harmonic on
B(z,r). Fixapointy € B(z,r) and lets = |y — z|, so thats < r. By rotational invariance
we havel (w) = I(y) forallw € 9B(z, s). Hence I (z) = [ I(w)dw, s(w) =1(y). ™
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Proof of Theorem 8.10. Take the last exit formula from Theorem 8.8 and integrate the
variablez with respect tar, .. Using Fubini’s theorem, we obtain

]P’{B(”y) eA0<y< T} = /Px{B(’y) €A 0<y< T} do, (z)

_ /A / G(x,y) oy () du(y) = cv(A),

wherec is the joint value of the integrals in Lemma 8.11. DividingHbsides byP{0 <
v < T} = cv(A) gives the result. n

As a first application we give an estimate for the probabiligt Brownian motion irR?,
for d > 3, hits a set contained in an annulus around

Corollary 8.12 Suppose{B(t): t > 0} is Brownian motion inR?, with d > 3, and
A C B(z, R) \ B(x,r) is compact. Then

R*y(A) <P {{B(t): t > 0} ever hitsA} < r*~“v(A),
wherev is the equilibrium measure ah.

Proof. By Theorem 8.8 in the casé = A we have
P, {{B(t): t > 0} ever hitsA } = / G(z,y) dv(y).
A
Recall thatG(z,y) = |z — y|?>~¢ and use thakR?>~? < G(z,y) < r?~4. |

Theorem 8.5 makes us interested in statements claiminghtbaiet of irregular points of
a setA is small. The following fundamental result will play an imant réle in the next
chapter.

Theorem 8.13Supposed C R?, d > 2, is a closed set and let” be the set of regular
points forA. Then, for allz € R?,

P.{B(t) € A\ A" for somet > 0} =0,
in other words, the set of irregular points is polar for Broian motion.

For the proof of Theorem 8.13 we have to develop a tool of iedépnt interest, the
strong maximum principle. A special case of this is the fellgy statement, from which
Theorem 8.13 follows without too much effort.

Theorem 8.14Let{B(¢): t > 0} be ad-dimensional Brownian motion, arfdan indepen-
dent exponential time. Lét C R be a compact set and define= inf{t > 0: B(t) € A}.
If for somed < 1, we haveP,{r < T} < ¢ forall z € A, thenP,{r < T'} < 4 for all
r € R4
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Proof of Theorem 8.13. We can write the set of irregular points dfas a countable
union of compact sets

oo o0 o0

A= U U feeanBom: pir) <7} <1- 1},

{=1m=1n=1

whereT (n) is an independent exponential time with mégn andr(A) is the first hitting
time of A. It suffices to prove that Brownian motion does not hit anydiget in the union,
so let¢, m, n be fixed and tak& = T'(n), ¥ = 1 — 1/¢ and a compact set

A= {x € ANB(0,m): P{r(A) < T} < 19}.
If x € A, then, writingr for the first hitting time ofA C A,

P {r < T} <P {r(A) <T} <9

for all z € A and therefore by Theorem 8.14 for alke R,

Now supposer € R? is the arbitrary starting point of a Brownian moti¢#(¢): ¢ > 0}
andA(e) = {y € R%: |y — 2| < e for somez € A}. Definer. as the first hitting time of
A(e). Clearly, asA is closed,

leiﬁ)l ]P)x{TE < T} = Px{T < T}.
Moreover, by the strong Markov property applied at the sitogpime 7. and the lack of
memory property of exponential random variables,
IP’{T } P{TE\T}HI&XP {T } {EéT}ﬂ,
and lettings | 0 we obtain
Po{r < T} <P {r <T}9.

As ¥ < 1 this impliesP,{r < T} = 0, and asT" is independent of the Brownian motion
and can take arbitrarily large values with positive probghiwe infer that the Brownian
motion started in: never hitsA. [ |

The idea in the proof of Theorem 8.14 is to use the equilibrmeasurer to express
P${T < T} as a potential, which means that, denoting the parametéreaétponential
by A > 0,

P{r <1} = [ Grle) dvly).
whereG), is the Green'’s function for the Brownian motion stoppedraett’, i.e.
G)\(l',y) = / eiAtp(tvliay) dt.
0

Recall that for any fixed, the functionz — G (z,y) is subharmonic o \ {y}, by
Theorem 3.35 (iii), and this implies that

Unv(z /GA:Ede
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is subharmonic o °. If U,r was also continuous on the closurest then the maximum
principle in Theorem 3.5 would tell us th&t, v has its maxima on the bounda and
this would prove Theorem 8.14. However we do not know theinaity of Uxv on the
closure ofA¢, so we need a strengthening of the maximum principle.

We now letK be akernel, i.e. a measurable functidii: R? x R? — [0, oo]. Suppose that
x — K(z,y) is subharmonic outsidgy}, and thatK (x, y) is a continuous and decreasing
function of the distancec — y|. For any finite measure without atoms let

Uu(z) = /K(% y) du(y)

be the potential of, atz with respect to the kernet’.

Theorem 8.15 (Strong maximum principle)If x is supported by the compact setthen,
for anyd > 0, we have the equivalence

Uu(z) <dforallz € A & U,(z) < vforall z € R4

Remark 8.16 Note that this completes the proof of Theorem 8.14 and hehdéeo-
rem 8.13 by applying it to the special case of the ketfiel= G, and the equilibrium
measure. S

The proof we present relies on a beautiful geometric lemma.

Lemma 8.17There is a numbeN depending only on the dimensidrsuch that the fol-
lowing holds: For every: € R? and every closed sétthere areN nonoverlapping closed
conesVy, ..., Vy with vertexx such that, if¢; is a point of A N V; closest tar, then any
pointy € A withy # z is no further to somé¢; than toz.

Fig. 8.1. The geometric argument in Lemma 8.17.
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Proof. The proof is elementary by looking at Figure 8.1: Xébe the number of closed
cones with circular base, vertex in the origin and openirgjean/3 needed to coveR?.
Replace each of the cones in this collection by a subconengmessarily with circular
base) such that the collection still cové$ but the cones are non-overlapping. lebe
a shift of such a cone with vertex in, £ be a point inV” N A which is closest ta;, and
y € ANV be arbitrary. The triangle with vertices in £ andy has at most angle/3 at
the vertexz, and hence by the geometry of triangles, the distangeafd¢ is no larger
than the distance af andz. [ |

Proof of Theorem 8.15. Of course, only the implication> needs proof. Take
satisfyingU, (x) < ¢ for all z € A. Note that, by monotone convergence,

Up(z) = lim K(z,y) du(y). (8.3)
010 Jiz—y|>5
Hence, for a givem > 0, by Egorov’s theorem, there exists a compact subset A such
that, u(F) > pu(A) — n and the convergence in (8.3) is uniform én If we definey; to
be the restriction of. to F', then we can find, for every > 0 somed > 0 such that

sup / K(z,y)dui(y) < e.
zel J|z—y|<6

Now let {z,,} C R be a sequence convergingtg € F. Then, as the kernek is
bounded on sets bounded away from the diagonal,

limsup Uy, (xr) /K Zo,y) dp ( )—l—limsup/ K(zp,y)dpi(y).
ly—zpn|<0

n—oo n—oo

We now want to compar& (x.,, y) with K(,y) for ¢ € F. Here we use Lemma 8.17 for
the pointz = z,, and obtairty, ..., &y € F such that

K(zy,y) ZK&,y

where we have used thAt depends only on the distance of the arguments and is dengeasi
in it. We thus have

/ K(lnvy d/~L1 Z/ fu )d/il(y) < Ne.
|y_wn|<6 U & ‘<6

As e > 0 was arbitrary we get

limsup Uy, () < U, (z0).

n—oo

As the converse statement

liminf Uy, (2n) = Uy, (7o)

n—oo

holds obviously by Fatou's lemma, we obtain the continuity/y, on F'. Continuity of
U,, on F¢ is obvious from the properties of the kernel and the fact thais supported
by F, so that we have continuity d@f,,, on all of R%. By the maximum principle, Theo-
rem 3.5, we infer thal/,,, (z) < 9.
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To complete the proof let ¢ A be arbitrary, and denote its distanceAdyy o. Then
K(z,y) < C(p) forall y € A. Therefore

Up(z) < Uy, (2) +1C(0) <9 +nC(o),
and the result follows by letting | 0. [

8.3 Polar sets and capacities

One of our ideas to measure the size of sets in Chapter 4 wasl loasthe notion of
capacity. While this notion appeared to be useful, but maybg artificial at the time,
we can now understand its true meaning. This is linked to ti®n of polarity, namely
whether a set has a positive probability of being hit by aadljt defined random set.

More precisely, we ask, which sets are polar for the range @flamensional Brownian
motion{B(t): t > 0}. Recall that a Borel set C R is polar for Brownian motion if,
for all x,

P,{B(t) € Aforsomet >0} = 0.

In the casel = 1 we already know that only the empty set is polar, whereas hyl€o
lary 2.26 points are polar for Brownian motion in all dimesrsd > 2. The general
characterisation of polar sets requires an extension ofidtien of capacities to a bigger
class of kernels.

Definition 8.18. Supposed C R? is a Borel set and( : R¢ x R? — [0, oo] is a kernel.
Then theK -energy of a measuneis defined to be

Ik (p) = //K(wvy) dp(z) du(y),

and theK -capacity ofA is defined as

Capg (A) = [inf {Ix(p): p a probability measure oA} -
Recall that thex-energy of a measure and the RieszapacityCap,, of a set defined in
Chapter 4 correspond to the kerdé(z,y) = |z — y| <. o

Remark 8.19In most of our applications the kernels are of the fdkifi, y) = f(|z —y|)
for some decreasing functigft [0, c0) — [0, c0]. In this case we simply writ&, instead
of Ix and call this thef-energy. We also write Capinstead of Cag and call this the
f-capacity. S

Theorem 8.20 (Kakutani’'s theorem) A closed seA is polar for d-dimensional Brownian
motion if and only if it has zerg-capacity for theradial potential f defined by

Fe) m { |log(1/e)| ifd=2,

g2—d if d > 3.
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Remark 8.21 We call the kerneK (x, y) = f(]x —y|), wheref is the radial potential, the
potential kernel. Up to constants, it agrees with the Green kernel ia 3. o

Instead of proving Kakutani's theorem directly, we aim fasteonger, quantitative result
in the framework of transient Brownian motions given in Difim 3.28. Recall that this
means thaf B(t): 0 < ¢t < T'} is ad-dimensional Brownian motion killed at ting, and
either (1)d > 3 andT = oo, (2)d > 2 andT is an independent exponential time, or
(3) d = 2 andT is the first exit time from a bounded domdihcontaining the origin. This
result gives, for compact setsC R¢, a quantitative estimate of

Po{30 < t < T such thatB(t) € A}
in terms of capacities. However, everlit= 3 and7 = oo, one cannot expect that
Po{3t > 0 such thatB(t) € A} =< Cap(A)

for the radial potentialf in Theorem 8.20. Observe, for example, that the left hand sid
depends strongly on the starting point of Brownian motiohereas the right hand side is
translation invariant. Similarly, if Brownian motion isasting at the origin, the left hand
side is invariant under scaling, i.e. remains the same whenreplaced by\A for any

A > 0, whereas the right hand side is not. For a direct compari§bittmng probabilities
and capacities, it is therefore necessary to use a capacityién with respect to a scale-
invariant modification of the Green kernél, called theMartin kerne| which we now
introduce.

Definition 8.22. We define the Martin kerné¥/: D x D — [0, o] by

Mz, y) ::g%’z)) for x #£ v,

and otherwise b/ (x, z) = oo. o

We need the following technical proposition, which is easydrify directly from the form
of the Green’s functioidr in case (1). For the other two cases we give a conceptual.proof

Proposition 8.23For every compact set ¢ D C R¢ there exists a constant depending
only onA such that, for allkz, y € A and sufficiently smal > 0,

_ G(z,§)
d )
sup € / d¢ < C.
lz—z|<e B(y,e) G(.’E, y)

Proof. Fix a compact seA C D ande > 0 smaller than one tenth of the distanceof
andD¢ and letx,y € A. We abbreviate

he(z,9) /B( )G(z,f) d¢ forze D.
Y,€

We first assume that — y| > 4¢ and show that in this case

sup sup G(Z,7) < CG(z,y). (8.4)

lz—Z|<e |ly—7y|<e
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With 7 = inf{0 < t < T': B(t) € B(x,2¢)} we note that, for alk € B(z,¢),
G(7,y) = Ez[G(B(7),y), T < T1.

This is the average df(- , y) with respect to the harmonic measw$s ;. 2-)(Z, - ). This
measure has a density with respect to the uniform measureapheré(z, 2<), which

is bounded from above by an absolute constant. In the capesndl(3) this can be seen
directly from Poisson’s formula. Therefo&(z,y) < CG(z,y) and repetition of this
argument, introducing now € B(y, €) and fixingz gives the claim.

Now look at the casér — y| < 4. We first observe that, for some constant> 0,
G(z,y) > ce*>~4, which is obvious in all cases. Now letc B(z,<). Decomposing the
Brownian path on its first exit time from B(x, 8¢) and denoting the uniform distribution
ondB(z, 8=) by w we obtain for constantsy, Cy > 0,

he(z,y) < E.[r AT] +E.[he(B(7),y), 7 < T
< Cie? + Cged/G(w,y) dw(w),

where we have used (8.4). AsG(w,y)dw(w) < C3G(z,y) putting all facts together
givesh.(z,y) < C4e?G(x,y), as required. |

The following theorem shows that (in all three cases of iemi®Brownian motions) Martin
capacity is indeed a good estimate of the hitting probabilit

Theorem 8.24 Let {B(t): 0 < ¢t < T} be a transient Brownian motion and C D
closed. Then

1 Capy,(A) <Po{30 < t < T such thatB(t) € A} < Cap,,(A) (8.5)

Proof. Let yu be the (possibly sub-probability) distribution Bfr) for the stopping time
T=inf{0 <t <T : B(t) € A}. Note that the total mass gfis

w(A) =Po{r < T} =Po{B(t) € Aforsomed <t < T}. (8.6)

The idea for the upper bound is that if the harmonic meagusenonzero, it is an obvious
candidate for a measure of finifel-energy. Recall from the definition of the Green'’s
function, for anyy € D,

T
IEO/O HIB(t) —y| <e}ldt = /B G(0,2) dz. (8.7)

(y,¢)

By the strong Markov property applied to the first hitting &imof A,

Po{|B(t) —y| <candt < T} > Po{|B(t) —y| <candr <t < T}
:EIP’{\B(t—T)—m <5|f(7)}.

Integrating ovet and using Fubini’s theorem yields

T
EO/O H{IB(t) —y| <e}dt > /A/B(%E) G(z,z)dzdp(x).
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Combining this with (8.7) we infer that

/ / G(z,z)du(z)dz < / G(0,z2)dz.
B(y,s) A B(y,e)

Dividing by £L(B(0,¢)) and lettings | 0 we obtain
| G dua) < 6l0.9),

i.e. [, M(x,y)du(x) < 1forally € D. Therefore Iy (1) < p(A) and thus if we use
u/1(A) as a probability measure we get
Capy (A) > [Lar (/u(A))] ™ > n(A),

which by (8.6) yields the upper bound on the probability dfihg A.

To obtain a lower bound for this probability, a second mongstitnate is used. It is easily
seen that the Martin capacity dfis the supremum of the capacities of its compact subsets,
S0 we may assume thatis a compact subset of the domdn {0}. We take= > 0 smaller
than half the distance of to D° U {0}. Forz,y € A let

he(e,y) = /B RCCOEE
y,E

denote the expected time which a Brownian motion startedspends in the balB(y, ).
Also define

B (o) = sup /B L aGgae
Y,E

lz—z|<e

Given a probability measureon A, ande > 0, consider the random variable

7. —// 1{B 68”’ Nt du(y).

ClearlyEqZ. = 1. By symmetry, the second moment@g‘ can be written as

9 1{B(s) € B (z 5) B(t) € B(y,e)}
EoZ: —QEO/ ds/ dt // 2)h-(0.9) dv(x) dv(y)

< 2, / / / 45 1{B(s) € B o)} ()hy) dv(z) dv(y) (8.8)

(0,y)
[,

Observe that, for all fixed,y € A we havelim. o £(B(0,¢)) "' hi(z,y) = G(z,y) and
lim. o £(B(0,¢)) "t he(0,y) = G(0,y). Moreover, by Proposition 8.23 and the fact that
G(0,y) is bounded away from zero and infinity for alle A, for 0 < ¢ < 1 and some
constant’,

hZ(z,y) <C G(z,y)
he(0,y) G(0,y)
Hence, ifv is a measure of finite energy, we can use dominated convergartobtain,

limEZ2 < / / g((g z)) dv(z) dv(y) = 21y (v). (8.9)

el0

=C M(z,y).
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Clearly, the hitting probability{3t > 0,y € A such thatB(t) € B(y, <)} is at least

(EZ.)?
EZ2
where we have used the Paley—Zygmund inequality in the skesmp. Compactness of
A, together with transience and continuity of Brownian metionply that if the Brow-
nian path visits everg-neighbourhood of the compact sétthen it intersectsA itself.

Therefore, by (8.9),

P{Z. >0} > = (EZ2)7',

1
{3t > 0 such thaiB (1) € A}>LIm(EZ2) ™ > 50—

Since this is true for all probability measuresn A, we get the desired conclusion. =

Remark 8.25The right hand inequality in (8.5) can be an equality: loothatcasel = 3,
T = oo, our case (1), and take a sphereRifi centred at the origin, which has hitting
probability and capacity both equal to one. Exercise 8.Wshhat the constant 1/2 on the
left cannot be increased. o

Proof of Theorem 8.20. It suffices, by taking countable unions, to consider compact
setsA which have positive distance from the origin. First consithe casel > 3. Then
G(0, z) is bounded away from zero and infinity. Hence the/sé&t polar if and only if its
f-capacity vanishes, wherde) = 274,

In the casel = 2 we choose a large bafi(0, R) containingA. By Lemma 3.37 the Green’s
function for the Brownian motion stopped upon leavifi@, R) satisfies

G(z,y) = —= log|z — y| + Eq [+ log |B(T) — yl] .

The second summand @f(z,y) is bounded from above i,y € A, and G(0,y) is
bounded from zero. Hence only the contribution frentog |2 — y| decides about finite-
ness of the Martin energy of a probability measure. Theegfany probability measure on
A with finite Martin energy has finit¢-energy forf(¢) = —loge, and vice versa. This
completes the proof. ]

The estimates in Theorem 8.24 are valid beyond the Browniaiomcase. The following
proposition, which has a very similar proof to Theorem 8&#hws that one has an anal-
ogous result in a discrete setup. We will see a surprisingjcgtion of this in Chapter 9.

Proposition 8.26Let {X,,: n € N} be a transient Markov chain on a countable state
spaceS, and, for any initial statey, set

G(J’J,y) = E, lz 1{y}(Xn)‘| and M(x,y) =
n=0
Then, for any subset of S,

3 Capy(A) < P, {{X,:n e N}hitsA} < Capy,(A).
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Proof. To prove the right hand inequality, we may assume that thagiprobabil-
ity is positive. Letr = inf{n: X,, € A} and letv be the measure(A) = P,{r <
oo and X, € A}. In generaly is a sub-probability measure, asnay be infinite. By the
Markov property, fory € A,

[ Gy v(e) = 37 BulX, =2} Gla) = Glow).

A zEA

whence [, M(z,y)dv(z) = 1. Thereforelr(v) = v(A), In(v/v(A)) = [V(A)]7Y
consequently, since/v(A) is a probability measure,

Capy(A) > v(A) = P,{{X,} hitsA}.

This yields one inequality. Note that the Markov propertyswaed here.
For the reverse inequality, we use the second moment me@iveln a probability measure
1 onA, set

/Zl{y} Aty ))

n=0

E,[Z] = 1, and the second moment satisfies

2 du(x)d
E,[2%] = //202)1{1} )L (X )Cm
du(x)d
< 92E //gl{x} m) Ly (X )M'
Observe that

ZE Zlm )Ly (X ZPP{X = 2} G(z,y) = G(p, 2)C(x,y) .

m=0 m=0

//G x) dp(y) = 20 (1)

Hence

and therefore

P,{{X,} hitsA} > P,{Z >0} > (Ep

We conclude thaP,{{X,,} hitsA} > 1Cap,,(A). |

Recall from Corollary 8.12 that we have already seen estimfdr the probability that
Brownian motion hits a set, which were given in terms of thaltmass of the equilibrium
measure. The following theorem reveals the relationshiwden the equilibrium measure
and capacities.
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Theorem 8.27Let A C R< be a nonpolar, compact set arf@: R? x R? — [0, oo] the
Green’s function of a transient Brownian motion. Then

Cane(8) = {1o(75) V=),

wherev is the equilibrium measure df. Moreover, the probability measure/v(A) is the
unique minimiser of thé&’-energy over the set of all probability measures/on

Remark 8.28If A is polar, we hav&€ap(A) = 0 = v(A). ©

For the proof we first note that, for the Green'’s funct@mof a transient Brownian motion,
the G-energy of asignedmeasure is always nonnegative.

Lemma 8.29Let i, v be finite measures dR? andG the Green'’s functiod: of a transient
Brownian motion. Then, for = ;. — v, we have

/ G(z,y) do(z)do(y) > 0.
Equality holds if and only i = p.
Proof. From the Chapman—Kolmogorov equation we have
p(tay) = [ B2 8 (02 200) dz

Integrating with respect tdo (z) do(y) and using the symmetry @f (¢, -, - ) gives

/p (t,,y) do(z) do(y) / /p (t/2, 2, 2) do(z ))2dz>0

Integrating over time shows thaf G(z,y) do(z) do(y) > 0.
Equality in the last formula implies that

/p*(t/Z, x,z)do(z) =0 for £L-almost every: andt.
Now fix a continuous functiorf : R — [0, co) with compact support. We have

—hm/f *(t)2,x,2)dz,

t]0

and therefore

/f ) do(x —hm//f “(t/2,, 2) dz do(z) = 0,

and thereforer = 0 as required. [
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Proof of Theorem 8.27. Let v be the equilibrium measure and defipéz) =

| G(z,y) dv(y). By the last exit formula, Theorem 8.§(z) is the probability that a
Brownian motion started at hits A before timeT". Hencey(x) < 1 for everyz and, if

x is a regular point for\, theny(x) = 1. Also by the last exit formula, because irregu-
lar points are never hit by a Brownian motion, see Theorer,8& havep(x) = 1 for
v-almost every point. This implies that

Is(v) = /Ago(x) dv(z) = v(A).

Suppose now that is an arbitrary measure dnwith u(A) = v(A) and assume thathas
finite energy. Note that does not charge the set of irregular points, as otherwisestti
would have positive capacity with respect to the Green amtédalso the Martin kernel
and so would be nonpolar by Theorem 8.24. Then, starting léthma 8.29 and using
also the symmetry aofs,

0< / / Gz, y) d(v — ) (w) d(v — 1) (y)
— 16 + 1o(v) ~ 2 [ [ Glavy) dv(e) duty)

= Ig(p) +v(A) —2 /A e(y) du(y) < Ia(p) —v(A),

using in the last step that(y) = 1 on the set of regular points, and thusalmost every-
where. This implies thal;(n) > v(A) = Ig(v), so thatv/v(A) is a minimiser in the
definition of Cap;. Conversely, ifl¢(1) = Io(v) andu(A) = v(A), the same calculation

shows that
/ / Glz,y) d(v — p)(x) d(v — p)(y) = 0.

and hence, by Lemma 8.29, we have- v. This completes the proof. [ |

If d > 3, Theorem 8.27 shows that the normalised equilibrium measur= ﬁ min-
imises the energy with respect to the potential kernel, wksc

/ / £l — yl) du() dpu(y)

for the radial potentiaf (r) = r2=<, over the set of all probability measureon A. We
now show an analogous statementdin= 2, recall that in this case the radial potential
equalsf(r) = —log(r) forr < 1.

Theorem 8.30Let A C R? be a nonpolar, compact set ang be the equilibrium measure
of A for planar Brownian motion stopped &#3(0, R). Then the limit

I VR
VA = 1111
A7 Rioo vr(A)

exists and minimises the energy

_// log | — y| du(x) du(y)

over the set of all probability measurgson A.
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Remark 8.31For a compact, nonpolar satC R? the probability measure, is defined
in the casel = 2 by Theorem 8.30 and in the cage> 3 as the normalised equilibrium
measure or\. We have shown that it minimises the energy

[ #02 s dut) aut

for the radial potentiaf, over the set of all probability measure®n A. We therefore call
v theenergy—minimising measuom A. Only in the casel > 3 we have proved that this
measure is theniqueminimiser of the energy with respect to the radial potentat in
d = 2 this will follow from Theorem 8.33 below. o

We postpone the proof of trexistenceof the limit of vz /vr(A) until the proof of Theo-
rem 8.33, and first show the energy—minimisation propentyafbitrary sequential limits.

First fix R > 0 and recall from Theorem 8.27 tha /vr(A) minimises the energy

// G (2, y) du(x) du(y)

over all probability measurg on A, whereG™ is the Green’s function associated with
the Brownian motion stopped upon leaviig0, R). Our first step shows convergence of
these Green'’s functions to the potential kernel.

Lemma 8.32For z,y € R? we have
lim G (z,y) — 1 log R = ! log |z — ¥y,
RToo s s

and the convergence is uniform on compact subsei®?on R2.

Proof. Recall from Lemma 3.37 that

G (z,y) = =L log |z — y| + L Ey[log |[B(T™) —y

J:

whereT'™ is the first exit time fron3(0, R). Note that, for any compact s&t C R?,
log‘zf E’ — 0, asR 1T oo,
R
uniformly in z € 9B(0, 1) andy € K. Using this, we see that

GP(z,y) — LlogR=—1 long—ler%]Ew[lOg\mTTfR)) - %”
— — L log|z —yl,

uniformly inz,y € K. [ |
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Proof of Theorem 8.30. Let u be an arbitrary probability measure an For a
radiusRk > 0 and threshold/ > 0 we define

GYY (z,y) = (G(R)(w,y) — & log R) AM
Then

/ G(R) dVRlEi(i’)/?(y / G(R) (z,y) dVRyz)(il)JR(u) 1 logR

< / G ™ (2,) dpu() dyu(y) — L log R.

Hence, for anyM > 0, using Lemma 8.32,
lim sup // Gy (z % < -1 // log |z — y|du(z)du(y).  (8.10)
RToco
To analyse the limsup first note that, by Lemma 8.32,
: -1 . dVR(z) dvr(y) (H) dVR(ar) dvr(y) _
11%1%20// log |z — y| A M| T CNE / G, ey~ =0.

If a sequencer,, T co is chosen such that, in the sense of weak convergence,

Rn

lim
nloo VR, (A)

= Vp,

then, by Exercise 8.10, we have

lim // “Llog|z—y|AM] d”R’LE: d/i/)@”(y // “Llog |z —y|AM] dv(z) dva(y).

nloo
Combining this and inserting the limit in (8.10), we obtain

// 110g|5€— yl A M| dvp(z) dva(y //1og\x— yl du(z) duly).

Now let M 7 oo and use monotone convergence to obtain

//log|x—y|duA( dva(y //log|x—y|d,u ) dpu(y).

As p was arbitrary, this proves the minimality property:qf. [ |

We conclude this section by showing that the energy—miningimeasure agrees with the
harmonic measure from infinity, which was introduced in Gba@. In the course of
the proof we also add the missing part to Theorem 8.30, thetamde of the limit in the
cased = 2.

Theorem 8.33Let A C R, for d > 2, be a compact, nonpolar set. Then

VA = HA,

i.e. the energy—minimising measure for the radial potdiatigees with the harmonic mea-
sure from infinity.
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We first give a proof of Theorem 8.33 for the cake 2, which uses the skew-product rep-
resentation, see Theorem 7.26. Bix » < R and let{ B(¢): t > 0} be a Brownian mo-
tion started uniformly on the sphed(0, R). Letr, := 7(5(0, r)) be the first hitting time
of the small ball inside, which is finite almost surely, ang; := 7(5(0,7), 9B(0, R)) the
time of first return to the starting sphere afterwards. Moeedet

OR := sup {O <t< 7 B(t) € 8B(O,R)},

the time of the last visit t@B(0, R) before the smaller ball is visited. We call the path
{e(t): 0 <t < 7 r —oRr} given by

e(t):= B(or +1)
aBrownian excursioin 5(0, R) conditioned to hif3(0, ). We denote by := 7, p —or
thelifetimeof the excursion. Note that this is also the first positiveetimhen the excursion

returns to its starting sphere. The main ingredient of tbhefis the following time-reversal
property of the excursions.

Lemma 8.34The laws of the path§e(t): 0 < ¢ < 7¢} and{e(7® —¢): 0 < ¢t < 7°}
coincide.

Proof. We invoke the skew-product representatior{@(¢): ¢ > 0} established in
Theorem 7.26. This allows us to write

B(t) = exp (W1 (H(t)) +iWa(H(t))), forallt >0,

where{W,(t): ¢t > 0}, with W1(0) = log R, and{W5(t): ¢ > 0}, with W5(0) uniformly
distributed o0, 27), are two independent linear Brownian motions. We furthereha

H(u) :/ 2Wi6) g,
0
so that{ H~1(¢): t > 0} is a continuous, strictly increasing process adapted todheral
filtration of {W1(¢): t > 0}. Hence,H(7,) = inf{u > 0: Wi (u) = logr}, H(og) =
sup{0 < w < H(r,): Wi(u) = log R} and H(7, g) = inf{u > H(7): Wi(u) =
log R}. By Exercise 5.12 (b) the one-dimensional excursipgngs): 0 < s < 77} defined
by
ei1(s)=Wh(H(or) +s), 74 =H(r.r)— H(or),

are time-reversible in law. Marking quantities defined wispect to the time-reversed
excursion by, we obtain for al0 < s < ¥,
H(ogr)+s

H Y (H(og) + s) —JR:/

€2W1 (u) du — /S 6261 (u) du
H(ogr) 0

4 / g2 (=) gy = H™1(s).
0

Forany0 < ¢t < 7, r—orWewrites = H(or+t)— H(og), Or equivalentlyt = fl—l(s).
Hence

|Blor + )] = exp (Wi(H(og + 1)) = exp (e1(s))

exp (e1(rf — 5)) = exp (e1(7{ — f{(t))) = ‘B(t)|

[[e
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AsH(o,+1t) = fot |B(o +u)| =2 du, this implies thattd (o g + ) 4 H(t) and therefore,
B(or+t) =exp (Wi(H(og +1t)) +iWa(H(og +1)))
< oxp (Wi(H(1)) +iWa(H (1) = B(b),

as required. [ |

Proof of Theorem 8.33 ford = 2.  Letw, = limvg, /vg, (A) be any subsequential
limit taken along a sequend@,, T co. Fixr > 0 so thatA C B(0,r). ForR > r, let
~vr = 0 if the Brownian motior{ B(¢): ¢t > 0} does not hitA before timer,. g, and

YR :=sup{0 <t < 7 p: B(t) € A},

otherwise. By Theorem 8.10, for any Borel set- A,
_ o VR, (4)
A= e @)

= lim P{B(vg,) € A|yr, >0}

n—oo

= lim P{e(yr, —or,) € A|{e(t): 0<t<°} hitsA}
n—oo
= lim P{e(7rr, —Vr,) € A|{e(t): 0 <t < 7°} hits A},

where we have used Lemma 8.34 in the last step. Now, fikipdet {B*(¢): t > 0} be a
Brownian motion started uniformly ai3(0, R,,) whose associated excursion3(0, R,,)
conditioned to hitB(0,r) is {e(7® —t): 0 < t < 7°}. Note thate(r, r, — Vr,) =
B*(t*(A)), wherer*(A) is the first hitting time ofA by {B*(¢): ¢ > 0}. Hence the last
line in the previous display equals

lim P{B*(7*(A)) € A|{B*(t): 0 <t <7/, } hitsA},

n—oo
wherer;’ ;, is the time of first return of B*(¢): t > 0} after hitting3(0,7). Asn — oo,
the probability of the conditioning event goes to one, sd Wecan conclude that

va(A) = lim P{B*(~*(A)) € A} = pa(A),

n—oo

where we used the definition of the harmonic measure fromiipfimthe final step. =

We now give a proof of Theorem 8.33 for the case 3. Again a ‘time-reversal’ argument
is crucial. We start by constructing a family of probabiliheasureg:,, for ¢ > 0, on the
spaceC(R, R?) of continuous functions from the realslky by

wi(A) = 1 /]P’z{{B(s): s€R} € A 150, < t}du, for A ¢ C(R,R?) Borel,
Ct

where{B(s): s € R} underP, is a two-sided Brownian motion witB(0) = z,
TB(0,r) = inf{s > 0: B(s) € B(0,7)}

is the first hitting time of the fixed balB(0, r) after time zero, and; = [ P,{75(0,,) <
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t} dz is the normalising constant. Observe thak oo for anyt > 0, see Exercise 8.11.
The following lemma contains the required time-reversaperty.

Lemma 8.35
(a) The laws of B(s): s > 0} and{B(t — s): s > 0} underu; agree;
(b) ast T oo, the law of { B(73(0,) + s): s > 0} underu; converges in the to-

tal variation distance to the law of a Brownian motion starteniformly on the
spheredB(0, ).

Proof. (@) From Fubini’s theorem, we obtain that
/Pm{{B(S): seR} € A 1p0,) <t}dz

= Eo/l{{x + B(s): s € R} € A, Tp(—ar) < t} dx.

Abbreviateo(, ) = inf{s > 0: B(t — s) € B(x,r)}. Using first the Markov property
and then the shift-invariance of the Lebesgue measure, ntnce

= Eo/l{{x+B(t —5) = B(t): s € R} € A, 03(B(t)—a,r) < t} dx
= Eo/l{{x—l-B(t —s):s€R} € A op(_yy < t}da.

Finally, using Fubini’'s theorem again and then observirg # ) < t if and only if
TB(0,r) < t, WE Can continue,

= /IP’I{{B(t—s): seR} € A opo,) <t}dr

= /IPZE{{B(t—s): se R} € A a0, < t} dz.

(b) Itis clear from the symmetry of the Lebesgue measure, tiealath of { B(730,,) +
s): s = 0} under the probability measure, given by

1

pi(A) = /B(O Pe{{B): s € BY € A7) < 1} de, for 4 C OR,R) Borel,
t ,T)°

is the law of a Brownian motion started uniformly on the sgh@8(0, ). Here the nor-

malising constant ig; = fB(O e P, {7B(0,ry < t}dx. The total variation distance ¢f;
andyy is

sup|; (A) — e (A))|
A

1 1

o

1 1

~ *
Cy Ct

AN

1
/ .Pw{TB(O,r) < t} dr + - / Pm{TB(O,r) < t} dx
B(0,r)e t JB(0,r)

.1
Cy + EE(B(O,T))

Asc; = ¢ + L(B(0,r)), it suffices to show thatf — oc. This follows from the hitting
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estimate of Corollary 3.19 as

=2
limc*:/ P. {1510 < o0 dx:/ ——dx
G B(0,r)e {70, ; B,y 2772

=rd / 2|2~ dx = oo,
JB(0,1)¢

and this completes the proof. [

Proof of Theorem 8.33 ford > 2.  Letr > 0 such thatA C B(0,r), and look at a
Brownian motion started uniformly of3(0, ). Definey > 0 asy = 0, if the Brownian
motion never hits\, andy = sup{t > 0: B(¢) € A} otherwise. By Theorem 8.10 and
Lemma 8.35(b), for any Borel set C A,

va(A) =P{B(y) € A[y > 0} = lim ue{B(n) € A |7 > 0},

wherey, = 0if {B(t): t > 0} does not hitA during the time[0, t] and otherwise is the
last times € [0,¢] with B(s) € A. We now express all the events in terms of the time
reversed Brownian motiofiB*(s): s > 0} defined byB*(s) = B(t — s). Recall from
Lemma 8.35(a) that, under;, this process has the same law{d@¥t): ¢ > 0}. Let7* be
the first hitting time ofA by {B*(s): s > 0} and note that* < tif and only ify; > 0. If

this is the case, thert = ¢t — ;. Hence

va(A) = Hm pw{B*(t*) € A|T* < t}.
Define 7, ,, = inf{s > 0: B*(s) € B(0,r)} and look at the embedded Brownian

motion{B**(s): s > 0} defined byB**(s) = B*(TE(O}T) + s). If B(t) & B(0,r) its first
hitting time of A equals

T =inf{s: B™(s) € A} =77 — 750,
Hence, we obtain
vp(A) = Hm w{ B (™) € Al 7" <t} =P{B(r) € A|7 < 00} = px(A),

wherer is the first hitting time ofA by the Brownian motion B(¢): ¢t > 0}, which is
started uniformly or@B3(0, ), and we have used Theorem 3.50 in the last step. =

Example 8.36Recall from Example 7.24 that the Béfa 1) distribution on|0, 1] given
by the density

L dx,

Vz(l—z)

is the harmonic measure of the unit interval embedded in ldngep By Theorem 8.33 the
functiong therefore maximises the expression

1 1
/ / f(@) logla — y| £(y) dx dy
0 0

over all probability densitieg on [0, 1]. o

g(x) =

A=
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8.4 Wiener's test of regularity

In this section we concentrate dn> 3 and find a sharp criterion for a point to be regular
for a closed seA c R?. This criterion is given in terms of the capacity of the istsstion

of A with annuli, or shells, concentric abaut

To fix some notation let > ¢ be integers ana € R¢, and define the annulus

Ag(k, 0) = {y € RY: 27k < |y — 2| < 2_8}.
AbbreviateA, (k) := A, (k+ 1,k) and let
AR = AN ALE).

We aim to prove the following result.

Theorem 8.37 (Wiener's testiA pointz € R? is regular for the closed set ¢ R?, d > 3,
if and only if

> M0, ,(AF) = 0,
k=1

whereCy_5 is the Newtonian capacity introduced in Definition 4.31.

In the proof, we may assume, without loss of generality, that 0. We start the proof
with an easy observation.

Lemma 8.38There exists a constant> 0, which depends only on the dimensifrsuch
that, for all &, we have

2" 0y 5 (AF)<Capyy (Af) < c2FTDE20, 5 (Af).

Proof. Observe that, as € Ak implies27%~1 < |z| < 27F, we obtain the statement by
estimating the denominator in the Martin keriél [ |

The crucial step in the proof is a quantitative estimatemfrehich Wiener’s test follows
quickly.

Lemma 8.39There exists a constant> 0, depending only on the dimensidnsuch that

k-1 k—1
1—exp (—c Z CapM(Aé)> < Po{{B(t) : t > 0} hits ANAy(k, ()} < Z Capy(A)).
j=¢ j=¢

Proof.  For theupperbound we look at the everi?(;j) that a Brownian motion started
in 0 hits A{.. Then, using Theorem 8.24, we g&t(D(j)) < Cap,,(A}). Therefore

k—1 k—1
Po{{B(1) : > 0} hits A1 Ag(k, )} < Bo( | DG))< - Capy (D),
=t =t

and this completes the proof of the upper bound.
For thelower bound we look at the everf(z, j) that a Brownian motion started in some
pointz € dB(0,277) and stopped upon hittingB(0,2~7+*) hits A} ™. Again we use
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either Theorem 8.24, or Corollary 8.12 in conjunction withedrem 8.27, to get, for con-
stantscy, co > 0 depending only on the dimensiah

P.{{B(t) : t >0} ever hitsA} >} > ¢; (2701 — 2‘j)2_dCd,2(Ag’2),
and, for anyy € 9B(0,27774),
P,{{B(t) : t > 0} ever hitsA) 2} < ¢ (2704 —27G-2)*"c, ,(AI7?).
Therefore, for a constant> 0 depending only on the dimensiain
P(E(z,5)) = P.{{B(t)} ever hitsA} >} — Jeodnax P, {{B(t)} ever hitsA) >}
> 200, (M) 7).

Now divide{¢ + 2, ...,k + 1} into (at most) four subsets such that each subsaetisfies
|i —j| > 4 foralli ;é j € I. Choose a subsétwhich satisfies

k—1
S 2000, L (A1) > 1S 2902 0,y (AD). (8.11)
Jel =4

<.

Now we have withr; = inf{t > 0: |B(t)] =277},
Po{ {B(1) : 1 > 0} avoidsA 1 Ao(k, 0)} < Po( () E(B(r;).9)°)
jel

< H sup P(E(z,j)c) < H (1 — c2j(d_2)Cd_2(Ag_2) )

je1#€0B(0,279) el

< exp<fc ZZJ(d 2) 2(A)” 2))

jel

using the estimatig(1l — ) < — z in the last step. The lower bound now follows from
(8.11) and Lemma 8.38 when we pass to the complement. [

Proof of Wiener’s test. Supposed -, 2842 Cy_5(Ak) = oo. Therefore, by
Lemma 8.39 and Lemma 8.38, for &llc N,

Po{{B(t) : t > 0} hits AN B(0,27%)} > 1 — exp ( —c anpM(Ag)> —1
j=k
Since points are polar, for armyd > 0 there exists a large such that
Po{{B(t): t > e} hits B(0,27%)} < 4.
Combining these two facts we get for the first hitting time= 7(A) of the setA,

Po{r < e} >Po{{B(t): t > 0} hitsA N B(0,27%)}
—Po{{B(t): t > e} hitsB(0,27%)} > 1 4.

Ase,0 > 0 were arbitrary, the poirt must be regular.
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Now suppose thaf "~ | 2¢@=2Cy_5 (Af) < cc. Then
> Po{{B(t) : t >0} hits AN Ag(k)} < D Capy(Af) < oc.
k=1 k=1

Hence, by the Borel Cantelli lemma, almost surely theretgxsball 5(0,¢) such that
{B(t) : t > 0} does not hit3(0,c) N A. By continuity we therefore must havef{t >
0: B(t) € A} > 0 almost surely, hence the poidis irregular. [ ]

T2, T3

Ty

Fig. 8.2. Lebesgue’s thorn.

Example 8.40The following example is due to Lebesgue [Le24], and is Uguzllled
Lebesgue’s thorn For anya > 0 we define an open substc (-1, 1)3 with a cuspat
zero by

G = {(z1,22,23) € (-1,1)%: /a3 + 23 > af if 21 >0},

see Figure 8.2. Now the origin is @émegular point for A = G° if o > 1. For the proof it
suffices, by Wiener’s test, to check that

> 25y (Af) < oo
k=1

Note that, for any probability measupeon A%, we havel, (1) > 2% and, hence,

oo

(o)
D 2kCy(Af) < D 2MY) < oo,
k=1

k=1

verifying Wiener’s test of irregularity. Conversely, theiRcaré cone condition, see Theo-
rem 8.3, shows that fax < 1 the origin isregularfor A = G°. o
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Exercises

Exercise 8.18] LetU ¢ R be a domain and: U — R subharmonic. Use Itd’s formula
to show that, for any balB(z,r) C U,

1
C(B(m) /m,r) uly) dy-

u(z) <

Exercise 8.2.Letz € U C R? be a domain and suppose that

lim inf LB(x,r) 0 U°)

> 0.
710 rd

Show thatr is regular for the complement &f.

Exercise 8.3 Supposey is bounded ana a solution of Poisson’s problem fgr Show
that this solution has the form

u(z) = Ez[/OT g(B(t))dt], forz e U,

whereT := inf{t > 0: B(t) € U}. Observe that this implies that the solution, if it exists,
is always uniquely determined.

Exercise 8.4.Let
T
u(z) = E, [/ g(B(t)) dt}, forx e U,
0

whereT := inf{t > 0: B(t) ¢ U}. Show that,

(a) If g is Holder continuous, then the function U — R solves—%Au =g.

(b) If every pointz € QU is regular for the complement éf, thenu(xz) = 0 for all
x € 9U.

Exercise 8.58 Leta > 0 andr a standard exponential random variable independent
of the standard Brownian motiof3(t): t > 0} in R%. Show that there exist constants

0 < ¢ < C depending only om andd, such that for any compact sdt C B(0,a), we
have

cPo{B[0,1]NA# 0} <Po{B0,7]NA#0} < CPo{B[0,1]NA#0}.

Exercise 8.6. Suppose\ C R?, for d > 3, is compact and, the last exit time from\
defined as in Theorem 8.8. Show that

~—

lim P,{B(y) € A|7>0} = ng).
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Exercise 8.7.Ford > 3 consider the spherical shell
Ap={zeR?: 1< |z| <R}

Show thalimp_,~, Cap,,(Agr) = 2.

Exercise 8.8. Let {X(a): a > 0} be a stable subordinator of indéxas defined in
Theorem 2.35, and

[ =)V 0<s<t,
K(S’t)'_{o s>t>0.

Let M(s,t) = K(s,t)/K(0,t), then for any subset of (0, ),

1 Capy(A) < Po{{X(a): a >0} hitsA} < Cap,,(A).

Exercise 8.9. Let { B(t): t > 0} be a standard linear Brownian motion.

(a) Forthe kernelM of Exercise 8.8, show th&tap,,(Zeros) = 0 almost surely.

(b) Let A C (0,00). Show that

>0 if dimA4 > 1,

Po{3t € Awith B(t) =0
i3t € Awith B({) }{zo if dimA < 1.

Exercise 8.10§ Let u,, 1 be Borel probability measures on a compact metric space
Supposeu,, — p in the sense of weak convergence, as defined in Section 12he ap-
pendix. Show thap, ® u, — p ® u in the sense of weak convergence of probability
measures oX x X.

Exercise 8.118 Let {B(s): s > 0} underP, be a Brownian motion ifR?, d > 3, with
B(0) = z, and denote by

TB(0,1) = inf{s > 0: B(s) € B(0,1)}

the first hitting time of the unit ball after time zero. Shovathhere exist constants <
¢ < C < oo such that, for > 1,

ct < /PI{TB(OJ) <t}de < Ct.

Exercise 8.12. Show that exactly one of the probability measuresn the closed unit
disc in the plane that minimise the energies

J[os s dut@yants) and [ (o) duty

is concentrated on the boundary of the disc.
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Exercise 8.13. Let A C R? be a nonpolar, compact set amtibe the equilibrium measure
for planar Brownian motion stopped at an independent expiaidime with parametek.
Then the limit

IR

o

exists and is equal to the energy-minimising measure
Hint. Use ideas from Theorem 3.34 and Theorem 8.30.

Notes and comments

The proof of the last exit formula is taken from Chung’s b&aupaper [Ch73], but the
existence of an energy-minimising measure is a much olderfar the case of the Newto-
nian potential ¢ = 3) it was determined by Gauss as the charge distribution osutface

of a conductor which minimises the electrostatic energgs§€itally, the equilibrium mea-
sure is defined as the measur®n A that maximises/(A) among those with potential
bounded by one. Then/v(A) is the energy-minimising probability measure, see Car-
leson [Ca67]. Rigorous results and extensions to geneeatzRiotentials are due to Frost-
man in his ground-breaking thesis [Fr35]. Our discussiothefstrong maximum princi-
ple follows Carleson [Ca67], Bass [Ba95] describes anradtire approach. The classical
proof of Lemma 8.29 uses Fourier transform and Planchdfredsrem, see [Ca67].

Characterising the polar sets for Brownian motion is relatethe following question:
for which setsA C R? are there nonconstant bounded harmonic function®6n A?
Such sets are calle@movablefor bounded harmonic functions. Consider the simplest
case first. Whem is the empty set, it is obviously polar, and by Liouville'strem there
is no bounded harmonic function on its complement. NevaalifNe70] proved in the
1920s that forl > 3 there exist nonconstant bounded harmonic functionR®dh A if and
only if Cap(A) > 0, whereG(z,y) = f(|x—y|) for the radial potentiaf as before. Just
to make this result more plausible, note that the function) = [ G(z,y)u(dy), where
1 is a measure od of finite G-energy, would make a good candidate for such a function,
see Theorem 3.35.

Loosely speaking(z-capacity measures whether a geis big enough to hide a pole
of a harmonic function inside. Recall from Theorem 4.32 thiat A > d — 2 implies
existence of such functions, adéin A < d — 2 implies nonexistence. Kakutani [Ka44b]
showed that there exist bounded harmonic function®én A if and only if A is polar
for Brownian motion. The precise hitting estimates we gikefairly recent, our proof is
a variant of the original proof by Benjamini et al. in [BPP9Bfoposition 8.26 goes back
to the same paper.
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An interesting question is, which subsets of compact setskarged by the harmonic
measureu 4. Clearlyu 4 does not charge polar sets, and in particular in 3, we have
pa(B) = 0 for all Borel sets with diniB) < d — 2. In the plane, by a famous theorem of
Makarov, see [Ma85], we have that

e any setB of dimension< 1 hasu4(B) =0,
e thereis aset C A with dim S = 1 such thafu,(S¢) = 0.

However, the outer boundary, which supports the harmonasone, may have a dimension
much bigger than one. An interesting question arising irctrgext of self-avoiding curves
asks for the dimension of the outer boundary of the im&¢f& 1] of a Brownian motion.
Based on scaling arguments from polymer physics, Benoitddimot conjectured in 1982
that this set should have fractal dimensibf8. Bishop et al. [BJPP97] showed that the
outer boundary has dimension 1. In 2001 Mandelbrot’s conjecture was finally proved
by Lawler, Schramm and Werner [LSWO01c], see Chapter 11 foermdormation.

There are some fine results about the hitting probabilitiesrall balls within a given
time in the literature. Le Gall [LG86b] shows, using a claasdiffusion argument, that
ford > 3 we have, as | 0,

Po{7(B(z,e)) <t} ~ (£ —1)L(B(0,1)) g2 /O p5(0,y) ds.

This should be compared to the result of Exercise 8.11. Thgous result for the planar
case is due to Spitzer [Sp58]. Further fine results from [L§}86fer to the hitting of
several small balls in a given time, and some asymptotidteefar the volume of Wiener
sausages, the neighbourhoods of the Brownian path.
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Intersections and self-intersections of Brownian paths

In this chapter we study multiple points dfdimensional Brownian motion. We shall
see, for example, in which dimensions the Brownian path loable points and explore
how many double points there are. This chapter also consaime of the highlights of
the book: a proof that planar Brownian motion has points Ghite multiplicity, the in-
tersection equivalence of Brownian motion and percolaliimit sets, and the surprising
dimension-doubling theorem of Kaufman.

9.1 Intersection of paths: Existence and Hausdorff dimensin
9.1.1 Existence of intersections

Suppose tha{B;(t): ¢ > 0} and{Bx(t): t > 0} are two independent-dimensional
Brownian motions started in arbitrary points. The questienask in this section is, in
which dimensions the ranges, or paths, of the two motions havontrivial intersection,
in other words whether there exist timgst¢, > 0 such thatB;(t;) = Ba(t2). As this
question is easy if = 1 we assume > 2 throughout this section.

We have developed the tools to decide this question in Chdmad Chapter 8. Keeping
the path{ B, (¢): ¢t > 0} fixed, we have to decide whether it is a polar set for the second
Brownian motion. By Kakutani’s theorem, Theorem 8.20, thigestion depends on its
capacity with respect to the potential kernel. As the cdpasiagain related to Hausdorff
measure and dimension, the results of Chapter 4 are cradihkiproof of the following
result.

Theorem 9.1

(a) For d > 4, almost surely, two independent Brownian path®ihhave an empty
intersection, except for a possible common starting point.

(b) Ford < 3, almost surely, the intersection of two independent Brawpiaths inR¢
is nontrivial, i.e. contains points other than a possiblentoon starting point.

255
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Remark 9.2 In the casel < 3, if the Brownian paths are started at the same point, then
almost surely, the paths intersect before any positive timd), see Exercise 9.1 (a). ©

Proof of (a). Note that it suffices to look at one Brownian motion and shost its path

is, almost surely, a set of capacity zero with respect to titergial kernel. Ifd > 4, the
capacity with respect to the potential kernel is a multigléhe Riesz(d — 2)-capacity. By
Theorem 4.27 this capacity is zero for sets of filjite- 2)-dimensional Hausdorff measure.
Now note that ifd > 5 the dimension of a Brownian path is two, and hence strictlgltm
thand — 2, so that thed — 2)-dimensional Hausdorff measure is zero, which shows that
the capacity must be zero.

If d = 4 the situation is only marginally more complicated, althiotige dimension of the
Brownian path i = d — 2 and the simple argument above does not apply. However,
we know from (4.2) in Chapter 4 that?(B[0, 1]) < co almost surely, which implies that
Cap,(B[0,1]) = 0 by Theorem 4.27. This implies that an independent Browniation
almost surely does not hit any of the segmeBis, n + 1], and therefore avoids the path
entirely. [ |

Proof of (b). If d = 3, the capacity with respect to the potential kernel is a mpldtof the
Riesz1-capacity. As the Hausdorff dimension of a path is two, thigazity is positive by
Theorem 4.32. Therefore two Brownian pathdia 3 intersect with positive probability.

Suppose now the two Brownian motions start at different {soiWe may assume that one
is the origin and the other one is denotedBy rotational invariance, the probability that
the paths do not intersect depends onlyen and by Brownian scaling we see that it is
completely independent of the choiceof4 0. Denote this probability by and, given
anye > 0, choose a large timesuch that

P{Bi(t1) # Ba(t2) forall 0 < t,t <t} <g+e.
Then, using the Markov property,

q < P{Bi(t1) # Ba(tz) forall t1,t; <t} P{B1(t1) # Ba(t2) forall ty,t, >t}
<gq(qg+e).

As ¢ > 0 was arbitrary, we gej < ¢2, and as we know that < 1 we obtain thay = 0.
This shows that two Brownian paths started in different {sintersect almost surely. If
they start in the same point, by the Markov property,

P{Bl(tl) # BQ(tQ) for all t1,ta > 0} = I}H}P{Bl(tl) # Bg(tg) for all t1,ta > t} =0,
t>0

as required to complete the argument in the ehse3. A path ind < 2 is the projection

of a three dimensional path on a lower dimensional subsperee if two paths inl = 3

intersect almost surely, then so do two pathg ia 2. [ |
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It is equally natural to ask, for integeps> 2 andd < 3, whether a collection gf inde-
pendenti-dimensional Brownian motions

{Bl(t): t 2 0}""1{Bp(t): t 2 0}

intersect, i.e. whether there exist timgs. .., t, > 0 such thatB; (t,) = - - - = Bp(¢p).

Theorem 9.3

(@) For d > 3, almost surely, three independent Brownian pathRfrhave an empty
intersection, except for a possible common starting point.

(b) For d = 2, almost surely, the intersection of any finite numpeaf independent
Brownian paths irR? is nontrivial, i.e. contains points other than a possiblenco
mon starting point.

In the light of our discussion of the cage= 2, it is natural to approach the question
about the existence of intersectionspgbaths, by asking for the Hausdorff dimension and
measure of the intersection pf- 1 paths. This leads to an easy proof of (a).

Lemma 9.4Supposg B;(t): t > 0}, fori = 1, 2, are two independent Brownian motions
in d = 3. Then, almost surely, for every compact Aet R? not containing the starting
points of the Brownian motions, we hakg (B [0, o0) N B2[0,00) N A) < cc.

Proof. Fix a cubeCube C R3 of unit side length not containing the starting points.
It suffices to show that, almost surefy,! (B1[0, 00) N Bz[0, 00) N Cube) < oco. For this
purpose let,, be the collection of dyadic subcubes@ibe of side length2~", andJ,,

be the collection of cubes &, which are hit by both motions. By our hitting estimates,
Corollary 3.19, there existS > 0 such that, for any cubg € ¢,,,

P{E €3,} = P{3s > Owith B(s) € E}* < C27%".
Now, for everyn, the collectior,, is a covering ofB; [0, co) N Bz[0, c0) N Cube, and
E[ Y |E|] =2 P{E€3,}V32 " <CVE
E€T,
Therefore, by Fatou’s lemma, we obtain
E[hmmf 3 |E@ < hminfE[ 3 |E@ < OV3.
n—oo Eej” n—oo Eejn

Hence the liminfis finite almost surely, and we infer fronstthatH* (B [0, c0)N B2 [0, o0)N
Cube) is finite almost surely. [

Proof of Theorem 9.3 (a). It suffices to show that, for any culéeibe of unit side length
which does not contain the origin, we havep, (B1[0, co) N Bz [0, 00) N Cube) = 0. This
follows directly from Lemma 9.4 and the energy method, Theo#.27. [ |
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For Theorem 9.3 (b) it would suffice to show that the Hausddiffiension of the set
B1(0,00)N...N By_1(0, 00) is positive in the casé = 2. In fact, it is a natural question
to ask for the Hausdorff dimension of the intersection ofdn@n paths in any case when
the set is nonempty. The problem was raised by Itd and McKe#reifirst edition of their
influential book [IM74], and has since been resolved by Tefla66] and Fristedt [Fr67].
The substantial problem of finding lower bounds for the Hauf§dlimension of the inter-
section sets is best approached using the technigamdfastic co-dimensiomvhich we
discuss now.

9.1.2 Stochastic co-dimension and percolation limit sets

Given a setd, the idea behind the stochastic co-dimension approachtékéa suitable
random test se®, and check whetheéP{© N A # ()} is zero or positive. In the latter
case this indicates that the set is large, and we shouldftinerget a lower bound on
the dimension ofd. A natural choice of such a random test set would be the rahge o
Brownian motion. Recall that, for example in the cdse 3, if P{B[0,00) N A # 0} > 0,

this implies thatlim A > 1.

Of course, in order to turn this idea into a systematic temaifor finding lower bounds
for the Hausdorff dimension, an entire family of test setsésded to tune the size of the
test set in order to give sharp bounds. For this purposepTfl66] used stable processes
instead of Brownian motion. This is not the easiest way asd hinited, because stable
processes only exist across a limited range of parametdrs.approach we use in this
book is based on using the family of percolation limit settegs sets.

Suppose tha® ¢ R? is a fixed compact unit cube. We denote by the collection of
compact dyadic subcubes (relative(d of side lengtl2—™. We also let

¢= [j C,.
n=0

Given~y € [0, d] we construct a random compact §&f] C C' inductively as follows: We
keep each of the? compact cubes id; independently with probability = 277, Let &,

be the collection of cubes kept in this procedure &G their union. Pass frons,, to
&,11 by keeping each cube @f, . 1, which is not contained in a previously rejected cube,
independently with probability. Denote byS = |J;~_; &,, and letS(n + 1) be the union

of the cubes ir6,,; 1. Then the random set

T[] = (1] S(n)
n=1

is called gpercolation limit set. The usefulness of percolation limit sets in fractal geome-
try comes from the following theorem.
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Theorem 9.5 (Hawkes 1981)For everyy € [0,d] and every closed set C C the
following properties hold

(i) if dim A < ~, then almost surelyd N T'[y] = 0,
(i) if dim A > v, thenA N T[] # 0 with positive probability,
(iii) if dim A > ~, then

(a) almost surelydim (ANT[]) < dim A — v and,
(b) forall « > 0, with positive probabilitylim (ANT[H]) > dim A — v —e.

Remark 9.6 Observe that the first part of the theorem givésveer bound~ for the Haus-
dorff dimension of a se#, if we can show thatl N T'[y] # () with positive probability. As
with so many ideas in fractal geometry one of the roots ofrtiéshod lies in the study of
trees, more precisely percolation on trees, see [Ly90]. o

Remark 9.7

(a) The stochastic co-dimension technique and the energy mhettgoclosely related:
A set A is calledpolar for the percolation limit setf

P{ANT[y] # 0} = 0.

We shall see in Theorem 9.18 that a set is polar for the pdionlamit set if and
only if it has~y-capacity zero.

(b) Ford > 3, the criterion for polarity of a percolation limit set with = d — 2
therefore agrees with the criterion for the polarity for ®réan motion, recall The-
orem 8.20. This ‘equivalence’ between percolation limissed Brownian motion
has a quantitative strengthening which is discussed in@e@t2 of this chaptes,

Proof of (i) in Hawkes’ theorem. The proof of part (i) is based on tHest mo-
ment methodwhich means that we essentially only have to calculate peatation. Be-
causedim A < - there exists, for every > 0, a covering ofA by countably many sets
Dy, Do, ... with 3°7° |D;|” < e. As each set is contained in no more than a constant
number of dyadic cubes of smaller diameter, we may even asguaD, D-,... € €.
Suppose that the side length Bf is 2~ ™, then the probability thab, € &,, is2~"7. By
picking from Dy, D, ... those cubes which are i& we get a covering oA N T'[]. Let

N be the number of cubes picked in this procedure, then

P{ANT[] #0} <P{N >0} <EN =) P{D; € 8} =) |D;]" <e.

i=1 i=1

As this holds for alk > 0 we infer that, almost surely, we haven I'[y] = (. ]
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Proof of (ii) in Hawkes’ theorem. The proof of part (i) is based on tteecond moment
method which means that a variance has to be calculated. We alsthessasy part of
Frostman’s lemma in the form of Theorem 4.32, which statas #sdim A > ~, there
exists a probability measugeon A such thatl, (1) < oco.

Now letn be a positive integer and define the random variables

,U n
Y, = § § w(C)2 71{066”}'
ces, ceg,

Note thatY,, > 0 impliesS(n) N A # 0 and, by compactness,¥f, > 0 for all n we even
haveANT[y] # 0. AsY, 11 > 0 impliesY,, > 0, we get that

P{ANT[] #0} > P{Y, > Oforalin} = lim P{Y, > 0}.

It therefore suffices to give a positive lower bound Y, > 0} independent of..
A straightforward calculation gives for the first moméijt’,| = > ., w(C) = 1. For
the second moment we find

Z Z w(C)u(D) 22" P{C € &,,andD € &,,}.
Ccec¢,, Dec¢,

The latter probability depends on the dyadic distance ottheesC andD: if 2=™ is the
side length of the smallest dyadic cube which contains bémd D, then the probability

in question i2~27(»=m)2=7m_ The valuem can be estimated in terms of the Euclidean
distance of the cubes, indeedife C' andy € D then

|z —y| < Vd2™™.

This gives a handle to estimate the second moment in termeddniergy of.. We find

that

Z Z D)27™ < a2 // 7 —d/?r ().

cee, Dee, |x - y|
Plugging these moment estimates into the easy form of theyPaygmund inequality,
Lemma 3.23, give®{Y,, > 0} > d~7/21,(u)~*, as required. n

Proof of (iii) in Hawkes’ theorem.  For part (iii) note that the intersectidr{~] N T'[¢]
of two independent percolation limit sets has the sameildigion asI'[y + §]. Suppose
first thatd > dim A — . Then, by part (i),A N T[y] N T[] = ( almost surely, and
hence, by part (ii)dim A N T'[y] < ¢ almost surely. Letting | dim A — v completes
the proof of part (a). Now suppose thak: dim A — ~. Then, with positive probability,
(ANT]) NT[d] # 0, by part (ii). And using again part (i) we get théiin ANT[y] > ¢
with positive probability, completing the proof of part (b) [

9.1.3 Hausdorff dimension of intersections

We can now use the stochastic codimension approach to findahedorff dimension of
the intersection of two Brownian paths, whenever it is nopgmNote that the following
theorem also implies Theorem 9.3 (b).
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Theorem 9.8Supposel > 2 andp > 2 are integers such that(d — 2) < d. Suppose that
{Bi(t): t > 0},... {B,(t): t > 0}

are p independent-dimensional Brownian motions. LBhnge; = B;[0, co) be the range
of the procesg B;(t): ¢t > 0}, for 1 < i < p. Then, almost surely,

dim (Range; N ... N Range,) = d — p(d — 2).

Remark 9.9 A good way to make this result plausible is by recalling thaation for the
intersection of linear subspaces®f: If the spaces are in general position, then the co-
dimension of the intersection is the sum of the co-dimerssiointhe subspaces. As the
Hausdorff dimension of a Brownian path is two, the plausdadimension of the intersec-
tion of p paths isp(d — 2), and hence the dimensionds- p (d — 2). o

Remark 9.10Assuming the theorem, if the Brownian paths are starteddrsttime point,
then almost surelylim(B1[0,¢:]N---NB,[0,t,]) = d—p(d—2), foranyt,, ..., t, > 0,
see Exercise 9.1 (b). o

For the proofs of the lower bounds in Theorem 9.8 we use thehattic codimension
method, but first we provide a useful zero-one law.

Lemma 9.11For any~ > 0 the probability of the event
{dim (Range1 n...N Rangep) > fy}
is either zero or one, and independent of the starting pahthe Brownian motions.
Proof. Fort € (0, 00] denoteS(¢t) = B1(0,t) N---N B,(0,¢) and let
p(t) = P{dim S(t) > ~}.

We start by considering the case that all Brownian motioa# stt the origin. Then, by
monotonicity of the events,

. > p— 1 .
P{dim S(t) > yforallt >0} ltlfgp(t)

The event on the left hand side is in the gerralgebra and hence, by Blumenthal’s zero-
one law, has probability zero or one. By scaling, howepér), does not depend arat all,
so we have eithep(t) = 0 forall ¢t > 0 orp(t) = 1 forall ¢t > 0.

In the first case we note that, by the Markov property appli¢ohee ¢,
0 =P{dim S(c0) =~}

= /IP’{ dim S(00) =7 | Bi(t) = @1, ..., By(t) = ap } du(ze, ..., 1),



262 Intersections and self-intersections of Brownian paths

where is the product ofp independent centred, normally distributed random vaembl
with variancest. As p < L,4, we haveP{dim S(c0) > ~v} = 0 for £,4-almost every
vector of starting points. Finally, for an arbitrary configtion of starting points,

P { dim S(c0) = v}

= lting{ dim{z € R*: 3t; > t suchthatt = By (t;) = - -+ = B,(t,)} > v} = 0.
A completely analogous argument can be carried out for tbersbcase. [
Proof of Theorem 9.8. First we look atd = 3 (and hencep = 2) and note that,

by Lemma 9.4, we havdim(Range; N Range,) < 1, and hence only the lower bound
remains to be proved. Suppose< 1 is arbitrary, and pick3 > 1 such thaty + g < 2.
LetT'[y] andT'[3] be two independent percolation limit sets, independertt@Brownian
motions. Note thal'[y] N T'[§] is a percolation limit set with parameter+ 5. Hence, by
Theorem 9.5 (ii) and the fact thdtm(Range;) = 2 > v + 3, we have

P{Range; NT[y]NT[B] # 0} > 0.
Interpretingl’[3] as the test set and using Theorem 9.5 (i) we obtain
dim (Range, NT'[Y]) > 6 with positive probability.

As 3 > 1, given this event, the s&ange; N I'[v] has positive capacity with respect to the
potential kernel iR and is therefore nonpolar with respect to the independenwBian
motion{Bx(t): t > 0}. We therefore have

P{Range; N Range, N\T'[y] # 0} > 0.

Using Theorem 9.5 (i) we infer thadim(Range; N Range,) > ~ with positive probability.
Lemma 9.11 shows that this must in fact hold almost surelytha result follows as < 1
was arbitrary.

Next, we look atl = 2 and anyp > 2. Note that the upper bounds are trivial. For the lower
bounds, supposg < 2 is arbitrary, and pick, . .., 5, > 0such thaty+3,+- - -+5, < 2.
LetT'[y] andI[B1], ..., T[] be independent percolation limit sets, independent opthe

Brownian motions. Then
p

T n (T8

=1

is a percolation limit set with parameter- 5, + - - - + 3,. Hence, by Theorem 9.5 (ii) and
the fact thatlim(Range,) =2 > v+ 1 + - - - + §,, we have

]‘P’{Range1 NN ﬂ INCARZ (Z)} > 0.

=1

Interpretingl’[3,] as the test set and using Theorem 9.5 (i) we obtain

p—1
dim (Range1 NTH N () F[ﬁi]) > B,  with positive probability.
=1
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As 3, > 0, given this event, the set

p—1
Range; NT[y] N m I'[B;]
i=1

has positive capacity with respect to the potential kemé3 and is therefore nonpolar
with respect to the independent Brownian mot{ds,(¢): ¢t > 0}. We therefore have

p—1
PP{Range, N Range, NT[y] N ﬂ L3 # 0} > 0.

i=1

Iterating this procedurg — 1 times we obtain
p
IP’{ ﬂ Range, NT'[y] # @} > 0.
=1

Using Theorem 9.5 (i) we infer thatim(\!_, Range;) > ~ with positive probability.
Lemma 9.11 shows that this must in fact hold almost surely, the result follows as

~v < 2 was arbitrary. [ |

9.2 Intersection equivalence of Brownian motion and perc@altion limit sets

The idea of quantitative estimates of hitting probabiities a natural extension: two ran-
dom sets may be callédtersection-equivalerit their hitting probabilities for a large class
of test sets are comparable. This concept of equivalenaesBurprising relationships be-
tween random sets which, at first sight, might not have mucbimmon. In this section we
establish intersection equivalence between Browniananaid suitably defined percola-
tion limit sets, and use this to characterise the polar setthe intersection of Brownian
paths. We start the discussion by formalising the idea efgetction equivalence.

Definition 9.12. Two random closed setd and B in R areintersection-equivalent
in the compact sel/ if there exist two positive constantsC' such that, for any closed
setA C U,

cP{ANA#0} <P{BNA#0} <CP{ANA # 0}. (9.1)

Using the symbok =< b to indicate that the ratio of andb is bounded from above and
below by positive constants which do not depend\ome can write this as

P{ANA#0} <xP{BNA#0}.

<

Remark 9.13Let G be the collection of all closed subsets®f. Formally, we define a
random closed set as a mappidg Q — G such that, for every compadt c R?, the set
{w: A(w)N A = (} is measurable. o

The philosophy of the main result of this section is that weulddike to find a class of
particularly simple sets which are intersection-equintie the paths of transient Brownian
motion. If these sets are easier to study, we can ‘tranga®/ results about the simple sets
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into hard ones for Brownian motion. A good candidate for éhgmple sets are percolation
limit sets: they have excellent featuresseff-similarityandindependencbetween the fine
structures in different parts. Many of their properties barobtained from classical facts
about Galton—Watson branching processes.

We introduce percolation limit sets witfeneration dependengtention probabilities. De-
note by¢,, the compact dyadic cubes of side length*. For any sequencgy, ps, ... in
(0,1) we define familiesS,, of compact dyadic cubes inductively by including any cube in
¢,, which is not contained in a previously rejected cube, indepatly with probabilityp,, .
Define

r= U s
n=15€6,

to be thepercolation limit set for the sequence;, po, . . ..
To find a suitable sequence of retention probabilities wepamathe hitting probabilities
of dyadic cubes by a percolation limit set on the one hand arahaient Brownian on the
other. (This is obviously necessary to establish inteise@quivalence). We assume that
percolation is performed in a culiube at positive distance from the origin, at which a
transient Brownian motion is started. Supposing for the @nthat the retention proba-
bilities are such that the survival probability of any ratd cube is bounded from below,
for any cubeR € ¢, the hitting estimates for the percolation limit set are

P{TNQ#0} =<pi--pn.
By Theorem 8.24, on the other hand,

P{B[0,T]NQ # 0} =< Cap,,(Q) < 1/f(27"),

for the radial potential

o) = { log,(1/) ford =2,

g2-d ford >3,

where we have chosen bagifor the logarithm for convenience of this argument. Then we
choose the sequengg, po, . . . of retention probabilities such that - - - p,, = 1/f(27™).
More explicitly, we choose, = 22~% and, forn > 2,

F2-nt) :{ =l ford =2, ©2)

Pn = “n
f2=) 22=d  ford>3.

The retention probabilities are constant #g 3, but generation dependent i@r= 2.

Theorem 9.14Let {B(¢): 0 < t < T'} denote transient Brownian motion started at the
origin and Cube C R? a compact cube of unit side length not containing the oridiet

I" be a percolation limit set irfCube with retention probabilities chosen as (8.2). Then
the range of the Brownian motion is intersection-equivaterthe percolation limit sef’

in the cubeCube.
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Before discussing the proof, we look at an application ofdrbhen 9.14 to our understand-
ing of Brownian motion. We first make two easy observations.

Lemma 9.15Suppose thatA,, ..., A, I, ..., Fy are independent random closed sets,
with A; intersection-equivalent té; for 1 < i < k. Then A ;N Ay N...N A, is
intersection-equivalent td&, N Fy N ... N Fy.

Proof. By induction, we can reduce this to the cdse= 2. It then clearly suffices
to show thatd; N A, is intersection-equivalent t6; N A,. This is done by conditioning
on As,

P{A1NA;NA#0} =E[P{A; N Az NA # 0| As}]
=P{F NAsNA#0}. [

Lemma 9.16For independent percolation limit sey andT'; with retention probabilities
p1,D2,---andq, o, . . ., respectively, their intersectidi, N I’ is a percolation limit set
with retention probabilitie®: q1, p2qo, - . ..

Proof. This is obvious from the definition of percolation limit setsd independenca

These results enable us to recover the results about ecgstémontrivial intersections of
Brownian paths from the survival criteria of Galton—Watsmes, see Section 12.4 of the
appendix.

As an example, we take a look at the intersection of two Brawmiaths ifrR?, d > 3. By
Theorem 9.14 and Lemma 9.15, the intersection of these pathtersection-equivalent
(in any unit cube not containing the starting points) to titerisection of two independent
percolation limit sets with constant retention paramegets 22—¢. This intersection, by
Lemma 9.16, is another percolation limit set, but now withapaeterp? = 24-2¢, Now
observe that this set has a positive probability of beingenagpty if and only if a Galton—
Watson process with binomial offspring distribution witarpmeters: = 2¢ andp =
24-2d has a positive survival probability. Recalling the criterifor survival of Galton—
Watson trees from Proposition 12.37 in the appendix, we Isatethis is the case if and
only if the mean offspring numberyp strictly exceedd, i.e. if4 — d > 0. In other words,
in d = 3 the two paths intersect with positive probability, in algher dimensions they
almost surely do not intersect.

We now give the proof of Theorem 9.14. A key r6le in the progflayed by a fundamental
result of Russell Lyons concerning survival probabilitidgyeneral trees under the perco-
lation process, which has great formal similarity with theqtitative hitting estimates for
Brownian paths of Theorem 8.24.

Recall the notation for trees from Section 12.4 in the appendls usual we define, for
any kernelK : 9T x 9T — [0, oo], the K-energy of the measugeon 9T as

Ik (p) = //K(wvy) dp(z) du(y),
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and theK -capacity of the boundary of the tree by
Capg (OT) = [inf {Ix(p): 1 a probability measure ofiT'} ] -

Given a sequencey, po, . .. of probabilities,percolationon T is obtained by removing
each edge df’ of ordern independently with probability — p,, and retaining it otherwise,
with mutual independence among edges. Say that § sayvives the percolationif all
the edges og are retained, and say that the tree bound#iysurvives if some ray of’
survives.

Theorem 9.17 (Lyons) If percolation with retention probabilitieg; , ps, . . . is performed
on a rooted tredl’, then

Capg (0T) < P{ 9T survives the percolatiof < 2Cap (97T, (9.3)
where the kernek is defined by (z,y) = [[*A p; '

Proof.  For two vertices, w we writev «— w if the shortest path between the vertices
is retained in the percolation. We also write—~ 9T if a ray through vertex survives the
percolation and < T, if there is a self-avoiding path of retained edges conngatito a
vertex of generation. Note that, withp denoting the root of the treds (x,y) = P{p <

x Ay} ! by definition of the kerneK. By the finiteness of the degrees,

{p= 0T} =({p < Tu}.

We start with the left inequality in (9.3) and consider theecaf a finite tred” first. We
extend the definition of the bounda®¥{” to finite trees by lettingdT" be the set of leaves,
i.e., the vertices with no offspring. Letbe a probability measure @i and set

y — Z M(@M

S P{p < z}

BV = E| S Y u@uly) ool Ll v

z€dT yedT P{p e -75} P{p - y}
P{p <~ zandp < y}
= (@) p(y :
2 2 O B )
Thus,
1

EY? = Y p@)uy)

z,yedT

m = Ix(p).

Using the Paley—Zygmund inequality in the second step, waimb

EN])” 1
P{p < OT} = P{Y >0} > BV TnG]
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The left hand side does not depend,grso optimising the right hand side overields

1
P{p < 0T} > sup
{ } w Tre ()
which proves the lower bound for finite trees. FBrinfinite, let ;. be any probability
measure o@7. This induces a probability measugieon the sefl;,, consisting of those
vertices which become leaves when the ffas cut off after thex*™ generation, by letting

= Capg (0T ,

f(v) =p{& € dT: v e}, for any vertexv € T, .
By the finite case considered above,
—1
PlooT)> (Y K@yi@iw) -
z,yeTy,
Each ray¢ must pass through some vertexc T,,. This implies thatX (z,y) < K(§,n)

for x € £ andy € 7. Therefore,

/ K& du©duln) > Y K(w,y)i@)i(y)
oT JoT

z,y€Ty

1
> -
P{p < Tn}

HenceP{p < T,} > IK(M)’1 for any probability measurg on 9T'. Optimising overu
and passing to the limit as — oo, we getP{p < 9T} > Capy (9T).

It remains to prove the right hand inequality in (9.3). Assufinst thatT is finite. There

is a Markov chain{V}, : k € N} hiding here: Suppose the offspring of each individual is
ordered from left to right, and note that this imposes a @édtorder on all vertices of the
tree by saying that is to the left ofy if there are siblings, w with v to the left ofw,
such thatr is a descendant af andy is a descendant af. The random set of leaves that
survive the percolation may thus be enumerated from lefigiat asVy, Vs, ..., V... The
key observation is that the random sequendé, 5, ..., V.., A, A, ... is a Markov chain
on the state spa@®l" U {p, A}, wherep is the root and\ is a formal absorbing cemetery.
Indeed, given thal, = z, all the edges on the unique path frgnto « are retained, so
that survival of leaves to the right afis determined by the edges strictly to the right of the
path fromp to x, and is thus conditionally independentidf,. .., V,_1, see Figure 9.1.

This verifies the Markov property, so Proposition 8.26 mayapeplied. The transition
probabilities for the Markov chain above are complicated,ibis easy to write down the
Green kernez. For any vertex: let path(z) be the set of edges on the shortest path from
ptoz. Clearly,G(p, y) equals the probability that survives percolation, so

[yl

G(p,y) = Hpn~

If  is to the left ofy, thenG(z, y) is equal to the probability that the range of the Markov
chain containg given that it containg;, which is just the probability of surviving given
thatz survives. Therefore,

lyl

G(x,y) = H Pn s

n=|zAy|+1
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Fig. 9.1. The Markov chain embedded in the tree.

and hence
[zAyl
G(fﬂ,y) —1
M(z,y) = = N
(@) G(p,y) ,,Ellp

Now G(z,y) = 0 for z on the right ofy; thus (keeping the diagonal in mind)
K(z,y) < M(z,y) + M(y,z)

for all z,y € 0T, and thereford i (1) < 21 () . Now apply Proposition 8.26 td =
oT

Capg (0T) > $Capy (T) > P{{Vi: k € N} hits 0T } = 1 P{p «— OT'}.

This establishes the upper bound for firite The inequality for general’ follows from
the finite case by taking limits. [

The main remaining task is to translate Lyons’ theorem, Témmo9.17, into hitting esti-
mates for percolation limit sets using a ‘tree represemtatis in Figure 9.2, and relating
the capacity of the tree boundary to the capacity of the patica limit set.

Theorem 9.18LetI" be a percolation limit set in the unit culi&ibe with retention param-
eterspy, po, . ... Then, for any closed sét ¢ Cube we have
P{I'NA#0} = Cap;(A),

for any decreasing satisfyingf(2=%) = p; ' - - p; "

Remark 9.19 This result extends parts (i) and (ii) of Hawkes’ theoremeditem 9.5, in
two ways: It includes generation dependent retention avesg quantitative estimateo

The key to this theorem is the following representation for f-energy of a measure.
Recall that®,, denotes the collection of half-open dyadic cubes of sidgtle".
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Fig. 9.2. Percolation limit set and associated tree

Lemma 9.20Supposef: (0,00) — (0, 00) is a decreasing function, and dendtén) =
f(2™) — f(2t=™) for n > 1, andh(0) = f(1). Then, for any measurg on the unit
cubel0, 1),

10 = Y ) (3 #(QP).

QEDn

where the implied constants depend onlyion

Proof of the lower bound in Lemma 9.20.  Fix an integer/ such that/d < 2¢. For
anyz,y € [0,1]¢ we writen(z,y) = max {n: z,y € Q forsomeQ € ’Dn}. Note that
n(z,y) = n+ Limplies|z — y| < Vd27"~¢ < 27" and hencef (|z —y|) > f(27"). We
thus get

Ip(u) = / / £l — o) ds(z) du(y)

> Y f@ M peu{(ey): nley) =n+L}

n=0
= Z f@2™) [5n+e(u) - Sn+£+1(l~b)] )
n=0

whereS,, (1) =3 geo, u(Q)?. Note that, by the Cauchy—Schwarz inequality,

Ssm=Y w@r=Y (X w»)

QED, QED, VEDnpn
ved (9.4)

<20 Y (V)P =28 (p).

VeEDnt1
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Rearranging the sum and using thismes, we obtain that

Zfr Sne() = Sne1( Zh Sne(p Zh )27 S, (1),

n=0

which is our statement with = 2%, ]

Proof of the upper bound in Lemma 9.20. Forvd2'"" > |z — y| > Vd2™", we
have

Zh U{Vd2'"™F > o —yl} = f(Vd27") = f(lz —yl),
and hence we can decompose the integral as

100 = [ 1 =y du(o) dutw)
< [ Hnaz > b sl ) )

For cubes,, Q> € ®, we write Q; ~ Q- if there existg; € @1 andgs, € Q2 with
lq1 — q2] < V/d2~" (though note that- is not an equivalence relation). Then

J[1a2 4> o~ gl dute) duty) = n e nf(ew): 1o - ol < Va2 )
Son@) @) <t Y (m@)P+ @),

Q1,Q2€D 1 Q1,Q2€D
Q1~Q2 Q1~Q2

N

using the inequality of the geometric and arithmetic meath@last step. As, for each
cube@, the number of cube®- with 1 ~ Q- is bounded by some constafiy > 0,
we obtain that

W <GSR Y p@PF < (Cat 2SR Y @),
k=0

QED 1 k=0 QED

using (9.4) from above. This completes the proof of the ujmoeind. [ |

Proof of Theorem 9.18. Denote the coordinatewise minimum Gfibe by zy,. We
employ the canonical mappirf@ from the boundary of &%-ary treeY', where every ver-
tex has2? children, to the cub&ube. Formally, label the edges from each vertex to its
children in a one-to-one manner with the vector®in= {0, 1}¢. Then the boundargY

is identified with the sequence spa@é and we definé? : 9T = %" — Cube by

R(wy,wa,...) =x0+ Z 27wy,
n=1
We now use the representation given in Lemma 9.20 to relat&tenergy of a measure
1 ondY (with K as in Theorem 9.17) to thé-energy of its image measureo R~! on
Cube, showing that

Ire(p) = Iy(no R (9.5)
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where the implied constants depend only on the dimengiomdeed theX-energy of a
measurg: on 9T satisfies, by definition,

lzAyl [v|—1

//leld” ) dly //Z sz il:[lpil)du(w)du(y%

vy i=1

where we count all ancestorf = A y and we interpret the contribution of the raot= p
as one. Interchanging summation and integration we obtain

o] ol
) = Y (TIe - _H nit) [[ 10> v v} dute) duty)

veY =1

1)

=Z<ﬁpl H Dulfgeor:vee)),

veY i=1 i=1

whereas the-energy of the measugeo R ! satisfies, by Lemma 9.20,

f(poR™ Zh S u(RYD))’,

De®Dy,

where
hk) = f ") = f Y =pr ' p = oty

by our assumptions ofi. Now R~!(D) is contained in no more thas{ sets of the form
{€ € 0T: v € &}, for [u| = k, in such a way that over all cubd3 € D, no such set is
used in more thas? covers. Conversely each sRt!(D) contains an individual set of
this form entirely, so that we obtain (9.5).

Any closed set\ in the unit cubeCube can be written as the image(9T") of the bound-
ary of some subtre& of the regular¢-ary tree. As any measuteon R(97) C Cube
can be written ag: o R~! for an appropriate measuye on 97 it follows from (9.5)
that Capy (0T) =< Cap;(R(9T)). We perform percolation with retention parameters
p1,P2,...onthetreel’. Then, by Theorem 9.17,

P{T'NA # 0} =P{dT survives the percolatioh
= Capg (0T) = Cap;(A). u

Proof of Theorem 9.14.  As the cubeCube has positive distance to the starting point
of Brownian motion, we can remove the denominator and smaliger terms from the
Martin kernel in Theorem 8.24, as in the proof of Theorem 8\&8 thus obtain

P{B[0,T]NA # 0} =< Cap;(A),

where f is the radial potential. For the choice of retention proliés in (9.2) we can
apply Theorem 9.18, which implies

Cap (A P{FHA#@}

and combining the two displays gives the result. [ |
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The intersection equivalence approach enables us to d¢bdasgcthe polar sets for the
intersection ofy independent Brownian motions B¢ and give a quantitative estimate of
the hitting probabilities.

Theorem 9.21Let By, ..., B, be independent Brownian motions¥ starting in arbi-
trary fixed points and suppogéd — 2) < d. Let

S={zeR% 3Ity,...,t, >0withz = By(t1) = - = By(ty)}.
Then, for any closed sét, we have
P{SNA#0} >0 ifandonlyif ~ Cap,(A) >0,
wheref is the radial potential.

Proof. We may assume that is contained in a unit cube at positive distance from
the starting points. Lelf' be a percolation limit set in that cube, with retention piaba
ities p1, po, . .. satisfyingpy ---p, = 1/fP(27"). By Theorem 9.14, Lemma 9.15 and
Lemma 9.16, the random sétis intersection-equivalent 0 in that cube. Theorem 9.18
characterises the polar sets fgrcompleting the argument. [

9.3 Multiple points of Brownian paths

A point z € R¢ hasmultiplicity p, or is ap-fold multiple point, for a Brownian motion
{B(t): t > 0} inRY, if there existtime®) < t; < --- < t, with

t=B(t) == B(t,).

The results of the previous section also provide the comaleswer to the question of the
existence of such points.

Theorem 9.22Suppose > 2 and{B(t): t € [0, 1]} is ad-dimensional Brownian motion.
Then, almost surely,

e if d > 4 no double points exist, i.e. Brownian motion is injective,
e if d = 3 double points exist, but triple points fail to exist,

e if d = 2 points of any finite multiplicity exist.

Proof. To shownonexistencef double points ind > 4 it suffices to show that for
any rationala € (0,1), almost surely, there exists no times< ¢; < a < t2 < 1 with
B(t1) = B(t2). Fixing such anx, the Brownian motion§B;(¢): 0 < ¢t < 1 — a} and
{Ba(t): 0 < t < o} given by

Bi(t) = Bla+t)— B(a) and By(t) = B(a —t) — B(a)

are independent and hence, by Theorem 9.1, they do notenteesmost surely, proving
the statement.
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To showexistenceof double points ind < 3 we apply Theorem 9.1 in conjunction with
Remark 9.2, to the independent Brownian motidi# (t): 0 < ¢ < 1} and {Ba(t):
0 <t< 3}givenby

Bi(t)=B(3+t) - B(3) and  By(t)=B(3—t)— B(3),

1

2 2
to see that, almost surely, the two ranges intersect.
To show nonexistence dfiple points ind = 3 we observe that it suffices to show that for
any three rational® < a3 < as < as ande < (as — az) A (az — ay), almost surely
there are no timeg € («a;, «; + ¢) such thatB(t) = B(t2) = B(ts). By conditioning
the Brownian motion on its values at the timesanda; + ¢, fori € {1,2, 3}, we obtain
three Brownian bridge§B;(¢): 0 < ¢ < €} given by

Bl(t) ZB(Oéi—Ft)—B(Oéi), fori e {1,2,3}.

By Exercise 9.2 the probability that these three bridgesrgaict is zero, for any values
B(a;), B(wo; + €). Taking an expectation over these values we obtain thetresul

To show the existence @fmultiple points inR? fix § > 0 and numbers
0<a1<a2<-~-<ap<ap+1:(5.

Lete > 0 small enough thak; + ¢ < a1 fori € {1, ..., p} and condition the Brownian
motion on its values at the times andco; + ¢, fori € {1, ..., p}. We obtainp Brownian
bridges{B;(t): 0 < t < ¢} given by

B;(t) = B(a; +t) — B(ey), forie{l,...,p}.

By Exercise 9.2 these bridges intersect with positive podityg for any valuesB(«;),
B(a; + €). Taking an expectation over these values we obtain thatj for0, the path
{B(t): 0 < t < ¢} has gp-multiple point with positive probability. By Brownian slag
this probability is independent of the choicedfand letting | 0, we obtain

Prob{ forall § > 0 exist0 < t; < --- <t, < dwith B(t;) =--- = B(t,)} > 0.

By Blumenthal's zero—one law this probability must be oretlat we have a-multiple
point almost surely, which completes the proof. [ |

Theorem 9.23Let{B(t): 0 < t < 1} be a planar Brownian motion. Then, almost surely,
for every positive integep, there exist points: € R? which are visitecexactlyp times by
the Brownian motion.

Proof. Note first that it suffices to show this with positive probégilindeed, by Brow-
nian scaling, the probability that the pa(¢t): 0 < ¢ < r} has points of multiplicity
exactlyp does not depend on By Blumenthal's zero-one law it therefore must be zero
or one. The idea of the proof is now to construct a/setuch that Cap.(A) > 0 but
Capyr+1(A) = 0 for the radial potentialf. By Exercise 9.3 the first condition implies
that the probability thaf\ contains g-fold multiple point is positive. The second condi-
tion ensures that it almost surely does not contairHal-fold multiple point. Hence the
p-multiple points found iM must be strictlyp-multiple.
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We construct the set by iteration, starting from a compact unit cuiebe. In thent®
construction step we divide each cube retained in the puevétep into its four nonover-
lapping dyadic subcubes and retain only one of them, saydtterh left cube, except at
the steps with number

n:[M%L fork=p+1,p+2,...,

when we retain all four subcubes. The numbgét) of times within the first. steps when

we have retained all four cubes satisfiés) < (logn) %. Denoting byS,, the set of

all dyadic cubes retained in thé" step, we define the compact set
A= U s
n=1Se6,

The calculation of the capacity df will be based on the formula given in Lemma 9.20.
Observe that, iff?(¢) = log?(1/¢) is thep'™ power of the2-dimensional radial potential,
then the associated function is

h®(n) = fP(27") — fP(217") = nP — (n— 1)P = nP~L.

Note that the numbeg(n) of cubes kept in the first steps of the construction satisfies
g(n) =< 4k < pp+1 By our constructioy >~ nP~! g(n) ! < oo, butd}">"  nP g(n)~! =
oo. For the measure distributing the unit mass equally among the retained cuolbése
same side length (hence giving ma$s) ! to each retained cube), we have

L) = 30 (m) (30 w(@)) = o wrt gn) ! < oo,

n=0 QED, n=0

and hence Cap (A) > 0. For the converse statement, note that

( Z u(Q)z)( Z 1{Q retained}) >1,

QED, QeD,

for any probability measure on A, by the Cauchy—Schwarz inequality. Hence,
T ()= SR () (30 v(@)2) = DA () g(n) !
n=0 n=0

QeED,
oo
=> nP g(n)"!
n=0

verifying that Cap.+: (A) = 0. This completes the proof. [

o,

Knowing that planar Brownian motion has points of arbitsalérge finite multiplicity, it
is an interesting question whether there are pointafafite multiplicity.

Theorem* 9.24Let {B(t): t > 0} be a planar Brownian motion. Then, almost surely,
there exists a point € R? such that the seft > 0: B(t) = x} is uncountable.
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The rest of this section is devoted to the proof of this irgéng result and will not be used
in the remainder of the book. It may be skipped on first reading

Let us first describe the rough strategy of the proof: We $tarfinding two disjoint in-
tervalsI; and I, with B(I;) N B(I3) # 0. Inside these we find disjoint subintervals
@1, 112 C I andly, Izo C I such that the four Brownian imagéXI;;) intersect. Con-
tinuing this way, we construct a binary tréeof time intervals where rays i represent
sequences of nested intervals and the intersection of eablssquence will be mapped to
the same point by the Brownian motion.

Throughout the proof we use the following notation. For apgroor closed setd;, A,, ...
and a Brownian motio3 : [0, co) — R? define stopping times

T(Ay) :=inf{t > 0: B(t) € A1},
T(Ay,.. ., Ay) =inf{t > 7(41,...,4n_1): B(t) € A}, forn>2,
where, as usual, the infimum of the empty set is taken to betinfiwe say the Brownian
motionupcrosses the sheli(z, 2r) \ B(x, r) twicebefore a stopping tim& if,
T(B(J;,r),B(:I:,2r)c,l’>’(m,r),l3(x,2r)c) <T.

We call the paths of Brownian motion betwee{B(z, r)) andr(B(z,r), B(z, 2r)°), and
betweenr(B(z,r), B(z,2r)¢, B(z,r)) and 7(B(x,r), B(x, 2r)¢, B(x,r), B(x,2r)¢) the
upcrossing excursionsee Figure 9.3.

g®@

~

B®

Fig. 9.3. The pathB: [0, 00) — R? upcrosses the shell twice; the upcrossing excursions are bold
and marked3™", B®,

From now on lefl” be the first exit time of Brownian motion from the unit ball.

Lemma 9.25There exist constants< ¢y < Cy such that, i2 < m < n are two integers
and B a ball of radius2~"™ with centre at distance at lea3t " and at mos8 x 2~ from
the origin, we have

C()%SP(){T(B)<T}<CQ%
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Proof. For the lower bound we note that the disk of radearound the centre aBb
is contained in the unit disk, so that the first exit tifiefrom this disk satisfied” < T.
Theorem 3.18 gives the lower bound {7 (B) < T'}. Similarly, for the upper bound
we look at the disk of radiu® around the centre @8, which contains the unit disk. =

Recall from Theorem 3.44 that the density®fT") underP, is given by the Poisson kernel,
which is
_ 11—z

- wl?

P(z,w) foranyz € B(0,1) andw € 9B(0,1).

Lemma 9.26Consider Brownian motion started ate B(0,r) wherer < 1, and stopped
at timeT when it exits the unit ball. Let < T be a stopping time, and let € F (7).
Then we have

, E.[P(B(r), B(T)) | A]

P.(A|B(T)) =P.(A

(i) 1fP.({B(r) € B(0,r)}|A) =1, then

1—1r\2 14 r\2
(714_7,) P.(A) <P.(A]|B(T)) < (1_T) P.(A) almost surely.

Proof. (i) LetI C 9B(0,1) be a Borel set. Using the strong Markov property and the
assumptiord € F(7) in the second step, we get

P.(A|{B(T) € I}) P.{B(T) € I} = P.(A) P.({ B(T) € I}| A)
=P.(A)E.[Pp{B(T) € I}|A].

As a function ofl, both sides of the equation define a finite measure with taaskif, (A).
Comparing the densities of the measures with respect tauiece measure ofi3(0, 1)
gives

P.(A|B(T)) P(2, B(T)) =P.(A)E.[P(B(r), B(T)) | A] .

(i) The assumption of this part and (i) imply that the rabigl A|B(T"))/P.(A) can be
written as an average of ratio8(u,w)/P(z,w) wherew = B(T) € 9B(0,1) and
u,z € B(0,r). The assertion follows by finding the minimum and maximunPgf:, w)
asu ranges ovef3(0, ). [

The following lemma, concerning the common upcrossings Bfownian excursions, will
be the engine driving the proof of Theorem 9.24.

Lemma 9.27Letn > 5 and let{x, ..., 245} be points such that the bals(x;, 2! ")
are disjoint and contained in the shelt: 1 < |z| < 2}. ConsiderL independent Brow-
nian upcrossing excursiond’, ..., Wy, started at prescribed points of3(0,1) and
stopped when they reaéh3(0,2). LetS denote the number of centres, 1 < i < 475
such that the shelB(z;,27"*1) \ B(x;,27") is upcrossed twice by each @f;, ..., W;.
Then there exist constantsc, > 0 such that

P{S > 4"(c/n)"} > = . (9.6)
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Moreover, the same estimate (with a suitable constants valid if we condition on the
end points of the excursion®y, ..., Wr.

Proof of Lemma 9.27. By Lemma 9.25, for any € 95(0, 1), the probability of Brow-
nian motion starting at hitting the ball3(z;,27") before reachin@(0, 2) is at least®,
and the probability of the second upcrossing excursidd(af, 2= "*1)\ B(x;,2~"), when
starting avB(z;,2' ") is at leastl /2. Thus
L

ES > 4”—5(%) . (9.7)
We now estimate the second moment%f Consider a pair of centres;, x; such that
27 |z —x;| < 2'7™ for somem < n—1. Foreachk < L, letV}, = Vi (z;, z;) denote
the event that the ball8(z;,27") and B(z;,2~") are both visited by¥V,. Given that
B(z;,2~™) is reached first, the conditional probability tH&j, will also visit B(z;,2™™)
is at mostCy 2, by Lemma 9.25. We conclude th&tV;) < 2C§ 2% whence

L L
(1) < (s )

For eachm < n — 1 andi < 42, the number of centres; such tha=" < |z; —
z;| < 2'7™ is at most a constant multiple df —™. Using that the diagonal terms are of
lower order, we deduce that there exi€ts> 0 such that

clen & (2Cy)F42 L)
2 1 2 : L j—1 1
m=1

where the last inequality follows, e.qg., from taking= 1/4 in the binomial identity

> <mz L)w R

m=0
Now (9.7), (9.8) and the Paley—Zygmund inequality, see &iger3.5, yield (9.6). The final
statement of the lemma follows from Lemra6. [ |

Proof of Theorem 9.24.  Fix an increasing sequende,;: ¢ > 1} to be chosen later,
and letN, = Ele n; With Ny = 0. Denoteg; = 4™~° and@; = 4":~°'. We begin by
constructing a nested sequence of centres with which weiassa forest, i.e. a collection
of trees, in the following manner. The first level of the fareensists of@; centres,
{21, ..., 2] }, chosen such that the ball$(z}’, 2~ *1): 1 < k < Q.} are disjoint
and contained in the annulgs: 1 < |z| < 2}.

Continue this construction recursively. For> 1 suppose that level — 1 of the forest
has been constructed. Levitonsists of), vertices{x}",.. .,z }. Each vertex:;" ",

1 <i < Qo atlevell — 1 hasg, children{z{": (i — 1)q; < j < iq} at level/; the
balls of radiu2~™¢*+1 around these children are disjoint and contained in thelasnu

{z: b N Lz — g < 327 Nen )

Recall thatl’ = inf{t > 0: |B(t)| = 1}. We say that a level one vertex’ survivedif
the Brownian motion upcrosses the shig(lz;”, 27N +1)\ B(z"”, 27 N) twice beforeT".
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A vertex at the second level;” is said to havesurvivedif its parent vertex survived,
and in each upcrossing excursion of its parent, the Browmiation upcrosses the shell
Bz, 2= N241)\ B(z?, 27 N2) twice. Recursively, we say a verteX’, at level/ of the
forest,survivedif its parent vertex survived, and in each of tfe'* upcrossing excursions
of its parent, the Brownian motion upcrosses the shell

Bla, 27N\ Bla, 27 N)

twice. Note at this point that if there is an infinite ray of wuing vertices

(1) (2) (3)
Tr(1) Tr(2)> Tr(3)r - -

such thatq:g&il) is a child ofx;‘g@, for¢ = 1,2, ..., then the sequence of compact balls

centred inm}f&) with radius2—V¢ is nested. Therefore there exists exactly one poiint
the intersection of these balls. For any leghere are’ disjoint upcrossing excursions of
the shellB (), 2_N‘+1)\B(m;:()£), 2~Ne), Each of these contains two disjoint excursions
atlevell + 1. Thus the time intervals corresponding to these excurdmnsa binary tree,
where the children of an interval at levehre the two intervals at levél+ 1 it contains.
An infinite ray in this tree is a nested sequence of compaetvats and their intersection
is a timet with B(t) = z. Since there are uncountably many rayshas uncountable

multiplicity.
Now, for any? > 1, let S, denote the number of vertices at levebf the forest that
survived. Using the notation of Lemma 9.27, let

L

L cy
) andp[ = ﬁa

Iy =4m™ (i
ng

whereL = L(¢) = 2/='. Lemma 9.27 witm = n, states that
]P{Sl > Fl} = P1 = Cy. (99)

For/ > 1, the same lemma, and independence of excursions in disjoélls given their
endpoints, yield

P({Ser1 < Tega} [{Se > Te}) < (1= pry1)" < exp(—pes1ly) - (9.10)

By pickingn, large enough, we can ensure that,I', > ¢, whence the right hand side of
(9.10) is summable id. Consequently

a= P(ﬁ{sg > rg})
= (9.11)

= P{Sl > Fl} ﬁp({S[Jrl > Fe+1} ’ {S@ > F@}) >0.
=1

Thus with probability at least, there is a ray of surviving vertice&,‘f()e) and, as seen
above, this yields a point visited by Brownian motion undaisty many times before it
exits the unit disk.
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Let H, denote the event that Brownian motion, killed on exitiigh, ), has a point of
uncountable multiplicity. As explained above, (9.11) ifeplthatP(H;) > « > 0. By
Brownian scalinglP(H,.) does not depend an whence

P(( )z

The Blumenthal zero-one law implies that this intersectias probability 1, so there are
points of uncountable multiplicity almost surely. [

9.4 Kaufman’s dimension doubling theorem

In Theorem 4.33 we have seen thiatlimensional Brownian motion maps any set of di-
mensiona almost surely into a set of dimensi@a. Surprisingly, by a famous result of
Kaufman, the dimension doubling property holds almostlgwsienultaneouslyor all sets.

Theorem 9.28 (Kaufman 1969)Let {B(t): ¢ > 0} be Brownian motion in dimension
d > 2. Almost surely, for any set C [0, c0), we have

dim B(A) = 2dim A.

Before discussing the proof, let us look at some conseqgeot&heorem 9.28. The
power of this result lies in the fact that the dimension dogformula can now be applied
to arbitrary random sets.

As a first application we ask, how big the sets
T(z)={t>0: B(t) =z}

of times mapped by-dimensional Brownian motion onto the same pairtan possibly
be. We have seen so far in this chapter and Theorem 6.40 kimastesurely,

in dimensiond > 4 all setsT’(z) consist of at most one point,

in dimensiond = 3 all setsT'(z) consist of at most two points,

in dimensiond = 2 at least one of the sef¥(x) is uncountable,

in dimensiond = 1 all setsT(x) have at least Hausdorff dimensign

We use Kaufman’s theorem to determine the Hausdorff dinsensi the set§’(z) in the
case of planar and linear Brownian motion.

Corollary 9.29 Supposeg B(t): t > 0} is a planar Brownian motion. Then, almost surely,
for all z € R?, we havelim T'(z) = 0.

Proof. By Kaufman's theorem, almost sureljim 7'(z) = % dim{z} = Oforallz. m

Corollary 9.30 Suppos€ B(t): t > 0} is a linear Brownian motion. Then, almost surely,

forall 2 € R, we havelim T'(z) = 1.
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Proof. The lower bound was shown in Theorem 6.40. For the upper béetnd
{W(t): t > 0} be a Brownian motion independent fB(¢): ¢t > 0}. Applying Kauf-
man’'s theorem for the planar Brownian motion given B{t) = (B(t), W (t)) we get,
almost surely, for every,

dim T'(z) = dim B~*({z} x R) < 3 dim({z} x R) = 3,

1
2

which proves the upper bound. [ |

We now prove Kaufman's theorem. Recall that, by CorollaB01almost surely, the func-
tion {B(t): t > 0} is a-Holder continuous for any < 3. Hence, by Proposition 4.14,
irrespective of the dimensiafy almost surely,

dim B(A) < 2dim A and for all setsA C [0, o0).

Hence only the lower boundim B(A) > 2dim A requires proof. We first focus on the
cased > 3. The crucial idea here is that one uses a standardised ogvefiB(A) by
dyadic cubes and ensures that, simultaneously for all plessovering cubes the preim-
ages allow an efficient covering. An upper bounddan A follows by selecting from the
coverings of all preimages.

Lemma 9.31Consider a cub&) c R centred at a point: and having diamete2r. Let
{B(t): t > 0} bed-dimensional Brownian motion, with > 3. Define recursively

9 = inf{t>0: B(t) € Q},
ey = mft>rd 40 B eQ),  fork>1,

with the usual convention thatf ) = co. Then there exist8$ < § < 1 depending only on
the dimensiomnl, such thaiIP’Z{Trf{rl < oo} <O forall z € R?andn € N.

Proof. Itis sufficient to show that for somgas above,
P, {TkQ_H :oo|7',? <oo} >1-—6.
Observe that the quantity on the left can be bounded fromnbiejo
IP’Z{T,?+1 =00 |B(T]CQ+T’2)7$‘ > 3r, TkQ < OO}PZ“B(TI?J’*T’Q)*SC‘ > 3r| 7',? < 00}

The second factor is bounded from belowiby, e, P, {|B(r?) — z| > 3r}, by the strong

Markov property. Using transience of Brownian motiorlip: 3, the first factor is bounded
from below byinf, ¢z, 3-) Py {7(Q) = oo}, where, as before;(Q) denotes the first hit-
ting time of Q. Both bounds are positive and do not depend on the scalibggfac =

Recall tha?,,, denotes the set of dyadic cubes of side lergttt insideCube = [—1, 3]¢.

Lemma 9.32In the setup of Lemma 9.31, there exists a random variébte C'(w) such
that, almost surely, for alin and for all cubex) € ¢, we hava-gncﬂ] = 0.
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Proof. From Lemma 9.31 we get that

i Z P{T[?;m+1] < OO} < i gdm gem.

m=1Qec,, m=1

Now chooser so large thaR?9° < 1. Then, by the Borel-Cantelli lemma, for all but
finitely manym we haverrcierﬂ = oo forall @ € &,,. Finally, we can choose a random
C(w) > cto handle the finitely many exceptional cubes. [

Proof of Theorem 9.28 ford > 2. As mentioned before we can focus on the
direction. We fixZ and show that, almost surely, for all subsétsf [-L, L]? we have

dim B~'(S) < 1 dim S. (9.12)

Applying thistoS = B(A)N[-L, L] successively for a countable unbounded sédt ofe
get the desired conclusion. By scaling, it is sufficient tover(9.12) forl = 1/2. The idea
now is to verify (9.12) for all paths satisfying Lemma 9.32ngscompletely deterministic
reasoning. As this set of paths has full measure, this vetifie statement.

Hence fixapatf B(t): ¢ > 0} satisfying Lemma 9.32 for a constafit> 0. If 5 > dim S
ande > 0 there exists a covering of by binary cubegQ;: j € N} C [J,°_, €,, such
that" |Q;|° < e. If N,, denotes the number of cubes frap, in such a covering, then

o0
Z N,, 278 < ¢.

m=1

Consider the inverse image of these cubes ugdkt): ¢ > 0}. Since we chose this path
so that Lemma 9.32 is satisfied, this yields a coveringgof (S), which for eachm > 1
uses at most'mN,,, intervals of length? = d2—2™,

For~ > 3 we can bound the/2-dimensional Hausdorff content &~ (.S) from above by

> Cm Ny (d272m)? = Cd"? Y " m N, 27

m=1 m=1

This can be made small by choosing a suitabte 0. ThusB~(S) has Hausdorff dimen-
sion at mosty/2 for all v > 3 > dim S, and thereforelim B~*(S) < dim S/2. [

In d = 2 we cannot rely on transience of Brownian motion. To get adotinis problem,
we can look at the Brownian path up to a stopping time. A comr@rchoice of stopping
time for this purpose is}, = min {¢ : |B(t)| = R}. For the two dimensional version of
Kaufman’s theorem it is sufficient to show that, almost syrel

dim B(A) > 2dim(A N[0, 75]) forall A C [0, c0).

Lemma 9.31 has to be changed accordingly.

Lemma 9.33Consider a cub&) C R? centred at a point: and having diamete2r, and
assume that the culig is inside the ball of radiugz about the origin. Le{B(¢): t > 0}
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be planar Brownian motion. Defirve;? asin Lemma 9.31. Then there exists ¢(R) > 0
such that, wit2=~1 < r < 27™ for anyz € R?,

k
]P’Z{TkQ <TR} < (1 — %) e k/m, (9.13)

Proof. It suffices to bound. {7, > 5|7 < 75} from below by
P {7, > 5 | |1B(ré +r%)—a| > 2r, 72 < mh} P{|B(r@ +r?) —a| > 2r | 12 < 7}

The second factor can be bounded from below by a positivetaotyswvhich does not
depend on- and R. The first factor is bounded from below by the probabilitytthanar
Brownian motion started at any point d53(0, 2r) hits 98(0, 2R) beforedB(0,r). Using
Theorem 3.18 this probability is given by

log 2r — logr S 1
log2R —logr ~ logy R+2+m’

This is at least/m for somec > 0 which depends ot only. u

The bound (9.13) OW’{T,? < 75} in two dimensions is worse by a linear factor than the
corresponding bound in higher dimensions. This, howevegschot make a significant
difference in the proof of the two dimensional version of ®rem 9.28, which can now be
completed in the same way, see Exercise 9.9.

There is also a version of Kaufman'’s theorem for Brownianiomoin dimension one.

Theorem 9.34Supposd B(t): t > 0} is a linear Brownian motion. Then, almost surely,
for all nonempty closed sefs C R, we have

dim B~'(S) = 3 + 3 dim S.

Remark 9.35Note that here it is essential to run Brownian motion on arounided time
interval. For example, for the point = maxo<:<1 B(t) the set{t € [0,1]: B(t) = =}

is a singleton almost surely. The restriction to closed setses from Frostman’s lemma,
which we have proved for closed sets only, and can be relaamdingly. o

Proof. For the proof of the upper bound 1€V (¢): ¢ > 0} be a Brownian motion
independent of B(t): ¢ > 0}. Applying Kaufman’s theorem for the planar Brownian
motion given byB(t) = (B(t), W (t)) we get almost surely, for ai C R,

dim B~Y(S) = dim B7}(S x R) < 1 dim(S x R) = 1 + Ldim S,

where we have used the straightforward fact thiat(S x R) = 1 4 dim S.

The lower bound requires a more complicated argument, l@as€&dostman’s lemma. For
this purpose we may suppose titatc (—M, M) is closed andlim S > «. Then there
exists a measure supported bys such that

w(B(z,r)) <r® forallze S, 0<r<l1.
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Let /® be the measure with cumulative distribution function gitagrihe local time at level
a. Letv be the measure oR~!(S) given by

v(A) = /M(da) ¢(A), for A C[0,00)Borel.

Then, by Theorem 6.19, for a givert> 0, one can find a constagt > 0 such that
e (B(z,r))=Lx+7r)—L*x—7r) < Crz—¢

forall a € [-M,M] and0 < r < 1. By Hélder continuity of Brownian motion there
exists, for givere > 0, a constant > 0 such that, for every: € [0, 1],

|B(x +s) — B(x)| < erz<forall s € [—r, 7]

From this we get the estimate
v(B(z,r)) = /,u(da) [L“(x +7r)— L%z — r)]

B(w)+cr%7
< / . pl(da)[L(z +7) — L%z —1)]
B(xz)—cr2—°

o 1
L cr27%Cr27% forallze S,0<r<1.

Hence, by the mass distribution principle, we get the lovema«/2 + 1/2 — (1 + «)
for the dimension and the result follows when 0 anda | dim S. [ |

As briefly remarked in the discussion following Theorem 4.B8wnian motion is also
‘capacity-doubling’. This fact holds for a very generalsdaf kernels, we give an elegant
proof of this fact here.

Theorem 9.36Let{B(t): t € [0,1]} bed-dimensional Brownian motion and C [0,1] a
closed set. Suppogeis decreasing and there is a constant> 0 with

[

and letg(z) = x2. Then, almost surely,

rd=tdr < Cforall z € (0,1), (9.14)

Cap;(A) >0 ifandonly if ~ Cap;,,(B(A)) > 0.

Remark 9.37Condition (9.14) is only used in the ‘only if’ part of the statent. Note that
if f(x) =2~ isapower law, then (9.14) holds if and only2i& < d. S

Proof. We start with the ‘only if’ direction, which is easier. SuggoCap (A) > 0. This
implies that there is a mass distributipron A such that thef-energy ofy is finite. Then
uo B~1is a mass distribution o3 (A) and we will show that it has finit¢ o ¢-energy.
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Indeed,
Ifop(poB™1) = //f0¢(|w*y\)uoB’l(d:v)uoB’l(dy)
- / F(B(s) - B()[2) pulds) ()

Hence,
Blpos(noB) = [[B7(XP Is ) n(as) utae).

where X is ad-dimensional standard normal random variable. Using podardinates
and the monotonicity of we get, for a constant(d) depending only on the dimension,

E[f(IX[*|s —t])] = #(d) /Oo f(rQIs—t|)e—f’2/2 =1 gy

2 |S — t| o0 2
_ t d —r</2 ,.d—1 d )
f(s—=t])r T |s —i r+ /1 e r r)
By (9.14) the bracket on the right hand side is bounded by ataanindependent ¢ —¢|,
and hencé [l o4 (o B~1)] < oo, which in particular implied fo4 (1o B~1) < oo almost
surely.

The difficulty in the ‘if’ direction is that a measure aB(A) with finite f o ¢-energy
cannot easily be transported backwards a#toTo circumvent this problem we use the
characterisation of capacity in terms of polarity with resfto percolation limit sets, recall
Theorem 9.18. We may assume, without loss of generality,ftig4) = 1.

Fix a unit cubeCube such that Cap,,(B(A) N Cube) > 0 with positive probability, and
let T" be a percolation limit set with retention probabilities @sated to the decreasing
function f(z2/4) as in Theorem 9.18, which is independent of Brownian motibinen,
by Theorem 9.18, we havB(A) N T' # ( with positive probability. Define a random
variable

= inf {t € A: B(t) € F}
which is finite with positive probability. Hence the measyrgiven by
wB)=P{T € B, T < o}

is a mass distribution oA. We shall show that it has finite-energy, which completes the
proof. Again we use the polarity criterion of Theorem 9.18tathis. LetS,, = g, S
be the union of all cubes retained in the construction upepsst Then, by looking at the
retention probability of any fixed point iGube, we have, for any € A,

1

P{B(s) € S, } <p1-~-pn=Wﬂ'

(9.15)

Conversely, by a first entrance decomposition,
P{B(s) € Sp} 2 P{B(s) € Sp, B(T) € Sn, T < o0}

:/b (dt)P{B(s) € S, | B(t) € Sn}
0
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GivenB(t) € S,, andy/s — t < 27"+* for somek € {0,...,n}, the probability thaB3(s)
and B(t) are contained in the same dyadic cupes ¢, is bounded from below by a
constant. Given this event, we know th@tis retained in the percolation (otherwise we
could not haveB(t) € S,,) and the probability that the cube &),, that containsB(s), is
retained in the percolation is at leagt_x1 - - - p, (interpreted ag if £ = 0). Therefore

/‘ u(dt)P{B(s) € S, | B(t) € 5,}
0
>c Z u([s — Q7Aoo 2_27L+2k_2)) Pn—k+1°" " Pn
k=0

n o Com B fO (b 2—n+k—1
>c kZ:O/”L([S_2 2 +2k,s—2 2n+2k 2)) fo;(g—n—l))

1 g_n—2n—2
>Cfoq[)(2_"_1)/0 p(dt) f(s —t),

using the monotonicity of in the last step. Finiteness of tifeenergy follows by compar-
ing this with (9.15), cancelling the factdy f o (27 "), integrating ovey:(ds), and letting
n — oo. This completes the proof. [

Exercises

Exercise 9.1.
(a) Suppose thafB;(t): t > 0}, {Bz(t): t > 0} are independent standard Brownian
motions inR?. Then, almost surely3; [0, t] N Bs[0,t] # {0} for anyt > 0.

(b) Suppose tha{B;(t): ¢t > 0},...,{By(t): t > 0} arep independent standard
Brownian motions irR?, andd > p(d — 2). Then, almost surely,

dim (B1[0,¢1] N+~ N By[0,tp]) = d — p(d — 2) foranyty,...,t, > 0.
Exercise 9.2. Let {X™(¢): 0 <t < 1},...,{X®(t): 0 < t < 1} bep independent
d-dimensional Brownian bridges with ”(0) = z; € R? and X ® (1) = y; € R%.

(@) Show that ifd = 3 andp = 3, almost surely, the intersection of the ranges of the
Brownian bridges is empty (except possibly at the start ambp®ints).

(b) Show that ifd = 2 andp arbitrary, with positive probability, the intersectiontbk
ranges of the independent Brownian bridges is nonempty.

Exercise 9.38 For ad-dimensional Brownian motiofiB(t): t > 0} we denote by
S(p)={zeR":I0<t; < - <t,<lwithz=DB(t) =" =DB(t,)}
the set ofp-fold multiple points. Show that, faf > p (d — 2),

(@) dim S(p) =d — p(d — 2), almost surely.
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(b) for any closed set, we have
P{S(p)NA#0} >0 if and only if Capp(A) >0,

where the decreasing functighis the radial potential.

Exercise 9.4. In the situation of Exercise 9.3, show that the ratio

P{S(p) N A # 0}
Caps(A)

may be unbounded.

Exercise 9.5. Let {B(t): t > 0} be a standard linear Brownian motion. Show that its zero
setis intersection—equivalentft@%} in any compact unit interval not containing the origin.
Hint. Use Exercise 8.8.

Exercise 9.6.

(a) Let A be a set of rooted trees. We say thais inheritedif every finite tree is in4,
and ifT € A andv € V is a vertex of the tree then the tr&gv), consisting of all
successors af, is in A.

Prove theGalton—Watson 0-1 lawFor a Galton—Watson tree, conditional on sur-
vival, every inherited set has probability zero or one.

(b) Show that for the percolation limit seF§y] ¢ R with 0 < v < d we have

P{dimT[y]=d—~|T}H] #0} =1.

Exercise 9.7.Consider a linear Brownian motidB3(¢): ¢t > 0} and letA;, A C [0, 00).
(a) Show thatifdim(A; x As) < 1/2thenP{B(A;) intersectsB(42)} = 0.

(b) Derive the same conclusion under the weaker assumptionithatA, has vanish-
ing 1/2-dimensional Hausdorff measure.

(c) Show thatifCap, ;o(A1 x A2) > 0, thenP{B(A;) intersectsB(42)} > 0.

Exercise 9.88 Use Exercise 9.7 to find a sét C [0, c0) such that the probability that a
linear Brownian motio{ B(¢): t > 0} is one-to-one om is strictly between zero and one.

Exercise 9.9.Complete the proof of Theorem 9.28 in the cdse 2.

Exercise 9.108 Let {B(t): 0 < t < 1} be a planar Brownian motion. For everyc R
define the set$(a) = {y € R: (a,y) € B[0,t]}, consisting of the vertical slices of
the path. Show that, almost suretyim S(a) = 1, for everya € (min{z: (z,y) €
B[0,t]}, max{x: (z,y) € B[0,t]}).
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Notes and comments

The question whether there exjsimultiple points of ad-dimensional Brownian motion
was solved in various stages in the early 1950s. First, Léowed in [Le40] that almost
all paths of a planar Brownian motion have double points, leakiutani [Ka44a] showed
that if n > 5 almost no paths have double points. The cases-ef3,4 where added by
Dvoretzky, Erds and Kakutani in [DEK50] and the same authors showed in [Rgkhat
planar Brownian motion has points of arbitrary multiplcitFinally, Dvoretzky, Erés,
Kakutani and Taylor showed in [DEKT57] that there are noléripoints ind = 3. Clearly
the existence op-fold multiple points is essentially equivalent to the desh whethenp
independent Brownian motions have a common intersection.

The problem of finding the Hausdorff dimension of the sep-dbld multiple points
in the plane, and of double pointsR¥, was still open when 1té and McKean wrote their
influential book on the sample paths of diffusions in 1964 261 in [IM74], but was
solved soon after by Taylor [Ta66] and Fristedt [Fr67]. Reskand Taylor [PT88] provide
fine results when Brownian paths in higher dimensions ‘coloset to self-intersecting.
The method of stochastic codimension, which we use to fingetldémensions, is due to
Taylor [Ta66], who used the range of stable processes asst&s. The restriction of the
stable indices to the range € (0, 2] leads to complications, which can be overcome by
a projection method of Fristedt [Fr67] or by using multipaeter processes, see Khosh-
nevisan [Kh02]. The use of percolation limit sets as test stnuch more recent and
due to Khoshnevisan et al. [KPX00], though similar ideasused in the context of trees
at least since the pioneering work of Lyons [Ly90]. The lafiaper is also the essential
source for our proof of Hawkes’ theorem.

Some very elegant proofs of these classical facts were d¢isten Rosen [Ro83] pro-
vides a local time approach, and Kahane [Ka86] proves a gef@mula for the inter-
section of independent random sets satisfying suitablditions. The bottom line of Ka-
hane’s approach is that the formula ‘codimension of thegatetion is equal to the sum of
codimensions of the intersected sets’ which is well-knowmilinear subspaces in general
position can be extended to the Hausdorff dimension of @lel@ss of random sets, which
includes the paths of Brownian motion, see also Falcone®7&pand Mattila [Ma95].
The intersection equivalence approach we describe in@e8tR is taken from [Pe96a],
[Pe96b]. The proof of Lyons’ theorem we give is taken from femni et al. [BPP95].
See Theorem 2.1 in Lyons [Ly92] for the original proof.

Exact Hausdorff gauges allow a distinction of the sizes efdét ofp-multiple points
of a planar Brownian motion for different values af Le Gall [LG87b] showed that, for
d = 2, the set ofp-multiple points has positive angH-finite Hausdorff measure for the
gauge function

Pp(r) = r? [log(l/r) log log log(l/r)}p,

and ind = 3 the set of double points has positive and finite Hausdorffauesafor

v(r)=r [10g10g(1/7')]2.
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Turning to packing measures, which we will introduce propar Chapter 10, results for
the packing gauge of the double points were given by Le G4ll@B7c] ind = 2, where
it turns out that the-packing measure is either zero or infinite, depending wdreth

6(r) .
/o+ rllog(1/r)rrt

The case off = 3 turned out to be quite different and was only recently restin [MS09],
where it turns out that th@-packing measure is either zero or infinite, and the integsl
distinguishing between these cases depends ontarsection exponensee for example
Chapter 11 for a definition. These dimension gauges implyaitiqular thatH?(S,) =
P2(S,) = 0 almost surely, ifS, is the set ofp-multiple points of a planar Brownian
motion, and that{!(S2) = 0, P*(S;) = oo almost surely, ifS; is the set of double points
of Brownian motion inR3.

An interesting line of generalisation is whether almostesproperties of Brownian
motion also hold quasi-everywhere, a stronger notion détashima [Fu80]. Roughly
speaking, a property holds quasi-everywhere if an Orndtéilenbeck process on path
space, whose stationary measure is the Wiener measure,faigvéo have the property.
For example, in the context of intersections, Lyons [Ly8&jwed that Brownian motion
has no double points quasi-everywhere if and only i¢ 6, and Penrose [Pe89] that the
set of double points of quasi-every Brownian motion in digien three has Hausdorff
dimension one. A similar line of research are the dynamluadbties of Brownian motion
initiated by Nelson [Ne67].

Hendricks and Taylor conjectured in 1976 a characterisatfothe polar sets for the
multiple points of a Brownian motion or a more general Markowcess, which included
the statement of Theorem 9.21. Sufficiency of the capacitgran in Theorem 9.21 was
proved by Evans [Ev87a, Ev87b] and independently by Togdfin88], see also Le Gall,
Rosen and Shieh [LRS89]. The full equivalence was latergadm a much more general
setting by Fitzsimmons and Salisbury [FS89]. A quantiwatireatment of the question,
which sets contain double points of Brownian motion is girefPP07].

Points of multiplicity strictlyn where identified by Adelman and Dvoretzky [AD85]
and the result is also an immediate consequence of the exatddrff gauge function
identified by Le Gall [LG86a]. The existence of points of im@multiplicity in the planar
case was first stated in Dvoretzky et al. [DEK58] though tpedof seems to have a gap.
Le Gall [LG87a] proves a stronger result: Two sdtsB C R are said to be of the same
order typeif there exists an increasing homeomorphigrof R such thaip(A4) = B. Le
Gall shows that, for any totally disconnected, compat R, almost surely there exists
a pointz € R? such that the seft > 0: B(t) = x} has the same order type ds In
particular, there exist points of countably infinite and amatable multiplicity. Le Gall's
proof is based on the properties of natural measures ontirséction of Brownian paths.
Our proof avoids this and seems to be new.
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Substantial generalisations of Exercise 9.7 can be fournghpers by Khoshnevisan
[Kh99] and Khoshnevisan and Xiao [KX05]. For example, in @hem 8.2 of [Kh99] it
is shown that the condition in part (c) is an equivalence. {hestion of the Hausdorff
dimension of the intersection of a Brownian imag¢A) with a given set’ ¢ R? has
been open for a while. It seems that at the time of writing atsmh has been achieved by
Khoshnevisan and Xiao.

Kaufman proved his dimension doubling theorem in [Ka69]e Tersion for Brown-
ian motion in dimension one is due to Serlet [Se95]. The dapdoubling result in the
given generality is new, but Khoshnevisan and Xiao, see figue4.1 and Theorem 7.1
in [KX05], prove the special case whehis a power law using a different method. Their
argument is based on the investigation of additive Lévy @sses and works for a class
of processes much more general than Brownian motion. The&®&6 does not hold
uniformly for all setsA. Examples can be constructed along the lines in Perkinsapd T
lor [PT87].

In this book we do not construct a measure on the intersecfignBrownian paths.
However this is possible and yields tirersection local timdfirst studied by Geman,
Horowitz and Rosen [GHR84], see also Rosen [Ro83]. This tifygulays a key role in
the analysis of Brownian paths and Le Gall [LG92] gives a v@tgessible account of
the state of research in 1991, which is still worth readingecéht research deals with
the Hausdorff dimension of subsets of the intersectionk ggiecial properties, like thick
times, see [DPRZ02] and [KM02], or thin times, see [KMO5].
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Exceptional sets for Brownian motion

The techniques developed in this book so far give a fairlisfeadtory picture of the be-

haviour of a Brownian motion at a typical time, like a fixed &ror a stopping time. In this
chapter we explore exceptional times, for example timesravttee path moves slower or
faster than in the law of the iterated logarithm, or does riathas in Spitzer's law. Again

Hausdorff dimension is the right tool to describe just howeran exceptional behaviour
is, but we shall see that another notion of dimension, th&ipgaimension, can provide
additional insight.

10.1 The fast times of Brownian motion

In a famous paper from 1974, Orey and Taylor raise the quektiar often on a Brownian
path the law of the iterated logarithm fails. To understdnisgl trecall that, by Corollary 5.3
and the Markov property, for a linear Brownian moti¢®(¢): ¢ > 0} and for every
t € [0,1], almost surely,

|B(t+h) — B(t)|

lim sup =
hl0 2hloglog(1/h)

This contrasts sharply with the following result (note thesence of the iterated loga-
rithm!).

Theorem 10.1AImost surely, we have

. |B(t + h) — B(t)|
max lim su =
0<t<1 0 2hlog(1/h)

Remark 10.2At the timet € [0, 1] where the maximum in Theorem 10.1 is attained, the
law of the iterated logarithm fails and it is thereforeexteptionatime. o

Proof. The upper bound follows from Lévy’s modulus of continuity)éorem 1.14, as

B(t — -
sup limsup Bt +h) — BO)| < limsup sup Bt +h) - BO)| =
0<t<1 hlO 2hlog(1/h) hl0  0<t<l-—h 2hlog(1/h)

290
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Readers who have skipped the proof of Theorem 1.14 given apteh 1 will be able to
infer the upper bound directly from Remark 10.5 below. It aéms to show that there exists
atimet € [0, 1] such that

lim sup |B(t+h) — B)| >
h10 2hlog(1/h)

Recall from Theorem 1.13 and scaling that, almost suretyeyery constant < v/2 and
everye > 0 there exisb < h < e andt € [0,1 — h] with

|B(t + h) — B(t)| > c\/hlog(1/h).
Using the Markov property this implies that, fox /2, the sets
M(c,e) = {t € [0,1]: thereish € (0,¢) suchtha{B(t+h) — B(t)| > c\/hlog(1/h)}

are almost surely dense jf, 1]. By continuity of Brownian motion they are open, and
clearly M(c,e) C M(d,d) wheneverc > d ande < §. Hence, by Baire’s (category)
theorem, the intersection

ﬂ M(Cvg):{tE[O,l]: 1imsup|B(t+h)_B(t>, >1}

c<V3,e>0 hl0 2hlog(1/h)
c,e€Q
is dense and hence nonempty almost surely. -

To explore how often we come close to the exceptional bebhawlescribed in Theo-
rem 10.1 we introduce a spectrum of exceptional points. iGive> 0 we call a time
t € [0,1] ana-fast time if

. |B(t 4+ h) — B(t)]
lim sup
hl0 2hlog(1/h)

)

andt € [0,1] is afast time if it is a-fast for somex > 0. By Theorem 10.1 fast times
exist, in fact the proof even shows that the set of fast timelse intersection of countably
many open dense sets|ih 1] and hence is dense and uncountable. Conversely it is imme-
diate from the law of the iterated logarithm that the set halsdsgue measure zero, recall
Remark 1.28. The appropriate notion to measure the quanttitifast times is, again,
Hausdorff dimension.

Theorem 10.3 (Orey and Taylor 1974) Suppose(B(t): t > 0} is a linear Brownian
motion. Then, for every € [0, 1], we have almost surely,

dim {t € [0,1] : limsup Bt +h) — B > a} =1-d%.
hl0 2hlog(1/h)

The rest of this section is devoted to the proof of this restdé start with a proof of the
upper boundwhich also shows that there are almost surely:#fast times fora > 1.

So fix an arbitrarys > 0. Lete > 0 andn > 1, having in mind that we later lef | 1
ande | 0. The basic idea is to cover the interya] 1) by a collection of intervals of the
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form [jn=*, (5 +1)n=%)with j = 0,..., [n* — 1] andk > 1. Any such interval of length
h := n~* is included in the covering if, fok’ := kn—*,

\B(jh + 1) — B(jh)| > a(1 — 4¢) /2 Tog(1/1).

LetJx = Jx(n, ) be the collection of intervals of lengjT* chosen in this procedure.

Lemma 10.4Almost surely, for every > 0 andé > 0, there is arnp > 1 andm € N such
that the collectiori = J(e, ) = {I € Jx(n,¢): k > m} is a covering of the set af-fast
times consisting of intervals of diameter no bigger tlan

Proof. We first note that by Theorem 1.12 there exists a congtant 0 such that,
almost surely, there exists> 0 such that, for alk, t € [0, 2] with |s — ¢| < p,

|B(s) — B(t)| < C/|s — t[log(1/|s — t|). (10.1)

Choose; > 1 such that/n — 1 < ae/C. Let M be the minimal integer witd/n=* < p
andm > M such thatnn~™ < ¢ (to ensure that our covering sets have diameter no bigger
thand) andkn=* < ¢n=* for all k > ¢ > m. Now suppose thatec [0, 1] is ana-fast time.

By definition there exists < u < mn~"™ such that

|B(t 4+ u) — B(t)| = a(l — &) \/2ulog(1/u).

We pick the uniqué: > m such thaten™" < u < (k — 1)n~**1, and leth’ = kn~*. By
(10.1), we have

|B(t+h')— B(t)| > |B(t +u) — B(t)| — |B(t +u) — B(t + h')|
> a(l — ) v/2ulog(1/u) — C+/(u — h)log(1/(u — h')).

As0 < u—h' < (n— 1)kn~*, and by our choice ofy and by choosingn sufficiently
large, the subtracted term can be made smallerdhgr2h’ log(1/h’). Hence there exists
k > m such that

|B(t+ k') — B(t)| = a(1 — 2¢) \/2h log(1/1).

Now let j be such that € [in=*,(j + 1)n~*). As before leth = n=*. Then, by the
triangle inequality and using (10.1) twice, we have

|B(jh + 1) = B(jh)|
> |B(t+h') = B(t)] - |B(t) — B(jh)| = [B(jh + ) — B(t + h')|
> a1~ 2¢) /2 log(1/1') — 2C/hlog(1/h)
> a(l — 4¢) v/2h"log (1/ 1),

using in the last step that, by choosing sufficiently large, the subtracted term can be

made smaller thalae \/2h'log(1/h’). ]
Proof of the upper bound in Theorem 10.3. This involves only a first moment

calculation. All there is to show is that, for any> 1 — a? there exists > 0 such that, for
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anyd > 0 sufficiently small, the random variable’ ;5. 5 [Z|” is finite, almost surely.
For this it suffices to verify that its expectation is finiteotid that

oo [n"—1]

v —ky |B(jn~*+kn=*)—B(in~")| _
]E[ 3 III} DD s 2t Ut Ll > a1~ 4e)).

I€3(e,9) k=m j=0

So it all boils down to an estimate of a single probabilityjethis very simple as it involves
just one normal random variable, namédjn—* + kn=*) — B(jn~*). More precisely,
for X standard normal,

]P){ |B(jn—k+k7]_k) —B(jn_k)| a(1_45)}
2kn=k log(n*/k)

B> a1 - ) m} 102)

exp { —a® (1 —4¢e)? log(n*/k)} < ke (1-4e)*

S a(l—4e) \/log(nk/k
for all sufficiently largek and all0 < j < 2%, using the estimate for normal random
variables of Lemma 12.9 in the penultimate step. Giyen 1 — a2 we can finally find

e > 0 such thaty + a? (1 — 4¢)3 > 1, so that

- ey f 1 BGNTE 4+ kn~F) = B(jin~")| _
2 Z ! P{ 2kn~* log(n*/k) ~ e 45)}

)
2 3

§ nkn—k'y —ka*® (1—4e) < 0o,

k=1

completing the proof of the upper bound in Theorem 10.3. [ |

Remark 10.5If ¢ > 1 one can choose < 0 in the previous proof, which shows that there
are noa-fast times as the empty collection is suitable to cover gieta-fast times. o

For thelower boundwe have to work harder. We divide, for any positive integer
the interval[0, 1] into nonoverlapping dyadic subinterval@2=* (j + 1)27%] for j =

0,...,2% — 1. As before, we denote this collection of intervalsdyand by¢ the union
over all collections®;, for £k > 1. To each interval € ¢ we associate &0, 1}-valued
random variableZ (1) and then define sets

U1 and A::ﬁ GA(k)
n=1k=n

Ieey

Z(I)=1
Becausdl 4 = limsup 14z the setA is often called thdimsup fractal associated with
the family (Z(I): I € €). We shall see below that the set®fast times contains a large
limsup fractal and derive the lower bound from the followiggneral result on limsup
fractals.
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Theorem 10.6Suppose thatZ(I): I € €) is a collection of random variables with values
in {0,1} such thatp;, := P{Z(I) = 1} is the same for all € &;. For I € &, with
m < n, define

Mo (1) =Y Z(J).

Je€y
JCI

Let{(n) > 1and0 < v < 1 be such that

(1) Var(M,(I)) < ((n) E[M,(I)] = ((n) p,2" "™,
(2) lim 2"V ¢(n)p, " =0,

thendim A > ~ almost surely for the limsup fractal associated witHZ(I): I € €).

Theidea of the proofof Theorem 10.6 is to construct a probability measuren A and
then use the energy method. To this end, we choose an inogesesjuencé,, ¢4, . .. such
that My, (D) > 0 forall D € &, _,. We then define a (random) probability measure
in the following manner: Assign mass“ to each of the interval$ € ¢,,. Proceed
inductively: if J € &, with {,_; < m < ¢ andJ C D for D € &,,_, define
My, (J)u(D)

w(J) M, (D) (10.3)
Then y is consistently defined on all intervals éand therefore can be extended to a
probability measure oft, 1] by the measure extension theorem. Note th{at®) = 0, so
that s is supported byd. The crucial part of the proof is then to show that, for a dléda
choice ofty, ¢, . .. the measurg has finitey-energy.
For the proof of Theorem 10.6 we need two lemmas. The first®aeimple combination
of two facts, which have been established at other placeserbbok: The bounds for
the energy of a measure established in Lemma 9.20, and thex lmound of Hausdorff
dimension in terms of capacity which follows from the enenggthod, see Theorem 4.27.

Lemma 10.7Suppose&3 C [0, 1] is a Borel set andk is a probability measure of8. Then

0 2
Z wJ) < oo implies dim B > «a.

27am
m=1Je¢,,

Proof. By Lemma 9.20 withf(z) = z~— andh(n) = 2"*(1 — 2~“) we obtain, for a
suitable constant’ > 0 that

Loy Y MR

m=1Je¢,,

If the right hand side is finite, then so is theenergy of the measure. We thus obtain
dim B > « by Theorem 4.27. [ |

For the formulation of the second lemma we use (2) to pickafoy ¢ € N an integer
n = n(f) > £ such tha”"=Y ¢(n) < p, 273
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Lemma 10.8 There exists an almost surely finite random variafyesuch that, for all
L= tlyandD € &, withn = n(f),
e forall D € ¢, we have

|M, (D) ~ EM, (D)| < EM, (D),
and, in particular,M,,(D) > 0;

e for a constantC depending only or,

g M (J)? e
E 27 E ——— L 27",
— (2n—€pn)2

JECm
JCD

Remark 10.9The first statement in the lemma says intuitively that théawvene of the ran-
dom variables\,, (D) is small, i.e. they are always close to their mean. This israsaly
what makes this proof work. o

Proof of Lemma 10.8. Form < n,J € €, we denoteA,,(J) := M, (J) — EM,(J)
and, for/ < nandD € €, set

T.(D) zzmva

JEC
JCD

By assumption (1) in Theorem 10.6 we ha&ieA,,(J)?] < ((n)p,2"~™ and therefore,
forall D € &,

mey mry n— / 2(n+1)’y n—~

E 2™ Y E E 2"C(n) pn 2" < Gy () pa 277
JECH
JCD

By our choice ofn = n(¢) we thus obtain
3 T, (D) 2 27
E|: n :| g 22£—n+n'y —1 < e 2—(
(2n=fpa)2d = 27 =1 ¢n) Pn S

Dec¢,

Since the right hand side is summableiwe conclude that, almost surely, the summands
inside the last expectation converge to zerd gsco. In particular, there exist < oo
such that, for all > ¢, we have2=*" < 1/4 and, forn = n(¢) andD € &,

(D) < (2 p,)* = (EM, (D).

The first statement follows from this very easily: For &g ¢, andn = n({) we have

(recalling the definition ofr',, (D)),
A, (D)? < 2797,(D) < 279 (EM,(D))* < L(EM,(D))”.

In order to get the second statement we calculate,

(EM m
Z (2n Z 2 Z 226 )=

JECH JGLm
JCD
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Therefore

7 )2 14 —m(1—7~)
ZQM Z (an )2 =2 ZQ A <1_2 (1-7 " (10.4)

JECH m=£{
JCD

Now, recalling the choice of,

. A, ()2 Y, (D
Z 2™ Z (2”(519,)1)2 = (Qngpn))z <l (10.5)

m=4~ JECm
JCD

SinceM,,(J)? = (EM71,(J)+A7L(J))2 < 2(EM,,L(J))2+2(A,L(J))2, adding (10.4) and
(10.5) and setting’ := 2 + 2/(1 — 2= (=) proves the second statement. ]

We now define/,; = n(¢;) for all integersk > 0. The first statement of Lemma 10.8
ensures that is well defined by (10.3), and together with the second statemvill enable
us to check that: has finitey-energy.

Proof of Theorem 10.6. We can now use Lemma 10.8 to verify the condition of
Lemma 10.7 and finish the proof of Theorem 10.6. Indeed, byitiefa of .,

oo k1

Z 3 ”ﬂm % o ¥ M Ve (D) S My, (J)% (106)

m=Lo+1 JEC,, k=0m=~¢;+1 Degy, [Hl JEC
JCD

Recallthaly 1 := EM,, ,, (D) = 2f+~%p,  and, by the first statement of Lemma 10.8,
for everyk ¢ NandD € &, ,

2 qes1 < My, , (D) < 2gp41. (10.7)
Now, from the definition of the measurewe get, withD C D’ € &,, _,,

(D) = M DWIE) < 22(0)

and therefore we can continue (10.6) with the upper bound

[
Me
k+1 14
162 IDRICED LD U DI IEL
k=0 G DeCy, m=0,+1 Teem k=0 i Decy,

using the second statement of Lemma 10.8 and the definitigp,of Recall that the sum
of the indicator variables above is, by definition, equalfg, ([0, 1]). Finally, using (10.7)
and the definition of;, = n(¢;_1) we note that,

1 o0 9Lk
Z ﬁMZk 0 1 27ek < QZ 2’7£k QZ 928, —1—Lk

=1 Ik =1 Ik k=1 Py

o0
< Z 271t o,
k=1

This ensures convergence of the sequence (10.6) and thydetemthe proof. [ |
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Coming back to the lower bound in Theorem 10.3 wesfix 0. GivenI = [jh, (j + 1)h]
with b := 2% we letZ(I) = 1 if and only if

IB(jh + 1) — B(jh)| = a(1 + ) /21 log(1/l), for ' := k2%,

Lemma 10.10Almost surely, the setl associated with this familyZ(I): I € ¢) of
random variables is contained in the setefast times.

Proof. Recall that by Theorem 1.12 there exists a constant 0 such that, almost
surely,

|B(s) — B(t)| < C /|t — s|log(1/|t — s]), foralls,te[0,2].

Now assume that is large enough tha(t%)2 log2 + logk < klog2. Lett € A and
suppose thate I € ¢, with Z(I) = 1. Then, by the triangle equality,

|B(t+ 1) — B(t)]
> |B(jh + ') — B(jh)| — |B(t + 1) — B(jh + )| — |B(jh) - B(2)|
> a(1 +¢) \/2h'log(1 /1) — 2C \/hlog(1/h)
> a /2 Tog (/).

As this happens for infinitely many, this proves that is ana-fast time. [

The next lemma singles out the crucial estimates of expentaind variance needed to
apply Theorem 10.6. The first is based on the upper tail estifios a standard normal
distribution, the second on the ‘short range dependenddeofamily (Z(I): I € €).

Lemma 10.11Definep,, = E[Z(I)] for I € &, andn(n) := 2n + 1. Then,
(@) for I € ¢;, we haveR[Z(I)] > 27k (1+9)%,
(b) form < nandJ € ¢&,,, we haveVar M,,(J) < p, 2" ™ n(n).

Proof. For part (a), denoting byX a standard normal random variable,

P{|B(jh+ 1) — B(jh)| > a(1 +€) \/2h/log(1/1’)}

=P{|X| > a(l +¢)/2log(1/n")}
(1+)\/21 (1/h) —ka? e)®
# 112a2?1+a)201ig(1;h') \/%GXP{ —a?(1+¢)? log(l/h’)} > 2 ke (e,
(10.8)
for all sufficiently largek and all0 < j < 2%, using the lower estimate for normal random
variables of Lemma 12.9 in the penultimate step.

For part (b) note that for two intervalg, J; € €, the associated random variablé&J; )
andZ(J;) are independent if their distance is at lea®t ™. Using this whenever possible
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and the trivial estimat&[Z(.J;)Z(J2)] < EZ(J;) otherwise, we get

EMn(J)z = Z E[Z(Jl)Z(JQ)]

J1,Jo€Cy

J1,JoCd
< X {(2n+1)EZ(J1)+IEZ(J1) 3 EZ(JQ)}.
By A

Hence we obtain

E[(Mn(J) = EMn(J)?] < Y (2n+1)pn = pa2" (20 + 1),

J1ECH
JicJ

which proves the lemma. [ |

Proof of the lower bound in Theorem 10.3. By Lemma 10.11 the conditions of
Theorem 10.6 hold for any < 1 — a? (1 + ¢)3. As, fore > 0, the setd associated to
(Z(I): I € €) is contained in the set affast times, the latter has dimension1 — 2. m

10.2 Packing dimension and limsup fractals

In this section we ask for a precise criterion, whether &sebntainsa-fast times for var-
ious values of:. It turns out that such a criterion depends not on the Hadfsdhot on the
packing dimension of the sét. We therefore begin this section by introducing the concept
of packing dimensigrwhich was briefly mentioned in the beginning of Chapter 4ame
detail. We choose to define packing dimension in a way whiditates its conceptual na-
ture as alualto the notion of Hausdorff dimension. The natuwlahl operation to covering

a set with balls, as in the case of Hausdorff dimension, isofreration ofpackingballs
disjointly into the set.

Definition 10.12. SupposeX is a metric space. For evedy> 0, ad-packingof A C E
is a countable collection afisjoint balls

B(l’l,rl),B((EQ,Tz),B(Cﬂg, 7’3), e

with centrese; € A and radii0 < r; < 6. For everys > 0 we introduce the-value of the
packing a9, rf. Thes- packlng number of A is defined as

P(A) = lim P} (A) for P§(A) = sup { Zr B(x;,7;)) ad-packing ofA} RS
Note that the packing number is defined in the same way as thedddf measure with
efficient (small) coverings replaced by efficient (largegliags. A difference is that the
packing numbers doot define a reasonable measure. However a small modificaties giv
the so-called packing measure,

1nf{ZP A= UA}
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The packing dimension has a definition analogous to the tiefirof Hausdorff dimension
with Hausdorff measures replaced by packing measures.

Definition 10.13. Thepacking dimensionof E isdimp E = inf{s: P*(E) =0}. o
Remark 10.14lt is not hard to see that

dimp E = inf{s: P*(E) < oo} = sup{s: P*(E) > 0} = sup{s: P*(E) = oo},
a proof of this fact is suggested as Exercise 10.1. o

An alternative approach to packing dimension is to use alslaéitegularisationof the
upper Minkowski dimension, recall Remark 4.4 where we hamtel at this possibility.

Theorem 10.15For every metric spac& we have

dimp E = inf { S%.opdiilrl]\/[Ei B = U E;  E; boundE(}.
=1 i=1

Remark 10.16 This characterisation of the packing dimension shows diatr £ <
dim, F for all bounded set&, and, of course, strict inequality may hold. Every courgabl
set has packing dimensidn compare with the example in Exercise 4.2. Moreover, it is
not hard to see that the countable stability property isBatl. o
Proof. Define, for everyA C E ande > 0,

P(A,e) = max {k: there are disjoint ball8(z1,¢),..., B(zy, &) with z; € A}.

Recall from (4.1) the definition of the numbeid (A, ¢) giving the number of sets of
diameter at most needed to coved. We first show that

P(A,4e) < M(A,2) < P(A,e).

Indeed, ifk = P(A,¢) let B(xy,¢),...,B(z, ) be disjoint balls withe; € A. Suppose
x € A\ Ule B(x;,2¢), then B(x,¢) is disjoint from all ballsB(z;, ) contradicting

the choice ofc. HenceBB(xz1,2¢),...,B(zk,2¢) is a covering ofA and we have shown
M(A,2¢e) < P(A,¢). For the other inequality letn = M (A, 2¢) andk = P(A,4¢) and
choosery,...,x, € Aandy, ...,y € Asuch that

A c | B(i,2e) andB(y, 42), . .., B(yx, 4¢) disjoint.
=1
Then eacty; belongs to somé(z;,2¢) and no such ball contains more than one such
point. Thusk < m, which provesP(A, 4e) < M (A, 2¢).
Suppose now thanf{t: P!(E) = 0} < s. Then there i < sandE = J;2, A; such
that, for every sett = A;, we haveP?(A) < 1. Obviously,P!(A) > P(A,¢)et. Letting
e | 0 gives

limsup M (A, ¢)e’ < limsup P(A,e/2)e" < 2'PY(A) < 2°.
€10 €l0

Hencedim s A < ¢ and by definitiorsup® , dimysA; <t < s.
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To prove the opposite inequality, I8t< t < s < dimp(FE), andA4; C FE be bounded
with E = [J;2, A;. It suffices to show thatim, (A;) > ¢ for somei. SinceP*(E) > 0
there isi such thatP®(A4;) > 0. Let0 < a < P*(4;), then for all§ € (0,1) we have
P$(A;) > « and there exist disjoint ball8(z1,71), B(x2,72), B(xs, r3), ... with centres
x; € A; and radiir; smaller thary with

o0
E 7‘;- > .
=1

For everym let k,,, be the number of balls with radigs ™! < r; < 27™. Then,

oo o0
Z k27 ™ > Zr; > .
m=0 j=1

This yields, for some intege¥ > 0, 2V¢(1 — 2=%)a < ky , since otherwise
Z k,m2—ms < Z 2mt(1 _ 2t—s)2—7nsa - .
m=0 m=0

Sincer; < ¢ for all j, we have2~¥~! < 5. Moreover,
P(A;, 27N > ky > 2N (1 - 27 %)a,
which gives

sup P(An )" > P(A, 27V 12Nt > 271 - 2o,
0<e<d

Lettingd | 0, and recalling the relation a¥/ (A, ) and P(A, ¢) established at the begin-
ning of the proof, we obtain

limsup M (A;,€)e’ > limsup P(A4;,2¢)e" >0,
€l0 €l0

and thuslimj; A; > ¢, as required. ]

Remark 10.171t is easy to see that, for every metric spadanp £ > dim E. This is
suggested as Exercise 10.2. o

The following result shows that every closed subseRéfhas a large subset, which is
‘regular’ in a suitable sense. It will be used in the proof bEdrem 10.28 below.

Lemma 10.18Let A c R? be closed.

(i) If any open set’ intersectingA satisfieslim (A NV) > «, thendimp (4) > a.
(i) If dimp(A) > «, then there is a (relativ~ely closed) nonempty subkef A, such
that, for any open sét” which intersects4, we havelimp(ANV) > a.

Proof.  LetA C [JjZ, A;, where thed; are closed. We are going to show that there
exist an open sét’ and an index such that’ N A C A;. For thisV andj we have,

diim]w(Aj) 2 diim]u(Aj N V) 2 MM(A n V) 2 .

This in turn implies thatlimp(A) > .
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Suppose now that for arly open such that’ N A # 0, it holds thatV’ N A ¢ A;. Then
Aj is a dense open set relativedo By Baire’s (category) theorem N ﬂj A # (0, which
means thatd ¢ Uj A;, contradicting our assumption and proving (i).

Now choose a countable bagiof the topology ofR¢ and define

A=A\ J{BeB: dmp(BNA)<al}.

Then,dimp (A \ A) « using stability of packing dimension. From this we concltiokt
dimp A= dimp A > a.

If for someV open,V N A # () anddnnp(A NV) < athenV contains some s&t € B
such thatd N B +# ). For that set we havéimp(AN B) < dimp(4 '\ A) v dimp(AN
B) < a, contradicting the construction of. [

Example 10.19 An example of a result demonstrating the duality betweensdauff and
packing dimension is thproduct formula see [BP96]. In the dimension theory of smooth
sets (manifolds, linear spaces) we have the following fdanfar product sets

dim(E x F) =dimFE +dim F'.

The example discussed in Exercise 10.3 shows that this farfails for Hausdorff dimen-
sion, a reasonable formula for the Hausdorff dimension efipct sets necessarily involves
information about the packing dimension of one of the fasgis. In [BP96] it is shown
that, for every Borel sett C R?,

dimp(4) = sup { dim(A x B) — dim(B)}

where the supremum is over all compact gets R?. One can also show that, if satis-
fiesdim A = dimp A, then the product formuldim(A x B) = dim A + dim B holds.¢

Before moving back to our study of Brownian paths we studypheking dimension of
the ‘test sets’ we have used in the stochastic codimensidnadesee Section 9.9.1.

Theorem 10.20Let~y € [0,d] and'[] be a percolation limit set ifR¢ with retention
parameter2—7. Then

e dimp I'[y] < d — v almost surely,
e dimp I'[y] = d — v almost surely oi'[y] # 0.

Proof. For the first item, as packing dimension is bounded from aliigvthe upper
Minkowski dimension, it suffices to show thaitmy; I'[y] < d — v almost surely. For this
purpose we use the formula for the upper Minkowski dimengioan in Remark 4.2. For
a givenn, we cover the percolation limit set b§,,, the collection of cubes retained in
thenth construction step. The probability that a given cube @ $ength2=" is in &,, is
2= and hence the expected number of cubed jnis 2"(¢~7), Hence, for any > 0,

P{2n( 1) 45, > 1} < 2"0TITOR#E, < 277,
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which is summable. Hence, almost sur@Rf?—4—<) #&,, < 1 for all but finitely manyn.
Thus, almost surely,

— 1 S
dimy; < lim supm

oz 2 <d—~v+e¢ for everye > 0.
nToo n 1o

For the second item recall the corresponding statementdas#brff dimension from Exer-
cise 9.6. The result follows, as packing dimension is bodriden below by the Hausdorff
dimension, see Remark 10.17. [ |

Remark 10.21Simple modifications of the corresponding proofs for theardgounds in
the case of Hausdorff dimension, see Exercise 10.4, shdw tha

e dimp Range|0, 1] = 2, for Brownian motion ind > 2,

e dimp Graph[0, 1] = 3, for Brownian motion ind = 1,

e dimp Zeros = =, for Brownian motion ind = 1.

1
oL
Hence, at a first glance the concept of packing dimension noeseem to add a substan-
tial contribution to the discussion of fine propertiesdeflimensional Brownian motion.
However, a first sign that something interesting might beagain can be found in Exer-
cise 10.5, where we show that the Hausdorff and packing difoarof the sets ofi-fast
times differ. This is indicative of the fact that optimal &sings of these sets use covering
sets of widely differing size, and that optimal packings sis&s of quite different scalee

Given a set? C [0, 1] we now ask for the maximal value afsuch that& contains aru-
fast time with positive probability. This notion of size ist intimately linked to packing
dimension as the following theorem shows. We denotdé’fy) C [0, 1] the set ofa-fast
times.

Theorem 10.22 (Khoshnevisan, Peres and Xiadpr any compact seb' C [0, 1], almost
surely,

B(t+h)— B(t
suplimsup‘ (t+7) ()|:

teE  h|0 2hlog(1/h)

Moreover, if dinp (E) > a?, then dinp(F(a) N E) = dimp(E).

Remark 10.23The result can be extended from compact gete more general classes of
sets, more precisely trenalyticsets, see [KPX00]. o

Remark 10.24 An equivalent formulation of the theorem is that, for any gawt £ C
[0, 1], almost surely,

(1 ifdimp(E) > a2,
P{F(a)nE # 0} { 0 itdimp(E) < a?.
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Using the compact percolation limit sefs = T'[7] in this result and Hawkes’ theorem,
Theorem 9.5, one can obtain an alternative proof of the Oreyler theorem. Indeed, by
Theorem 10.20, iff < 1 —a? we have dinp(E) > a? with positive probability, and there-
fore, P{F(a) N E # 0} > 0. Hence, by Hawkes’ theorem, difi(a) > v with positive
probability. Brownian scaling mapsfast times onta:-fast times. Therefore there exists
€ > 0suchthat, forany, e Nand0 < j <n-—1,

P{dim(F(a) N [j/n, (j +1)/n]) =7} > e,
and hence
P{dimF(a) >7} >1-(1-¢)" — 1.
Lettingy T 1—a? givesdim F(a) > 1—a? almost surely. Conversely, by Theorem 10.20,

if v > 1—a? we have dinp(E) < a® almost surely, and therefol®{ F(a)NE # 0} = 0.
Hence, by Hawkes’ theorem, we havien F'(a) < 1 — a? almost surely. o

Theorem 10.22 can be seen as a probabilistic interpretafipacking dimension. The
upper and lower Minkowski dimensions allow a similar deforitwhen the order of sup
and lim are interchanged.

Theorem 10.25For any compacE C [0, 1], almost surely,

lim sup sup |B(t+h) — B{) = \/dimy (E). (10.9)
hl0  tEE 2hlog(1/h)

Proof of the upper bounds in Theorems 10.22 and 10.25. SupposeF C [0,1] is
compact. We assume théitm ;(E) < A < a? and show that

B(t+h) — B(t
lim sup sup B+ 1) ®)] < a almost surely. (10.10)
hl0  teE 2hlog(1/h)

Note that this is the upper bound in Theorem 10.25. Once shéhown it immediately
implies

B(t+h)— B(t ——
suplimsupl (t+h) @ < y/dimy (F)  almost surely.
teE  hl0 2hlog(1/h)

Now, for any decompositio® =  J;°, E;, we have

. |B(t 4+ h) — B(t)] ) . |B(t + h) — B(t)|
sup lim sup =sup sup limsup
teE k|0 2hlog(1/h) i=1tecl(E;) hlo 2hlog(1/h)

< stp y/dimy (),

=1

where we have made use of the fact that the upper Minkowskeléion is insensitive
under taking the closure of a set. Theorem 10.15 now imgiat t

B(t+h)— B(t
|B(t + h) 0l < /dimp(E) almost surely,

sup lim sup
teE  hl0O 2hlog(1/h)

which is the upper bound in Theorem 10.22.
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For the proof of (10.10) covel by disjoint subintervalg = [(j/k)n =", ((j +1)/k)n~F)

forj =0,...,[kn* — 1], of equal lengtth = =% /k such thatl N E # (. By definition
of the upper Minkowski dimension there existsansuch that, for alk > m, no more
thann** different such intervals of length = =% /k intersectE.

Now fix e > 0 such that\ < a? (1 — 4¢)3, which is possible by our condition on Let
Z(I) = 1if, for b’ = n~F,
|B(jh + 1) — B(jh)| > a(1 — 4e) \/2h' log(1/1).

Recall from the proof of Lemma 10.4 that there israr» 1 such that, for anyn € N, the
collection

{I=1G/Rn " (G+1)/kn™"): Z(I) =1, INE # 0,k > m}
is a covering of the set
|B(t +u) — B(t)|

M(m) := {t ek sup > a(l — ¢) for somek > m}.
nF<u < nokt 2ulog(1/u)

Moreover, we recall from (10.2), that
P{Z(1) =1} <t 074,
and, sticking to our notatioh = [(j/k)n =", ((j + 1)/k)n~*) for a little while longer,

00 Ucn‘"’*ﬂ 0

SN Pz =13 H{InE#£0} < 3y 07097 < o

k=0 j=0 k=0
and hence by the Borel-Cantelli lemma there existsnasuch thatZ (I) = 0 whenever
I=[(G/k)n~*, ((j +1)/k)n~*) for somek > m. This means that the séf (m) can be
covered by the empty covering, so it must itself be empty.sBhiows (10.10) and com-
pletes the proof. [ |

We embed the proof of the lower bound into a more general fnarle including the
discussion of limsup fractals inc&dimensional cube.

Definition 10.26. Fix an open unit cub&ube = x( + (0,1)% C R<. For any nonnegative
integerk, denote by, the collection of dyadic cubes

d
wo+ [[U2" Gi+ 127" withj; € {0,...,2¢ — 1} foralli € {1,...,d},
i=1

and¢ = J,» €. Denote by(Z(I): I € ) a collection of random variables each taking
values in{0, 1}. Thelimsup fractal associated to this collection is the random set

A= ﬁ [j U int(),
n=1k=n I€¢y

Z(I)=1

whereint(7) is the interior of the cubé. ©
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Remark 10.27Compared with the setup of the previous section we have sadtto the
use ofopencubes in the definition of limsup fractals. This choice is enconvenient when
we prove hitting estimates, whereas in Theorem 10.6 thecetaficlosed cubes was more
convenient when constructing random measured on o

The key to our result is the hitting probabilities for thealiete limsup fractald under
some conditions on the random variab{ég1): I € €).

Theorem 10.28Suppose that
() the meang,, = E[Z(I)] are independent of the choice bk ¢,, and satisfy

.. . logp,
lim inf
nfoo N log 2

Z =7, for somey > 0;

(i) there exists: > 0 such that the random variablé$(I) and Z(.J) are independent
wheneveld, J € ¢,, and the distance of and J exceedgn2~".

Then, for any compadf C Cube with dimp(E) > v, we have

P{ANE#0} =1.

Remark 10.29The second assumption, which gives us the necessary indiepenfor the
lower bound, can be weakened, see [KPXO00]. Note that no ggfamis made concerning
the dependence of random variabled) for intervalsI of different size. o

Proof of Theorem 10.28. Let £ C Cube be compact withlimp E > ~. Let E be
defined as in Lemma 10.18 for example as

d d
E=e\ |J {H(ai,bi) : dimag (BN [J(ain b)) < 7}.
=1

a;<b; =
rational

—

From the proof of Lemma 10.18 we haiten» E = dimp E. Define open sets
An = | {int(1) : (1) =1},
Iecn

and

A= JAn= U {int(d) : z(1)=1}.

m>=n m2nled,,

By definition A* N E is open inE. We will show that it is also dense il with probability
one. This, by Baire’s category theorem, will imply that

ANE= (A, NE#0, almost surely,
n=1

as required. To show that;, N Eis dense inE, we need to show that for any open binary
cubeJ which intersectd, the setd’ N E N J is almost surely nonempty.
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For the rest of the proof, fi¥ and recall thaﬁTmM(E nJ) = dimp(E NJ) > ~. Take
¢ > 0 small andn large enough so thaf N .J intersects more thazr('+2¢) binary cubes
of side lengtt2~™, and so thaflog p,)/n > —(log2)(y + ). LetS,, be the set of cubes
in ¢, that intersec N .J. Define

IeS,

so thatP{A, N ENJ = 0} = P{T,, = 0}. To show that this probability converges to
zero, by the Paley—Zygmund inequality, it suffices to prdwa {Var T,,)/(ET,,)? does.
The first moment of’,, is given by

ETH = Sp Pn > 2(7+25)n27'yn76n _ 267’7,’

wheres,, denotes the cardinality &,,. The variance can be written as

VarT, =Var > Z(I)=Y_ Y Cov(Z(I),Z(J)).
IeS, IeS,, JES,
Here each summand is at mast, and the summands for whidhand J have distance at
leasten2~" vanish by assumption. Thus

>3 Cov(Z(1), 2(J)) < pr#{(1,J) € S x Sy dist(I,J) < en27"}

IS, JES,
< Pnsn (2en 4+ 1)% = ¢(2en + 1) ET,.

This implies thatVar T;,)/(ET,,)*> — 0. Hence, almost surelyl’ is an open dense set,
concluding the proof. [ |

We now show how the main statement of Theorem 10.22 folloas fthis, and how the
ideas in the proof also lead to the lower bound in Theorem5L0.2

Proof of the lower bound in Theorem 10.22 and 10.25. For the lower bound we look at
a compact seb' C (0, 1) with dimp(E) > o and first go for the result in Theorem 10.22.
Chooses > 0 such thatdimp(E) > a? (1 4 ). Associate to every dyadic interval
I = [jh,(j + 1)h] € & with h = 2=F the random variabl& (I), which takes the value
one if and only if, forh’ = k27,

|B(jh+ h') = B(jh)| > a(1 +¢€) v/2h' log(1/H),
and note that by Lemma 10.10 the limsup fractal associatéoetse random variables is
contained in the set af-fast times. It remains to note that the collectipf(I): I €
¢,k > 0} satisfies the condition (i) with = a2 (1 + ¢)3 by (10.8) and condition (ii)
with ¢ = 1. Theorem 10.28 now gives that
P{ANE#0} =1,

and therefore

B(t+h)— B(t
suplimsup‘ (t+h) ()

teE  hl0 2hlog(1/h)
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For the lower bound in Theorem 10.25 we look at a compadtset(0, 1) with dim, (E)
> a? and fixe > 0 such thatdim;(E) > a® (1 + ¢)5. Hence there exists a sequence
(ng: k € N) such that

#{I c Q:nk: INE 7& @} > Nk a2(1+€)5'
With Z(I) defined as above we obtain, using notation and proof of Thed@28, that

P{Z(I) =1} > 27 ™7, with v = a? (1 +¢)*,
and
Var T, < (2n; +1)*ET,,, for 7, = Y Z(I) {INE # 0}.
Ieg,

By Chebyshev’s inequality we get, fay2 < n < 1,
P{|T,, — ET,,| > (ET,,)"} < (2ny, + 1) (ET,,, )" 2"

As ET,,, is exponentially increasing in, we can infer, using the Borel-Cantelli lemma,
that

. Tnk o

%1%?0 ET, 1 almost surely.
This implies thatl},, # 0 for all sufficiently largek. Hence, asZ(I) = 1andI N E # ()
imply that there exist$ € I N E with |B(t + h') — B(t)| > a+/2h/log(1/h’) for
h' = ng2™=, completing the proof of Theorem 10.25. [

10.3 Slow times of Brownian motion

At the fast times Brownian motion has, in infinitely many shsalales, unusually large
growth. Conversely, one may ask whether there are timesenmadrownian path has,
at all small scales, unusually small growth. The notion cl@wv timefor the Brownian
motion is related to the nondifferentiability of the Browanipath. Indeed, in our proof of
non-differentiability, we showed that almost surely,

B - B
lim sup B+ h) ()] =
hl0 h

forall ¢t € [0, 1],

)

and in 1963 Dvoretzky showed that there exists a congtand such that almost surely,
i sup (B 1) = BO)
h10 Vh

In 1983 Davis and, independently, Perkins and Greenwooadthat the optimal constant
in this result is equal to one.

> 4, forall ¢ € [0, 1].

Theorem 10.30 (Davis, Perkins and Greenwoodjlmost surely,

inf limsup |B(t+h) — B

=1.
te[0,1] hl0 \/E
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Remark 10.31We callt € [0, 1] ana-slow time if
[B(t +h) - B(t)|

lim sup < a. 10.11

hl0 Vh ( )

The result shows that-slow times exist fora > 1 but not fora < 1. The Hausdorff
dimension of the set af-slow times is studied in Perkins [Pe83]. o

For the proof of Theorem 10.30 we need to investigate theghitity that the graph of a
Brownian motion stays within a parabola open to the righte Tdllowing lemma is what
we need for a lower bound.
Lemma 10.32Let M := maxo<i<1 |B(t)] and, forr < 1, define the stopping time
T =inf{t > 1: |B(t)| = M +rvt}.
ThenET < oo.
Proof. By Theorem 2.48, for every> 1, we have
E[T At] = E[B(T At))|<E[(M + VT At)?]

=EM? + 2rE[MVT At] + r*E[T At]

< EM? + 2r(EM?)YV2(E[T A )2 + r2E[T A t],
where Hdolder’s inequality was used in the last step. Thisgiv

(1= rP)E[T A ] < E[M?] + 2r(EM2)? (B[T A 1))/,
and asE[M?] < oo we get thalE[T A ¢] is bounded and hend&l” < oco. [
Proof of the lower bound in Theorem 10.30. It suffices to show that, for any fixed
r < 1andhg > 0, the set
A={te€[0,ho]: |B(t+h)— B(t)] <rvhforalo<h<hg}

is empty almost surely. By Brownian scaling we may furthesuase that,, = 1. For any
interval I = [a,b] C [0, 1], we have, by the triangle inequality and Brownian scaliig, f
M = max{|B(t) — B(a)|: a <t < b}, that

P{3tel : |B(t+h)—B(t) <rvhforalo<h<1}

<P{|B(a+h) - B(a)| < M +rvVhiorallb—a<h<1}
<P{T > 1,

whereT is as in Lemma 10.32. Dividinf§), 1] into n intervals of lengthl /n we get
n—1
P{A#0} < > P{AN[k/n, (k+1)/n] # 0} <nP{T > n}
k=0

=E[nl{T >n}| — 0,

using in the final step thatl{T" > n} is dominated by the integrable random variablas
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We turn to the proof of the upper bound. Again we start by saglgxit times from a
parabola. Fof < r < co anda > 0 let

T(rya) :=inf{t > 0: |B(t)| = rvt+a}.

For the moment it suffices to note the following propertyltt, ).

Lemma 10.33We haveET'(1,a) = co.

Proof. Suppose thaET'(1,a) < oo. Then, by Theorem 2.48, we have tf&f(1,a) =
EB(T(1,a))? = ET(1,a) + a, which is a contradiction. Hend&T'(1, a) = oo. |

For0 < r < oo anda > 0 we now define further stopping times

S(r,a) := inf{t > a: |B(t)| > rVt}.

Lemma 10.34If » > 1 there is ap = p(r) < 1 such thatE[S(r, 1)?] = cc. In particular,

limsupn PAS(r, 1) > n}

DT S T A

The proof uses the following general lemma.

Lemma 10.35SupposeX is a honnegative random variable afitlX? = oo for some
p < 1. Then

limsupnP{X > n}/E[X An] > 0.

nToo
Proof. Letp < 1 and suppose for contradiction that, for some 1’7”,
nP{X >n} < cE[X An] for all integersn > yo > 2. (10.12)

Forall N > 1, using Fubini's theorem in the first and substitution of &atés in the second
step, we get that

NP N
E[(X A N)?| = /0 P{X? >z}dx =p /O yP I P{X >yl dy,

and hence, using (10.12) far= |y|, we obtain

Yo N

E[(X A N)?] <p/ y“dy+€y§’31p/L JyHE[XAy]dy
0 Yo

N

<y€+25p/L J
Yo

N o)
< yb + 2ep / P{X > z} / yP 2 dydz
0 z

y
yp_z/ P{X > z}dzdy
0

<y +e 2 E[(X AN,
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and hence, by choice ef

Y,
E[(X AN < 0.
1-p

This impliesE[X?] = sup E[(X A N)P] < oo, which contradicts to our assumption. m

Proof of Lemma 10.34. Define a sequence of stopping timesy= 1 and, fork > 1,

_f inf{t > 7_1: B(t) =00r|B(t)| > rvt} if kisodd,
ke inf{t > 7_1: |B(t)| = Vi} if k is even.

For any fixed\ > 0 let p(a) = P{T(1,a) > Aa} and note that, by Brownian scaling,
p(a) = ¢(1) for all « > 0. Hence, by the strong Markov property,

P{7or — Ton—1 > AMok—1 | B(r2k—1) = 0} = E[p(72x-1) | B(T2x-1) = 0]
— P{T(1,1) > AL
Definec := P{S(0,1) < S(r,1)}. Now, fork > 2 andX > 0, on{ra;_o < S(r,1)},
P{7or — Tok—1 > Aok —2 | F(T2r—2)}
> P{7or — Tak—1 > Map—1 | F(72n—2), B(ran—1) = 0} P{B(r2—1) = 0| F(725—2) }
— ¢P{T(1,1) > A}.

To pass from this estimate to tp& moments we use that, for any nonnegative random
variableX, we haveEX? = [ P{X? > A} d\. This gives

oo

]E[(Tgk — Tgkfl)p] = E/ T§k—2 ]P){(Tgk — Tgkfl)p > )‘Tgk—Z ’f(TQk,Q)} dA
0
> ]E/ Ténk_Q P{Tgk — Tok—1 > )\1/177_2]672 | .7(7'2]@,2)} 1{7—2]@72 < S('/’, 1)} d\
0
> CE/ T o P{T(1,1) > )\1/”} Hrop—o < S(r, 1)} dA.
0
Now, using the formula foEX? again, but forX = 7(1,1) and noting thaf ;2 <
S(r,1)} = {72r—3 < Tar—2}, we obtain
E[(Tgk - ’TQk_l)p] > CE[T(]., 1);0] E[Tgk_21{7'2k_2 < S(T’, 1)}]
> cE[T(1,1)P] E[(T2k—2 — T2x—3)"],
and by iterating this,
k—1
E[(ror — 7ok1)"] > (c]E[T(l, 1)?]) E[(ry — m)"].
Note that, by Fatou’s lemma and by Lemma 10188,inf,; E[T'(1,1)?] > ET(1,1) =
oo. Hence we may pick < 1 such thafE[T'(1,1)?] > 1/c. Then
E[S(r,1)"] > E[r3,] = E[(T2r — Tox—1)"] — o0,

ask 7 oo, which is the first statement we wanted to prove. The secatdraent follows
directly from the general fact stated as Lemma 10.35. [ |
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Proof of the upper bound in Theorem 10.30. Fixr > 1 and let
= {t €[0,1]: |B(t+h) — B(t)| < rvh, forall L <h <1}.

Note thatn > m |mpI|esA(n) C A(m). We show that
P{ () A(n) #0} = lim P{A(n) # 0} >0. (10.13)
n=1

Fix n € Nand letv(0,n) = 0 and, fori > 1
v(i,n) = (v —1,n)+1)

Ainf {t > v(i—1,n) + L: |B(t) — B(v(i — 1,n))| = r\/t —v(i — 1,n)}.
ThenP{v(i + 1,n) — v(i,n) = 1|F(v(i,n))} = P{S(r,1) > n}, and by Brownian
scaling,

E[v(i+1,n) — v(i,n) | F(v(i,n))] = LE[S(r,1) An]. (10.14)
Of coursev(k,n) > 1if v(i,n) —v(i — 1,n) = 1 for somei < k. Thus, for anym,

P{v(i + 1,n) — v(i,n) = 1 for somei < m such that(i,n) < 1}
= Z]P’{S (r,1) = n}P{v(i,n) < 1}

m]P’{S(r 1) = n}P{v(m,n) < 1}.

Let (ny: k € N) be an increasing sequence of integers such that
P{S(r,1) > nk}
E[S(r,1) Ang] ~
andE[S(r, 1) A ng] < ni/6 for all k, which is possible by Lemma 10.34.

Choose the integers;, so that they satisfy
1 mg 1
- g = < =
3 B Nk ]E[S(’f‘,l)/\nk] ~ 2
Summing (10.14) over all= 0, ..., m; — 1 and taking the expectation,

Nk >e>0,

Ev(my, ny) = %f E[S(r, 1) A ng],

henceP{v(my,n;) > 1} < 1/2. Now we get, putting all our ingredients together,
P{A(ny) # 0}
> P{v(i + 1,n;) — v(i,ng) = 1 for somei < my, such that (i, ny) < 1}
> miP{S(r,1) > nk}P{v(mk,nk) 1}

> maP{S(r, 1) = ny}/2 > ﬁ eE[S(r, 1) Ayl = %

This proves (10.13). It remains to observe that, by Browmsiealing, there exist§ > 0
such that, for alh € N,

P{3t € [0,1/n]: limsup |B(t+h) — B(t)|/Vh <71} =4
hl10
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Hence, by independence,

P{3t € [0,1]: limsup|B(t+h) — B(t)|/Vh <r}>1—(1-0)" — 1.
hl0

This completes the proof of the upper bound, and hence the pf@heorem 10.30. m

10.4 Cone points of planar Brownian motion

We now focus on a planar Brownian moti¢#(¢): ¢ > 0}. Recall from Section 7.2 that
around aypical pointon the path this motion performs an infinite number of winging
both directions. It is easy to see that there are exceptmoiats to this behaviour: Let

zo = min{z: (z,0) € B[0,1]}.

Then the Brownian motion does not perfoemy windings aroundz, 0), as this would
necessarily imply that it crosses the half-life, 0): « < z} contradicting the minimal-

ity of z9. More generally, each poitttg, yo) € R? with 2o = min{z: (z,y0) € B[0,1]}

has this property, if the set is nonempty. Hence, the setai points has dimension at
least one, as the projection onto th@xis gives a nondegenerate interval. We shall see
below that this set has indeed Hausdorff dimension one.

We now look at points where a cone-shaped area with the theeatdne placed in the point
is avoided by the Brownian motion. These points are calleg: gmints.

Definition 10.36. Let {B(¢): t > 0} be a planar Brownian motion. For any angle
a € (0,2m) and directior¢ € [0, 27), define the closedone

Wia, &) == {reiw_f): 0] <a/2,7r >0} CR%.

Given a coner + W{a, £] we call itsdual the reflection of its complement about the tip,
i.e. the coner + W[2m — o, + 7]. Apointz = B(¢), 0 < t < 1, is ana-cone pointif
there existg > 0 and¢ € [0, 27) such that

B(0,1) N B(z,¢e) €z + Wa,£]. o

Remark 10.37Clearly, if z = B(t) is a cone point, then there exists a sndaj+ 0 such
thatB(t — 0,¢t + ) C = + W]a, £]. Hence the patiB(¢): 0 < ¢t < 1} performs only a
finite number of windings around. o

We now identify the opening anglesfor which there existv-cone points. In the cases
where they exist, we determine the Hausdorff dimension@s#t ofa-cone points.
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Theorem 10.38 (Evans 1985)et {B(¢): 0 < t < 1} be a planar Brownian motion.
Then, almost surelyy-cone points exist for ang > = but not fora < 7. Moreover, if
a € [m,2m), then

dim {z € R*: z is ana-cone point} =2 — 2T .

In the proof of Theorem 10.38 we identi®? with the complex plane and use complex
notation wherever convenient. Suppose that¢): ¢ > 0} is a planar Brownian motion
defined for all positive times. We first fix an anglec (0, 27) and a directior € [0, 27)
and define the notion of an approximate cone point as folléwes:any) < § < « we let

Ts(z) :==inf {s > 0: B(s) € B(z,6)}

and
Sse(z) == inf{s > T5/2(2): B(s) ¢ B(z,e)} .
We say that € R? is a (4, €)-approximate cone poirit
B(0,T5(2)) C z4+ Wla,&], and B(Ts/2(z2),55.(2)) C 2+ Wa,{].
Note that we do not requir@, ¢)-approximate cone points to belong to the Brownian path.
The relation between cone points and approximate conegwititbecome clear later, we
first collect the necessary information about the probighiiat a given point is 44, ¢)-

approximate cone point. The strong Markov property allowsaiconsider the events
happening during the intervale, 75 (z)] and[T;,2(z), 1] separately.

Lemma 10.39There exisb < ¢ < C (depending omx) such that, for every > 0,
(a) forall z € R?,

just
a

P{B(0,T5(2)) C 2+ W[, €]} <C (%),

z

(b) forall z € R? with0 € z + W[a/2,¢],

P{B(0,T5(2)) C 2+ Wla,&]} > ¢ ()"

z

Proof.  We write z = |z| ¢! and apply the skew-product representation, Theorem 7.26,
to the Brownian motio{z — B(t): ¢ > 0} and obtain

B(t) = z — R(t) exp(i0(t)), forall ¢ > 0,

for R(t) = exp(W1(H(t)) andf(t) = Wa(H (t)), where{Wy(t): ¢ > 0} and{W>(¢):

t > 0} are independent linear Brownian motions startelbgnz|, resp. ind, and a strictly
increasing time-changgH (t): ¢ > 0} which depends only on the first of these motions.
This implies thafl5(z) = inf{s > 0: R(s) < ¢} and therefore

H(Ts5(z)) = inf {u > 0: Wi(u) < logd} =: Tiogs -
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We infer that
{B(0,Ts5(2)) C z+ W, &]} = {|Walu) + 7 — £ < £ forall u € [0, Tiog 6] }-

The latter event means that a linear Brownian motion stanédstays inside the interval
[ —7—a/2,§ — 7+ /2] up to the independent random timg; 5. For the probability of
such events we have found two formulas, (7.14) and (7.15hap&r 7. The latter formula
gives

P{|Wa(u) + 7 — ¢ < § forallu € [0, og 5] }

e}

C (& — T — 271'2
=Y @Rty sin (@tlm(e/2H ‘9))]E[exp(— L Tlog5):|
k=0

_Z 2k+1 sin ( (2k+1>7f(@/2+5—ﬂ—9)> (%)(2k+1)§7

[

using Exercise 2.18 (a) to evaluate the Laplace transfomtmediirst hitting times of a point
by linear Brownian motion. Now note that the upper boundi (sgrof the lemma, is easy
if |z| < 26, and otherwise one can bound the exact formula from above by

o0
S \a 4 —2k =
|) E:(2k+1)7r2 :
k=0

The lower bound, part (b) of the lemma, follows from Browngaling ifé/|z| is bounded

from below. Otherwise note that, under our assumptioa = + Wi«/2,¢], we have

|6 4+ 7 — £| < § and thus the sine term corresponding:te- 0 is bounded from below by
sin(m/4) > 0. Thus we get a lower bound of

5 \a 5
(W) { sin(m/4) — Z (2k+1)7r 7 }’
and the term in the square bracket is bounded from zedg|4f is sufficiently small. m

An entirely analogous argument also provides the estinmteded for the events imposed
after the Brownian motion has hit the bdl(z, §/2). Define, for later reference,

S(z) :=inf {s > t: B(s) € B(z,¢)}.
Lemma 10.40There exist constants > ¢ > 0 such that, for everg < § < ¢,
(@) forall z, z € R? with |z — 2| = /2,
P,{B(0,5(2)) C z + W[a,&]} < C (£)7.

(b) forall z,z € R? with |z — z| = §/2 andz — z € W]a/2, €],

P,{B(0,5(2)) C z + W[a,£]} > ¢ (2)".

We now focus on thepper boundn Theorem 10.38. Using the strong Markov property
we may combine Lemmas 10.39 (a) and 10.40 (a) to obtain theviolg lemma.
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Lemma 10.41There exists a constaft, > 0 such that, for any: € R?,

P{: is a (4, )-approximate cone point < Cy |z| & e & 6% .

Proof. By the strong Markov property applied at the stopping tifjg, (z) we get

P{z is a(d,)-approximate cone poirjt
S E[H{B(0,T5(2)) C 2+ W, E]} Pz 50 {B(0, S (2)) C 2z + Wla, £]}]
<O () (DF,

€

where we have used Lemmas 10.39 (a) and 10.40 (a). The remits withCyy := C%. m

Let M («, &, €) be the set of all points in the plane which &fies)-approximate cone points
forall & > 0. Obviouslyz € M(a, &, ¢) if and only if there existg > 0 such that = B(t)
andB(0,t) C z + Wa,§], andB(t, S (2)) C z + W]a, &].

Lemma 10.42AImost surely,
(@) if « € (0,7) thenM (a, &, e) =0,
(b) if a € [r,27) thendim M (a, &, 6) < 2 — 2=,

[

Proof. Take a compact cub@ube of unit side length not containing the origin. It suffices
to show thatV/ (a, &, e) N Cube = 0 if o € (0, 7) anddim M (o, §,e) N Cube < 2 — 2% f
a € (m,2m).

Given a dyadic subcubB € ©,, of Cube of side lengtl2—* let D* O D be a concentric
ball aroundD with radius(1 + v/2)2~*. Define thefocal pointz = z(D) of D to be

e if o < 7 the tip of the cone: + W, £] whose boundary halflines are tangenfio,
e if a > 7 the tip of the cone whose dual has boundary halflines tangdnt t

The following properties are easy to check: For every 0 anda € [0, 27), there exists
ko € N such that for alkk > ko andD € D andy € D, we haveB(y,e) D B(z,&/2),
andy + Wla, €] C  + W]a, £]. Moreover there exist constant§ > ¢; > 0 depending
only ona, such that

o B(y,C127%) C B(x,Cf27%),
° B(y, % C12_k) D) B(JT, 01012_k), and
o |z —y| <ciCr27F

Altogether, these properties imply that, fotarge enough, if the cub® € ©, contains a
(C1 2% ¢)-approximate cone point, then its focal paingatisfies

o B(0,T29-#(2)) C x+ Wla,¢], and
4 B(T610127k(x)’ 561C127k‘,5/2(‘r)> C T + W[a7£]

See Figure 10.1 for an illustration.
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Fig. 10.1. Position of the points in Lemma 10.42.

Hence, by combining Lemma 10.39 (a) and Lemma 10.40 (a) asnma 10.41, we find
a constant’y > 0,

P{ D contains &C 2~*, <)-approximate cone point < Cj |z(D)|~& e~ & 275
Note that, giverCube ande > 0 we can findk; > ko such thafx(D)| is bounded away
from zero over allD € ©;, andk > k,. Hence we obtaid’s > 0 such that, for alk > k&,

P{D contains gC; 27, ¢)-approximate cone poirft < C PR
Then, ifa € (0,7),

P{M(a,&, ) # 0} < Z PP{D contains gC, 27", ¢)-approximate cone poirjt
De®Dy,

kj}c 0 7
proving part (a). Moreover, if € (7, 27) andk > ki, we may covetM («, &, &) N Cube
by the collection of cube® € D, which contain aC,27*, £)-approximate cone point.
Then, foranyy > 2 — %’T the expected-value of this covering is

E Z Q*kW%Vl{D contains aC) 2", £)-approximate cone poirjt
De®Dy,
<227 Y~ 27" P{D contains gC; 2~*, ¢)-approximate cone poirt
De®Dy,

k—o0

<2 R g

and this proves that, almost surelym M (o, £, ¢) < 7. [
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Proof of the upper bound in Theorem 10.38. Suppose > 0 is arbitrary and: € R?
is an a-cone point. Then there exist a rational numbpee [0,1), a rational direction
¢ €[0,2), and a rationat > 0, such that = B(t) for somet € (¢,1) and

B(g,t) C 2+ Wla+4,6, and B(t S9(2)) C 2+ Wla+6,g].

By Lemma 10.42 for every fixed choice of rational parametbis $et is empty almost
surely ifa + 6 < w. For anya < 7 we can pickd > 0 with a« + § < 7 and hence
there are nax-cone points almost surely. Similarly, éf > 7, we use Lemma 10.42 and
the countable stability of Hausdorff dimension to obtainadmost sure upper bound of
2 — 27 /(e + §) for the set ofa-cone points. The result follows @s> 0 was arbitrary. B

We now establish the framework to prove the lower bound inoféve 10.38. Again we
fix zo € R? and a cubeCube = 5 + [0,1)?. Recall the definition of the collectiod,,
of dyadic half-open subcubes of side length* and let® = (J;~, ;. Suppose that
{Z(I): I € D} is a collection of random variables each taking valuefoiri }. With this
collection we associate the random set

A::ﬁ U I.

k=1 I€Dy
Z(I)=1

Theorem 10.43Suppose that the random variableg(I): I € ©} satisfy the monotonic-
ity condition

IcJandZ(I)=1 = Z(J)=1.

Assume that, for some positive constants; andC1,
) alI<EZI) < Cy I foral I € D,

(i) E[Z(1)Z(J)] < Cy |[I]*Y dist(I,J) " forall I, J € Dy, dist(I,J) > 0,k > 1.
Then, for\ > v and A C Cube closed withH*(A) > 0, there exists @ > 0, such that
P{dim(ANA) = X—~} >p.

Remark 10.44Though formally, if the monotonicity condition holdd,is a limsup fractal,
the monotonicity establishes a strong dependence of thleramariable§ Z(I): I € D}
which in general invalidates the second assumption of Téredr0.28. We therefore need
a result which deals specifically with this situation. o

We prepare the proof with a little lemma, based on Fubingotlem.

Lemma 10.45Suppose is a probability measure oR? such that/B(z,r) < Cr* for all
x € R% r > 0. Then, for all0 < 5 < X there exist€’, > 0 such that,

/ |z —y| 7P v(dy) < CyrP, for everyz € R andr > 0.
B(z,r)
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This implies, in particular, that

/ |z —y| 7P dv(z) dv(y) < oo.

Proof. Fubini's theorem gives
[ =ity = [ vly e Bl ool > s}as
B(z,r) 0

< / vB(x,s /P ds + C 1P

-8

gC’/ s*)‘/ﬁds+C’r}‘*ﬁ,
=8

which implies the first statement. Moreover,
// lz —y| 7P dv(z) dv(y) < /du(w)/ e —y| Pdv(y) +1<Co+1. ®
B(z,1)

Proof of Theorem 10.43. We show that there exisgs > 0 such that, for every
0 < 8 < A —~, with probability at leasp, there exists a positive measyren A N A such
that its3-energyls(p) is finite. This impliesdim(A N A) > G by the energy method, see
Theorem 4.27.

First, givenA C Cube with H*(A) > 0, we use Frostman’s lemma to find a Borel proba-
bility measurer on A and a positive constant such that (D) < C|D|* for all Borel sets
D c R%. Writing
A, = U I,

IeEDp

Z(I)=1
we definey,, to be the measure supported dmiven by

un(B) =2" (BN A,) for any Borel set? C R
Then, using (i), we get
E(pn(An)] =2" Y v(EZ(I) 2 e d? Y v(I) =crd?.
Ie®, Ie®,

Moreover, using (ii), we obtain

Efia(A40)2] =227 30 S EZ(DZ(D(D(J)

1€9, JED,

<ad Yo > dist(, ) v()v(J)

Ie®,, JEDn
dist(I,J)>0

4 O34/ 22 9 > EZ)w(I),
1€e®,

since for every cubé there are3¢ cubes/ with dist(Z, J) = 0. Hence

E[pn(An)?] < C1((1 +2Vd)d)’ / & — y| ™ dv(z) du(y) + C 3T 72,
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where we use that fa € I, y € J with dist(Z,J) > 0 we havelx —y| < (1 +
2v/d) dist(1,J). Finiteness of the right hand side, denotgg follows from the second
statement of Lemma 10.45. We now show that,for. A — v we can findk(3) such that
Els(p,) < k(B). Indeed,

Els(pa) =227 ) E[Z(I)Z(J)]/dl/(ff) /JdV(y) o —y| ™"

1,J€D,, I

<Gy d? Z Z dist(I, J)~" /du(x) /Jdl/(y) |z —y| "

I JeD
€Dn dist(1,J)>0

+Cy dV2 o Z Z /dy /dl/ Y]z —y| 7.

Ie®, JEDp
dist(I,J)=0

For the first summand, we use thist(1,.J) =7 < (3v/d)” |z — y|~" whenever: € T and
y € J, and infer boundedness from the second statement of Lemmi&. or the second
summand, the first statement of Lemma 10.45 gives a bound of

C1Cyd/? 27 (3v/d2™")* P 3" (1) < C1 Cyd'? (3Vd)N P
Ie®,

Hence EIg(uy,) is bounded uniformly im, as claimed. We thus fin€(3) > 0 such that

C
P{Ls(hn) > €9)} < i) <

Now, by the Paley—Zygmund inequality, see Lemma 3.23,

P{Mn( n) }>P{Mn ) >3 E[Nn(An)]}>

Hence we obtain that

P{Mn(An) > %7 Iﬁ(un) < E(ﬁ)} Zpi= 8%’3 .

Using Fatou’s lemma we infer that

P{in(An) >%, Ig(pun) < £(B) infinitely often }
> liminf P{pn(An) > G, Is(un) < £(B)} > p.

On this event we can pick a subsequence along whjclkonverges to some measuyre
Theny is supported byd and i(Cube) > liminf u, (Cube) = liminf p,(A,) > ¢1/2.
Finally, for eache > 0, where the limit is taken along the chosen subsequence,

// —y|> |x_y|7ﬁdu($) dply) = lim /| > |z _y|7ﬁd/u’ﬂ(x) dpin(y)

< lim Ig(pn) < €(B),
and fore | 0 we getlg(u) < ¢(5). [
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We now use Theorem 10.43 to givdawer boundfor the dimension of the set of cone
points. Fixa € (m,27) and a unit cube

Cube = 29 + [0,1]* € W]a/2,0],

and recall the definition of the classésand ¢, of compact dyadic subcubes. Choose a
large radiusk > 2 such thatCube C B(0, R/2) and define

k
re=R—>» 277> R/2.

Jj=1

Given a cubel € ¢, we denote by: its centre and leZ(I) = 1if z is a(27%,r)-
approximate cone point with directign= , i.e. if

B(0,Ty-«(2)) C 2+ Wla,n|, and B(Ty-r-1(2),S9-k ., (2)) C 2+ Wla,n],
and otherwise leZ(I) = 0. By our choice of the sequenc¢e;) we have
IcJandZ(I)=1 = Z(J)=1.

Lemma 10.46There are constant® < ¢; < C; < oo such that, for any cubé € ¢, we
have

all)l® <P{Z(I)=1} <O |I|=.

Proof. The upper bound is immediate from Lemma 10.41. For the lowand we use
that, for anyz € Cube andd > 0,

inf P, {B(Ts,2(2)) € z + W[a/2, 7]}

|z—z|=6

= inf1 P.{B(T1,2(0)) € W[a/2,7]} =i ¢o >0,

|z|=
and hence, it is the centre of € ¢, andé = 2%, using Lemmas 10.39 (b) and 10.40 (b),
P{Z(I) =1}
> IE[I{B(O7 T5(2)) C 2+ Wla, 7} Ep(ry (2)) [H{B(Ts/2(2)) € 2+ W(a/2, 7]}

X Pa(ry () (B0, () € 2+ Wlay )]

_
o
)

>cocte (R|z|)

which gives the desired statement, gsgs bounded away from infinity. [

Lemma 10.47There is a constarit < C; < oo such that, for any cubek J € €, k > 1,
we have

E[Z(I)Z(J)] < Cy |I|'S dist(I, J)~ <.
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Proof. Letz;, z; be the centres df, resp.J, and abbreviatg := |27 —z;| and§ := 27%.
Then, forn > 24, using the strong Markov property and Lemmas 10.39 (a) antD18),

E[Z(I) Z(J) 1{Ts/2(21) < Ts2(25)}v]
< E[I{B(O,Tg(zf)) C 21 + Wy}

X BB (a0)) [1{B(O= Syye(21)) € 21 + W, w]}
X Ep(1, 5(=,)) [H{B(0, T5(2)) C 25 + Wa, 7]}
X Pu(1s 520 {B(0, 81 (25)) C 25 + W[amr]}]ﬂ

<t (%)5 (%)7" (%)% <Oy |_I|%’r dist(I,J)ifa

where we recall tha€ube does not contain the origin and €%, > 0 be an appropriate
constant. Suppose now thatl 26. Then, by a simpler argument,

E[Z(I) Z(J) 1{Ts)2(21) < Tsa(21)}]
< E[L{B(0,Ts(21)) C z1 + Wla, 7]}
X PB(T§/2(ZJ)){B(0’ 57("2-,)(2<’)) Czrt W[a’ﬂ]”

<SC2(2) (B)™ < Ca|I|F dist(1,0) "+ .

Exchanging the réle of andJ gives the corresponding estimate
E[Z(1)Z(J)1{Ts2(21) > Ts/a(z5)}] < C |1 dist (1, J) ™~

and the proof is completed by adding the two estimates. [ |

Proof of the lower bound in Theorem 10.38. The setA which we obtain from our
choice of{ Z(I): I € ¢} is contained in the set

A:={B(t):t > 0andB(0, 50),(B(1))) C B(t) + Wla,n]}.

Therefore, by Theorem 10.43, we halien A > 2—2m /o with positive probability. Given
any0 < § < 1/2 andr > 0, we define a sequeneg” < 75" < ... of stopping times by
¥ =0and, fork > 1,

() . 5“@1) B(+®
T =85 (B(R2))) -
Denotingn = R/(2r) and
AY ={B(t): 7,0, <t <7 andB(r”,, S{(B(t)) € B(t) + Wle, 7] }
we have that
Ac Ay,
k=1

Now fix 8 < 2 — 27/a. The events{dim Ay’ > $} all have the same probability,
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which cannot be zero as this would contradict the lower baamthe dimension ofi. In
particular, there existsy;’ > 0 such that

P{dim {B(t): 0 < ¢ < $2(0) and B, S (B(1)) < B#) + Wla, ]} > 8} > pfy

By scaling we get thap!?’ does not depend on Hence, by Blumenthal’s zero-one law,
we have thapg) =1forallé > 0,R > 0. Letting3 T 2 — 27/« we get, almost surely,

dim {B(t): 0 <t < S5”(0), B(0,S’(B(t))) C B(t) + W[a,n]} >2— 2%

(03

for everyé > 0,1 > 0.
Givene > 0, we may choosé,n > 0 such that, with probability- 1 — ¢, we have
557(0) < 1andS’(B(t)) > 1forall 0 <t < 1. This implies that

dim {B(t): 0<t <1, B(0,1) C B(t) + W[a,n]} >2— 2%

with probability > 1 — ¢, and the result follows as> 0 was arbitrary. [

A surprising consequence of the non-existence of cone pontangles smaller thenis
that the convex hull of the planar Brownian curve is a fairyo®th set.

Theorem 10.48 (Adelman)Almost surely, the convex hull §B(s): 0 < s < 1} has a
differentiable boundary.

Proof. A compact, convex subséf C R? is said to have @orneratz € 0H if
there exists a cone with vertexand opening angle > = which avoidsH \ {z}. If H
does not have corners, the supporting hyperplanes areaiatgeach point € 0H and
thusO0H is a differentiable boundary. So all we have to show is thatdbnvex hullH
of {B(s): 0 < s < 1} has no corners. Clearly, by Spitzer’s theord®{()) and B(1) are
not corners almost surely. Suppose any other poiatoH is a corner, then obviously it
is contained in the path, and therefore it i$2a — «)-cone point for somex > 7. By
Theorem 10.38, almost surely, such points do not exist a@sdstla contradiction. [ |

Exercises
Exercise 10.1.Show that, for every metric spadg

dimp E = inf{s: P*(E) < oo} = sup{s: P°(E) > 0} = sup{s: P*(E) = oo}.
Exercise 10.28 Show that, for every metric spadg we have
dimp F > dim FE.

Exercise 10.3Let{m;: k > 1} be arapidly increasing sequence of positive integers such
that
mg

lim =0.

k—oo M1
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Define two subsets d6, 1] by

o0
E = { L, x; € {0,1} anda; = 0if my + 1 < i < my4q for some everk}

— 2!
=1
and
F = { % :x; €{0,1} andx; = 0if my + 1 < ¢ < my4 for some odd-c}.
=1
Show that

(8) dim £ = dim,,F = 0 anddim F' = dim,,F' = 0,
(b) dimp F = MME =1 anddimpF = RN[F =1,

() dim(E x F) > 1.

Exercise 10.4.Show that, almost surely,
(a) dimp Range[0, 1] = 2, for Brownian motion ind > 2,
(b) dimp Graphl0,1] = 3, for Brownian motion ind = 1,

(c) dimp Zeros = £, for Brownian motion ind = 1.

Exercise 10.5.Show that, for every, € [0, 1], we have almost surely,
B(t+h)— B(t

dimp{tE[O,l] :limsup| (t+h) ® >a}:
hl0 2hlog(1/h)

Hint. This can be done directly, but it can also be derived from ngemeral ideas, as
formulated for example in Exercise 10.9.

Exercise 10.6.Show that

. |B(t +h) — B(t)] .
lim inf su = +/dim,,(E).
nO ten  \/2hlog(1/h) dimy (E)

Exercise 10.78 Use Theorem 10.43 to prove once more that the zero set of Breav-
nian motion has Hausdorff dimensignalmost surely.

Exercise 10.8. Show that, if

1
lim sup 98 Pn_ -7, for somey > 0,
nioo T log2

then, for any compadt C [0, 1] with dimp(E) < v, we have
P{ANE#0} =0.

Note that no independence assumption is needed for thésrstat.
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Exercise 10.9§

(a) Supposed is a discrete limsup fractal associated to random varighés): I €
¢,k > 1} satisfying the conditions of Theorem 10.28. Then, if giff) > ~,
we have almost surelfdimp(A N E) = dimp(E).

(b) Show that, if dimp(E) > a2, then almost surely
dimp(F(a) N E) = dimp(E),
whereF'(a) is the set oki-fast times.

Exercise 10.108/ Give a proof of Lemma 10.40 (a) based on Theorem 7.25.

Exercise 10.11. Supposek C R? is a compact set and € R? \ K a point outside the
set. ImagineK as a solid body, and as the position of an observer. This observer can
only see a part of the body, which can be formally described as

K(z)={ye K: [z,y) N K = {y}},

wherelz, y] denotes the compact line segment connectimandy. It is natural to ask for
the Hausdorff dimension of the visible part of a $6t Assuming that dimK > 1, an
unresolved conjecture in geometric measure theory cldiatsfor Lebesgue-almost every
x ¢ K, the Hausdorff dimension df (z) is one.

Show that this conjecture holds for the path of planar Brannmotion, X' = B|0, 1], in
other words, almost surely, for Lebesgue-almost ewersy R?, the Hausdorff dimension
of the visible partB[0, 1](x) is one.

Exercise 10.12. Let {B(t): t > 0} be a planar Brownian motion ande [r, 27). Show
that, almost surely, no double points areone points.

Exercise 10.13§ Let {B(t): t > 0} be a planar Brownian motion amdec (0, ]. A point
x = B(t),0 <t < 1, is aone-sidedx-cone point if there existé € [0, 27) such that

B(0,t) C z + Wla,§] .
(@) Show that fora < 7, almost surely, there are no one-sidedone points.

(b) Show that fora € (7, ], almost surely, the set of one-sidegcone points has

Hausdorff dimensio2 — o~

Notes and comments

The paper [OT74] by Orey and Taylor is a seminal work in thelgtf dimension spectra
for exceptional points of Brownian motion. It contains agdfrof Theorem 10.3 using the
mass distribution principle and direct construction offinestman measure. This approach
can be extended to other limsup fractals, but this methodimes) quite strong indepen-
dence assumptions which make this method difficult in mangengeneral situations. In
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[OT74] the question how often on a Brownian path the law ofiteeated logarithm fails
is also answered in the sense that,&os 1, almost surely, the set
_B(t+h)—B(t) >0 }

\/2hloglog(1/h)

has zero or infinite Hausdorff measure for the gauge funetieh = r log(1/r)” depend-
ing whethery < 62 — 1 ory > 62 — 1. Finer results do not seem to be known at the
moment.

{t > 0: hm Sup

Our proof of Theorem 10.3 is based on estimates of energgraite This method was
used by Hu and Taylor [HT97] and Shieh and Taylor [ST99], andexposition follows
Dembo et al. [DPRZ00a] closely. In the latter paper an irstigng class of exceptional
times for the Brownian motion is treated, ttiéck timesof Brownian motion in dimen-
siond > 3. For any timet € (0,1) we letU(t,e) = L{s € (0,1): |B(s) — B(t)| < ¢}
the set of times where the Brownian is uptoear to its position at time It is shown that,
forall 0 < a < 2%, almost surely,

dim {t €10,1]: lirrslisoup azlo(gw a} =1- 2
This paper should be very accessible to anyone who follovedarguments of Sec-
tion 10.1. The method of Dembo et al. [DPRZ00a] can be exnddimsup fractals
with somewhat weaker independence properties and alsadste the study of dimen-
sion spectra with strict equality.

A third way to prove Theorem 10.3 is the method of stochastdirnension explored
in Section 10.10.2. An early reference for this method isldlafTa66] who suggested
to use the range of stable processes as test sets, and maafethisg@otential theory of
stable processes to obtain lower bounds for Hausdorff diinan This class of test sets is
not big enough for all problems: the Hausdorff dimension sfable process is bounded
from above by its index, hence cannot exc@ednd therefore these test sets can only
test dimensions in the randé — 2,d]. A possible remedy is to pass to multiparameter
processes, see the recent book of Khoshnevisan [Kh02] faneys Later, initiated by
seminal papers of Hawkes [Ha81] and R. Lyons [Ly90], it wadvered that percolation
limit sets are a very suitable class of test functions, seeskhevisan et al. [KPX00]. Our
exposition closely follows the latter reference.

The result about the thick times of Brownian motion statedvalbcan be interpreted
as a multifractal analysis of the occupation measure. Sachnalysis can also be per-
formed in two dimensions, but the result and techniquesratnety different, see Dembo et
al. [DPRZ01]. Times at whicl/ (¢, ) is exceptionally small for infinitely many scales>
0, thethin times are investigated in Dembo et al. [DPRZ00b]. Other measasesciated
with Brownian paths that have been studied from a multi&igopint of view are the local
times, see Hu and Taylor [HT97] and Shieh and Taylor [ST994, the intersection local
times of several Brownian paths, see [KM02] and [KMO5].
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Kaufman [Ka75] showed that every compact &etC [0, 1] with dim(E) > a? al-
most surely contains aa-fast time, but the more precise result involving the pagkin
dimension is due to Khoshnevisan et al. [KPX00]. The concéptacking dimension
was introduced surprisingly late by Tricot in [Tr82] and iRT5] it was investigated to-
gether with the packing measure and applied to the Browrgdin Ipy Taylor and Tricot.
Lemma 10.18(i) is from [Tr82], Lemma 10.18(ii) for trees daa found in [BP94], see
Proposition 4.2(b), the general version given is in Falcara Howroyd [FH96] and in
Mattila and Mauldin [MM97].

Several people contributed to the investigation of slownfmifor example Dvoretzky
[Dv63], Kahane [Ka76], Davis [Da83], Greenwood and Perk@B83] and Perkins [Pe83].
There are a number of variants, for example one can allow 0 in (10.11) or omit the
modulus signs. The Hausdorff dimensiorue$low points is discussed in [Pe83], this class
of exceptional sets is not tractable with the limsup-methwoote that an exceptional be-
haviour is required at all small scales. The crucial ingeatlithe finiteness criterion for
moments of the stopping tim&@4r, a) is due to Shepp [Sh67].

Cone points were discussed by Evans in [Ev85], an altemdtacussion can be found
in Lawler’s survey paper [La99]. Our argument essentiadljofvs the latter paper. The
correlation condition in Theorem 10.43 appears in the gigorelated context of quasi-
Bernoulli percolation on trees, see Lyons [Ly92]. An al&ive notion ofglobal cone
points requires that the entire path of the Brownian mofiBt) : ¢ > 0} stays inside the
cone with tip in the cone point. The same dimension formuld$tor this concept. The
upper bound follows of course from our consideration of l@mae points, and our proof
gives the lower bound with positive probability. The difficpart is to show that the lower
bound holds with probability one. A solution to this problétontained in Burdzy and
San Martin [BSM89], and this technique has also been suttlgsssed in the study of
the outer boundary, or frontier, of Brownian motion, see leavjLa96b] and Bishop et
al. [BIPP97].

A discussion of the smoothness of the boundary of the conuéixchn be found in
Cranston, Hsu and March [CHM89], but our Theorem 10.48 istwl@ihe result was stated
by Lévy [Le48] and was probably first proved by Adelman in 198®ugh this does not
seem to be published.

It is conjectured in geometric measure theory that for anpselausdorff dimension
dim K > 1, for Lebesgue-almost everyZ K, the Hausdorff dimension of the visible part
K(x) is one. For upper bounds on the dimension and the state ofttbe this conjecture,
see O'Neil [ONO7]. It is natural to compare this to Makaroti®orem on the support of
harmonic measure: if the rays of light were following Broamipaths rather than straight
lines, the conjecture would hold by Makarov’s theorem, $4ad5].



Appendix A: Further developments

11

Stochastic Loewner evolution and planar Brownian
motion

by Oded Schramm and Wendelin Werner

This chapter presents an overview over some aspects of teatrdevelopment of the
stochastic Loewner evolution from the point of view of Braam motion. Stochastic
Loewner evolution allows to address a variety of importamésiions on the geometry
of planar Brownian motion that cannot be answered otherwi$gs chapter is intended
as an invitation to further study, and therefore does nenidto provide the same level of
detail as the chapters in the main body of the book.

11.1 Some subsets of planar Brownian paths
11.1.1 The questions

The conformal invariance of planar Brownian motion and tbevgrful tools of one-di-
mensional complex analysis open the way to a deep undemtpoflsome aspects of the
geometry of the Brownian curve. For the sake of concretemetsgs begin by presenting
a couple of motivating questions.

Question 11.1 (Intersection exponenthet {Z1(t): t > 0} and{Z?(t): t > 0} be two
independent planar Brownian motions started at distindhs What is the asymptotic
decay rate ag — oo of P{Z[0,t] N Z2[0,t] = 0}?

Fig. 11.1. Non-intersecting Brownian motions

327
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Let us insist on the fact that we are looking at the probahiliat (simultaneously) for all
t1,t2 < t we haveZl(t;) # Z*%(t;), and that this is quite different from questions about
the proces§Z!(t) — Z%(t): t > 0}.

Clearly, recurrence of planar Brownian motion implies ttias probability goes td as

t — oo. In fact, one can easily deduce from a subadditivity argurtteat the answer to
the question is—¢*°(1) for some positive constagt and the problem is really about the
identification of¢. The exponent is often called theéntersection exponentof planar
Brownian motion. As we will later discuss, knowing its valisénstrumental in studying
the set ofcut points in the Brownian patt#[0, 1], i.e. the set of points € R? such that
Z[0,1] \ {z} is disconnected:

Question 11.2 (Cut points)Are there cut points on a planar Brownian path? If so, what
is the Hausdorff dimension of the set of cut points?

Another interesting subset of the planar Brownian paf, ¢] is its outer boundary, de-
fined as the boundary of the unbounded connected componéiit vfZ[0,¢]; see Fig-
ure 11.2.

Fig. 11.2. A Brownian path and its outer boundary.

Question 11.3 (Outer boundary)What is the Hausdorff dimension of the outer boundary
of the Brownian path?

Chris Burdzy showed that cut points do indeed exist on pl&rawnian paths [Bu89,
Bu95], but direct attempts to compute these dimensionséapdnents) through the study
of Brownian motion have not been successful (some estirhateshowever been obtained,
see the historical notes at the end of this chapter). But,eashall now try to explain, the
study of SLE (Stochastic Loewner Evolution) paths doesnattndetermine these values.
The goal of this chapter is to explain the main steps (withiglaproofs only) that lead
to these answers. We will focus mainly on the intersectiopoeent¢ and the related
guestion about cut points. A more complete and detailedeptation of the results and
their proofs can be found in the original papers [LSWO01a, LSB/QBEWO03], and are also
discussed in [We04, La05, La09].
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11.1.2 Reformulation in terms of Brownian hulls

We recall from Theorem 7.20 that conformal invariance ilyiexpressed for Brownian
paths that are stopped at their exit times from given domaki® example, consider a
planar Brownian motiod Z(¢): t > 0} started from the origin, and stopped at its first exit
time T = Tp of a given bounded simply connected doméirthat contains the origin.
Consider the conformal mapping = @ from D onto the unit disdJ = 5(0,1) such
that®(0) = 0 and®’(0) is a positive real (this map exists and is unique by Riemann’s
mapping theorem, see for instance [Ah78] for basic backgian complex analysis).
Then, the law of{f®(Z(¢)): 0 < ¢t < T} is that of a time-changed Brownian motion
started at the origin and stopped at its first exit time fromuhit disc. In other words, if
we forget about the time parametrisation and worry only abfwe‘trace’ of the paths (i.e.
the set of points that the Brownian motion has visited), weageidentity in law between
{2(Z(t)): 0 <t < T}rand{Z(t): 0 < t < o}, whereo = Ty is the exit time from the
unit disc.

As we shall see, it is useful to consider the random/Satefined as follows: We look at
the traceZ[0, o] and we fill in its ‘holes’. In other words, we say thitis the complement
of the unbounded connected component of the complemef0of| in the plane. We call
K thehull of Z[0, o].

Let us now explain why the previous two questions can be mafitated in terms of the law
of the hull K.

e Let us first focus on the question about the outer boundarj@®Brownian motion.
We can expect that if we can determine the Hausdorff dimensidhe outer boundary
of Z|0, 0] and prove that it is almost surely equal to some valuthen the Hausdorff
dimension of the outer boundary gf0, 1] will also be equal tel almost surely. But the
boundary of the hulK is exactly the outer boundary &f[0, o]. Hence, Question 11.3
reduces to: ‘What is the Hausdorff dimension of the boundé&rk @

e A similar and slightly more involved argument applies to sie¢ of cut points. The goal
is therefore first to determine the Hausdorff dimension$iefdet of cut points ok, i.e.
of the set of point® in K such thati" \ {p} is disconnected.

e Consider now two independent Brownian paff&!(t): ¢ > 0} and {Z?(¢): t>0}
started at the two point&*(0) = 0 and Z%(0) = 1 (here0 and1 are viewed as ele-
ments of the complex plane). Define for eagh> 1, the respective exit times} and
T% of Z' andZ? from the discB(0, R). It is easy to see that for eaeh> 0, the prob-
ability that 7}, does not belong toR?~<, R?<| does decay rapidly a — oc. More
precisely, we get that for some positigeand all sufficiently larger,

P{TI}E ¢ [R275’R2+5} or T}22 ¢ [R2757R2+5]} < e*ﬁRE.

Indeed, because of scaling, the left hand side is equB{#&o¢ [R°, R°]}, and on the
one hand,

P{oc < R} <P{ ax |Re(Z(s))| = 1/v2} +P{ nax Tm(Z(s))] > 1/V2}

<8P{Re(Z(R7F)) > 1/V2},
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while, on the other hand,
Plo >N}y <P{|Z(j+1)— Z(j)| <2¥j =0,1,...,N — 1} <P{|Z(1)| < 2} .
Hence, up to a small error, estimating the probability that
Z0,t) N Z2[0,t] = ()
boils down to estimating the probability that
ZN0, TR N Z2[0, T3] = 0

for R = v/t whenR — oco. More precisely, if we can show that the second one behaves
like R—2¢+°(1) asR — oo, then it will follow that the first one is equivalent to¢+o(1)
ast — oo.

Let us now define the hullk}, and K% of Z'[0,7%] and Z2[0, T3]. We can note
thatZ'[0, T4 N Z2[0, T3] = 0 if and only if K}, N K% = (0. Furthermore, conformal
invariance of planar Brownian motion shows readily thatitreof K% is just the image
of the law of K}, under the conformal transformation fraif0, R) onto itself that sends
the starting point o2 onto the origin. Hence, we have also reformulated Questioh 1
in terms of the law ofi.

11.1.3 An alternative characterisation of Brownian hulls

We now explain why conformal invariance makes it possiblgite a simple description
of the law of K’ that does seemingly not involve Brownian motion.

Let U denote the set of simply connected open subgétef the unit discU such that
0 € U'. For any two suci/’ andU” in U, we defineU’ A U” to be the connected
component of/’ N U” that contains the origin. Clearlyy’ AU" € U.

For anyU’ € U, we denote byn(U’) the harmonic measure &fU N U’ in U’ at the
origin. This is just the probability that a Brownian pathrggd at the origin does exlt’

via a point on the unit circle. Becaugg is simply connected, this happens exactly if the
hull of this Brownian motion stays iti’ up to the times. Hence, if we defind( as before
and setk* = K \ {Z,}, we get immediately that

P{K* CU'} =m(U"). (11.1)

Now suppose tha€ is the hull of some other continuous random patht < 7) stopped
at its first hitting of the unit disc; this second random patmat necessarily a Brownian
motion, but we suppose that it also satisfies

P{K* c U} =m(U"), (11.2)

forallU’" € U, wherelC* = K\ {n,}.

We can note that the set of events of the tyge: K C U’} (for such hulls) wher/’
spand/ is stable under finite intersections, and in fact generagerthlgebra on which
we can define the measure on hulls. Hence, it follows fromdstahmeasure-theoretical
arguments that the laws &f and ofC are identical. In other worddy (or rather its law)
is the only ‘random hull’ that has the property that for difye i/, (11.1) holds.
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Note that (11.2) can be also expressed in terms of the spdihectly. Suppose that for
any U’, the exit point ofU’ by 7 is distributed according to harmonic measure from
in U’, then (11.2) follows.

Let us sum up our analysis so far: We have first reformulatedjoestions in terms of the
random hullK, and we have now given a simple characterisation of the law ofThe
plan will now be the following:

e Construct a random curve that exits every domai®@/’ in ¢/ according to harmonic
measure. We have just argued that this implies that the &S and K are identical.

e Using the construction of this other random curyeompute the exponents and dimen-
sions that we are looking for.

It turns out that such a random paghindeed exists, and that it is one of the stochastic
Loewner evolutions, more precisely SLE(6).

11.2 Paths of stochastic Loewner evolution
11.2.1 Heuristic description
Suppose that one wishes to describe a ‘continuously growinge {r;: t > 0} that is
always ‘growing towards infinity’. More precisely, let ussfirsuppose th&ty;: ¢ > 0} is
a simple random curve starting at the origin.
At each timet > 0, we define the conformal mafp from R? \ 5[0, ¢] into the complement
of the unit disc, such that,(cc) = co andyy(n;) = 1. By Riemann’s mapping theorem,
this mapy, is unique.

Fig. 11.3. The conformal magp,.

The crucial assumption that we will make is that for each0, the random path

{01 (m4s): s = 0}

(or rather its trace) is independent:gf, ¢], and that its law is independent of In other
words, the curve is growing towards infinity fromin the sefR?\ 5[0, ¢] in a ‘conformally
invariant way’.

This suggests that it is possible to define the cyme ¢ > 0} progressively, by iterating
independent identically distributed pieces. Supposerfstance that we have already de-
finedn|0, 1] and that we wish to define what happens after tim&he curvey; (n[1, u])

is independent ofy[0, 1]. It is a piece of curve iiR? \ U that starts aty;(n;) = 1. The
conformal mapp, oy * mapsR?\ (UU, (n[1,u])) ontoR?\ U. It therefore characterises
the set)[1,«] and it is characterised by it. Hence, it is independent frdim1].
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It follows that foru; < us < ... < u,, the conformal maps

-1 -1
'(/)un o Up—17 """ 71/)1142 o w1l

are independent. Furthermore, if we choose the time-pdriaon correctly, then they
will be identically distributed. This leads to the idea thigtare obtained via iterations of
i.i.d. random conformal maps.

11.2.2 Loewner’s equation

Suppose now thty; : ¢ > 0} is a given continuous simple curve (with no double points)
in the plane starting at the origin such thiat, .., 7, = co. We define as in the previous
paragraph the conformal majp from R? \ 5[0, ¢] ontoR? \ U such that);(cc) = oo and
¥i(n:) = 1. Recall thatz: — 1/4(1/2) extends analytically to the origin (one can for
instance first define this analytic map via Riemann’s maptiiegrem and then defing),

so thaty); can be expanded as a power series in the neighbourhood dfyinfimparticular,

Yi(2) ~ alt)z

whenz — oo for somea(t). Itis not difficult to see that — a(t) is a continuous function,
and that — |a(t)] is decreasing (because the Bét\ 1[0, ¢] is decreasing). Furthermore,
simple estimates imply théitm; ¢ |a(t)| = co andlim;_, o, |a(t)| = 0.

It is therefore possible (and natural) to reparametrisetimee{r;: ¢ > 0} in such a way
that the parameter now lives inR, thatlim;—,_..n: = 0 and thatja(t)| = exp(—t).
We then define the conformal map from R? \ n[—oo, t] ontoR? \ U, but this time, we
normalise it in such a way thdt(z) ~ e~z asz — oo. In other wordsf; is just obtained
from ¢, by a rotation, and the image ¢f underf; is noww; := |a(t)|/a(t).

Theorem 11.4 (Loewner’s equation)n the previous setup, for atl> 0, one has

0 fi(2) +wy

— =— B S 11.3
5 1) = — 1) F (11.3)
Loewner’s equation has been introduced in the context di@teach’s conjecture for har-
monic functions, see for instance [Du83] for a derivationhi$é equation.

Let us give a brief indication of where this ordinary diffetel equation comes from.
Recall first that the Poisson representation theorem shmatste only harmonic function
in the unit disc such that/(0) = 1 andG(z) — 00on9dU \ {1} is the functionz
Re((1+ 2)/(1 — 2)).

A first step is to prove directly (using harmonic measurenesties) that the mapr— w;

is continuous. Then, one notes that (for instance becauseabng) it suffices to consider
the case where= 1. Whens > 1, the functionf, o f; ! is analytic fromR?\ (UUn([1, s])
ontolR? \ U (where we view these sets as subsets of the Riemann spHeave)défine

hs(z) = —log(fs o fi ' (2)/2) ,

we get a bounded analytic function &4 \ (U U 5[1, s]). The boundary values 6te(h)
are zero ordU andlog |z| on f1(n(1, s]), and moreover,;(co) = s — 1. Hence it follows
(for instance from the maximum principle) it (k) is nonnegative of?\ (U\ 51, s]).



11.2 Paths of stochastic Loewner evolution 333

Consider the limiflim,|; hs/(s — 1). Existence of this limit can be justified as follows:
First, standard compactness properties of analytic fanstimply that subsequential limits
exist. Leth: R? \ U — R denote one such subsequential limit. Cleatyo) = 1
andRe(h) > 0. It is then not too hard to verify tha@&e(h) is continuous up to the
boundary except near; = f1(n:1) and thatRe(h) = 0 ondU \ {w; }. Hence, the Poisson
representation theorem (applied:te~ h(wq/z)) implies that

e(h() = e (511

Z — W1

and sinc&m(h(oc0)) = 0, we conclude that

2z 4wy
z—wl'

As this limit does not depend on the choice of subsequentmldtvs that ass | 1,

wlwlog<W)~(81)xw

h(z) =

wy — 2’
which implies that
wy + f1(2)
wy — fi(z)’
whered} denotes the one sided derivative from the right.

The reader can now probably already guess how to define SlEsckoosew,; to be a
Brownian motion on the unit circle. The conformal mafysare then defined via (11.3),
and the SLE curve can then be deduced from it.

0F |,y fs(2) = fi(2) x

11.2.3 The loop-erased random walk

Even if it is not really necessary in order to define stoclkakstiewner evolutions and
to study consequences of their study to Brownian paths, ieviethat it is useful at

this point to explain some background and motivation usiisgrdte models. In the next
subsections, we will therefore describe two particulaidatmodels and their relation to
SLE paths. In those settings it can be more useful to conséefom curves that grow
‘towards the inside’ of domains. This is of course almosnidml to the previous case
(just use the: — 1/z transformation to transform outside into inside i.e. lookihstance

at the conformal map:(z) = 1/f:(1/z) instead off).

One such discrete example is the loop-erased random waftacinthis model is the one
for which the SLE model was first introduced, see [ScO0]Glis a recurrent connected
graph containing a vertexand a nonempty set of verticds then the loop-erased random
walk from v to A is the random path obtained from the simple random walkedaatv
and stopped when hitting by erasing the loops as they are created.

Let us now give a more precise definition. First, define thepmandom walkS on
the graphG, which we assume to have more than one vertex.9(8) = v and for each
positive integer, let the conditional distribution of (n) given(S(0), S(1),...,S(n—1))
be uniform among the neighbours 8tn — 1). LetT := inf{n € N: S(n) € A}. Since
G is recurrent, we know thdt' is almost surely finite.
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We now define thdoop-erasure (5(0), 5(1), ..., 8(7)) of S[0,T] by induction: We set

3(0) = v and then for eack > 1, if 5(k — 1) = S(T'), we setr = k — 1 and finish the

procedure, whereas if(k — 1) # S(T), we set
) =

Bk —1)}andB(k) = S(m +1).

An important property of the loop-erased random walk is gilg the following lemma.

m=max{j <T : S(j

Lemma 11.5LetG be a recurrent connected grapha vertex inG, and A a nonempty set
of vertices inG. The conditional law of3(0), ..., 8(T — j)) giveng(r) = zg, ..., B(T —
j) = z; is that of the loop-erasure of a random wak started atv, stopped at it first
hitting timeT” of A’ = AU{xy, ...,z } and conditioned to first hit this set &t (7") = x.

This lemma can be interpreted as some sort of Markov propéttye time-reversal of.

Fig. 11.4. A loop-erased random walk

Consider a simply connected domdinin the planeR? = C, with D # C. Suppose that

0 € D. Takeé > 0 small, and consider the square lattc&? of meshs. We are interested
in the loop-erasurg of the random walk or Z? started a) and stopped when it first
uses an edge intersectidd). More specifically, we are interested in the scaling limit of
6, which is the limit of the law of3 asé | 0. (For the sake of brevity, we will not specify
the precise topology in which the limit is taken. This dissios is meant as a motivation,
and hence we allow ourselves not to be completely rigordwes.). , denote the limit law.
Figure 11.4 shows a sample of the loop-erasure of simpleoravaalk oné Z? started ab
and stopped on exiting the unit dik

In order to use Lemma 11.5, it turns out to be better to panasedtme ‘backwards’, i.e. to
definev(0) to be the ‘end-point’ o@D, andy(oo) = 0 (we will discuss the precise time-
parametrisation later). Suppose that[0, co] — D is a sample fromup. Since Brownian
motion is conformally invariant up to a time change and ithis limit of simple random
walk, it is somewhat reasonable to expect thas also conformally invariant, i.e., that if
G: D — Uis a conformal homeomorphism from to the unit disk, themp = pyo G (in
fact, this result has now been proved using SLE, see [LSWOMd)eover, Lemma 11.5
suggests that if < oo is fixed, then the conditional law afit, oo] given+(0, ] is 1 p\ (0,4
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where the path is conditioned to exit this domain througt). Now, the latter domain
D\ v[0,t] is probably geometrically rather complicated, becaygea fractal curve. But
we may simplify this domain using a conformal map.

Fig. 11.5. The conformal mag

Let us now consider the special case where= U. Note thaty(0) is then distributed
uniformly on the unit circle. Leg; : U\~[0,t] — U denote the conformal homeomorphism
normalised such that (0) = 0 andg;(0) is real and positive. It can be shown thg(0)

is continuous and increasing inand thatlim;_,, ¢;(0) = co. Consequently, we may,
and will, choose the time parameteso thatg;(0) = e’. This is sometimes called the
parametrisation by capacity.

Loewner’s theorem allows to reconstrucfrom the functionW: ¢ — g¢,(v(t)). In the
present settingy defined on0, co] is a simple path ifU U {~(0)} satisfyingy(0) € 0U
and~v(co) = 0, and which is parametrised by capacitylin (The assumptions thatis a
simple path and thalD is a simple closed path may be relaxed, but it is best at thig po
to keep the setting simple.)

Applying Theorem 11.4 to the functions— 1/¢.(1/z), we get that the conformal home-
omorphismsgy,; satisfy the differential equation

gy 0(2) = =) 2 (11.)

at every pair of pointgz,t) such that > 0 andz € U\ v[0,¢]. If z € U is fixed, then
Loewner’s equation (11.4) is an ordinary differential etiprafor g,(z) with respect to the
variablet (as long as ¢ ~(0, t]). Loewner’s equation can also be considered an ordinary
differential equation fog; in the space of conformal maps with imagelinbut variable
domain.

Just as before, the knowledge of the function> W; allows to reconstruct the curve
The Markovian-like condition of loop-erased random wakds to the idea that the process
t — W, has stationary and independent increments. Recall al$d ieacontinuous and
that the law of Brownian motion is symmetric (i.e. this ingdithati’” has no bias). All
this suggests thdti?;: ¢ > 0} must be a Brownian motion on the unit circle.
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11.2.4 Definition of SLE

Now suppose that instead of starting with a cufyewe start with a one dimensional
continuous patiV : [0,00) — OU. If = € U\ {Wy} is fixed, then we may consider
the solutiong; (=) of the ordinary differential equation (11.4) startedy@tz) = z. There
exists a unique solution to this initial value problem aglasg, (z) — W, is bounded away
from zero. Thus, there is some € (0, o] such that the solutiop, (z) is defined for all

t € (0,7,) and if7, < oo, thenliminfyy -, |g.(2) — W;| = 0. (In fact, it is easy to see that
thelim inf may be replaced by am.) SetK; := {z € U: 7, < t} (we takery, = 0).

It is immediate to verify thay,: U\ K; — U is a conformal homeomorphism satisfying
g:(0) = 0 andg;(0) = €. The one parameter family of mapsis called theLoewner
evolution driven by W,. The setK, is often called thénull of the Loewner evolution at
time ¢. At this point we should point out that the &t constructed in this way does not
have to be a simple path. This brings us to the definition of:SLE

Definition 11.6. Fix somex > 0, and seiV; = exp(iB(xt)), where{B(t): ¢t > 0} is
Brownian motion. Then the Loewner evolution driven B is calledradial stochastic
Loewner evolutionwith parameter in U, or justradial SLE (), from W, to 0. o

To define radial SLE in another simply-connected domfair; C, we may start with a
conformal homeomorphisi@: D — U, and solve (11.4) witlyy = G. SetK = {z €
D : g;(2) is undefined. Of course, the resulting proce&s” will depend onG. The point
G~1(0) is referred to as thtarget of the SLE.

If G, and G5 are two conformal homeomorphisms frafh to U such thatG;l(O) =
G;l(o), thenG, = A Gp for some) € 9U. Since the law ofiV; is invariant under
rotations, it follows that the law of the evolutignstarting at7- is obtained from the law of
the evolution starting af'; by appropriately rotating the mags by A. Consequently, the
law of K'P is the same fo6; as forGs. This is also the same as the Iavv@bfl(K. N ),
whereK; are the hulls of radial SLE if.

Our argument based on the assumptions of conformal inweiamd the analogue of
Lemma 11.5 for the loop-erased walk scaling limishows that for some choice of the
constant, the law of the proces& ” is the same as the law {0, -) (where the starting
point of the SLE is started uniformly on the unit circle). utns out that the correet for
loop-erased random walk #s This is explained in [Sc00, LSWO04].

11.2.5 Critical percolation and SLE(6)

It will turn out that SLE(6) is a useful SLE in order to studyaphr Brownian motion. To
better understand why this is the case, we first turn to a mafdgedrcolation in the plane.
Let D be some simply connected domain in the plane whose bounslargimple closed
curve. Fix two pointsz, b € 9D, and letA denote the counterclockwise arc framnto
b along D (not includinga andb). Fix some smalb > 0, and letH s denote the planar
hexagonal grid of hexagons with edge lengés in Figure 11.6. I1#{ is a connected com-
ponent of the intersection d with a hexagon irf{s, we colourHd white if its boundary
meetsA, and colourH black if its boundary meet8D but does not meed. If H is a
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hexagon ofH; that lies entirely insideD, we colour H white or black with probability
1/2, independently. Le¥V denote the closure of the union of the white coloured tileBin
and letB denote the closure of the union of the black coloured tiles.agsume that is
sufficiently small so thaB N 9D # (. It is then easy to see that there is a unique path
which is the connected component@B N O that meet$ D. (See Figure 11.6.)

Fig. 11.6. The percolation interface

Smirnov [SmO01, SmO07] has shown that the limitéas> 0 of the law of this interfacey
exists, and is conformally invariant, in the following sendf D’ c C is a simply con-
nected domain whose boundary is a simple closed curvé&san® — D’ is a conformal
homeomorphism, then the image of the limit lawZinis the limit law in D’, provided that
in D' we take the pointa’ := G(a) andd’ := G(b) as the two special boundary points.
(It is known thatG extends to a homeomorphism fraiD to 9D’.) We have chosen to
discuss domains whose boundary is a simple closed curvédasake of simplicity, but
this is by no means necessary.

Next, we consider the analogue of Lemma 11.5 in this settinge condition on the first
k steps of the discrete curvefrom its (deterministic) endpoint near the conditioning
involves only the colours of those tiles which meet thisigisegments. Moreover, on
the right hand side of we find white tiles while on the left hand side we find blackdile
Consequently, conditioned o the law ofy \ § is just the law of the interface in the
domainD \ 3, where the special points are chosen as the terminal poifitasfdb. (If
we are to be entirely precise, we should replace the doajrs with D \ 3, wheref is
an appropriate small neighbourhood®f, {a small piece of its last segménto that the
resulting domain is a simple closed path that does not iatéi® hexagon whose colour
has not been determined.) This is indeed analogous to Lentrba 1

Since we have conformal invariance for the scaling limitha# percolation interface and
the analogue of Lemma 11.5, we would expect the scaling bfritie interface to be given
by an SLE curve. However, the setting is different, sincepireolation interface connects
two boundary points of the domain (which are fixed), while ltt@p-erased random walk
connects a fixed interior point with a random boundary poilmtdeed, the percolation
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interface scaling is described not by a radial SLE, but byffarint version of SLE called
chordal SLE.

In the chordal setting, the base domain is normally chosbe the upper half plaré. We
let W, := B(xt), where{B(t): t > 0} is a standard one dimensional Brownian motion,
and letg; (=) denote the solution of the differential equation

0 2

agt(z) = gt(Z) —W, (11.5)

with go(z) = 2. Theng;: H\ K; — H is a conformal homeomorphism, whefg :=
{z € H: 7, <t} andr, := inf{t > 0 : g,(2) is undefined. This defines the chordal SLE
from 0 to infinity in H.

Fig. 11.7. Beginning of the percolation interface in the upper half-plane

Chordal SLEs are often more natural than radial SLEs in timest® of models from sta-
tistical physics, and both variants are very closely reldateeach other. In particular, see
[LSWO01b], if one looks at the beginning of a radial SLE in thetufisc, and the image
of the beginning of a chordal SLE under the conformal map ftenunit disc on the up-
per half-plane that sends the poiotandi onto 1 and0, for the same parameter then
the two laws are absolutely continuous with respect to e#lobr dthe fractal dimensions
of the curves are therefore the same). In view of applicattonBrownian motion (and
more precisely to those questions that we raised at the hiegiof this appendix), we can
however mostly restrict ourselves to the study of radial SLE

It turns out that the value = 6 is the one that corresponds to the scaling limit of perco-
lation interfaces [SmO1] (as conjectured in [ScOQ]). Astpoint, it is worth stressing the
following subtle point. In our discussion, we have desdlitiee construction of SLE as if

it would anyway define a simple curve. This is indeed the fdwtnx < 4, see [RSO05].
But, in the case of the scaling limit of percolation, one etpeahe scaling limit of the
discrete interfaces to have double points. Indeed, on wlaseale, the discrete interface
will ‘bounce’ on its remote past, and this will produce (irettimit when the mesh of the
lattice goes to zero) double points. Hence, one has to chthiegepnstruction of the SLE
as follows (we describe it in the radial case — the chordad caeated in a similar way):
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e Start with the Brownian motiofV,: ¢ > 0} on the unit circle.

e For eachz in the unit disc, solve the ordinary differential equatidii.@) up to the
(random and possibly infinite) time .

e At each timet, denotek; = {z € U : 7, < t} andU; = U\ K;. Then,g is the
normalised conformal map froii, ontoU.

e Call the increasing family K;: ¢t > 0} the SLE Loewner chain.

Then, with some substantial work when> 4, it is in fact possible [RS05] to prove that
there exists almost surely a continuous cufwe: ¢ > 0} such that at each > 0, the
domainU; is the connected component containing the origifUof v[0, t] and that this
curvex is determined by the SLE Loewner chain. We call this cuntke SLE curve.

In order to discuss the consequences for Brownian motias,iit fact not necessary to
know that SLE chains are ‘generated’ by curves One can just work with the chain
instead of the path, but it is helpful to have this in mind inlerto guide our intuition
about what goes on. In the case= 6, the convergence of critical percolation interfaces
to SLE(6), see [SmO7], provides a rather direct alterngtngof of the fact that SLE(6)
chains are generated by paths (see also [We07]).

11.3 Special properties of SLE(6)

Itis possible to prove directly via stochastic calculusimoeis [LSWO01b, We04, La05] that
the law of the beginning of radial SLE(6) and chordal SLE(@)es are the same. Here is
a precise statement:

Proposition 11.7Consider a chordal SLE(6) process from 1 to —1 in the unit discU,
and a radial SLE(6) procesg® from 1 to 0 in U. Define

T  =inf{t >0 : 40,4 — 1] > 1/2}

for i = 1,2. Then, the two paths'[0, 7] andv2[0, 7] defined modulo time-repara-
metrisation have the same law.

We omit the proof here. The main idea is basically to expiessadial Loewner evolution
as a chordal Loewner chain, and to compute how the time-peraations and driving
functions are transformed. It turns out that a seeminghaauitous cancellation occurs
whenk is equal tas, that leads to this result. In fact, it is also possible tavéethis relation
between radial SLE(6) and chordal SLE(6) using the relatiith critical percolation (see
e.g. [We07]); this provides a transparent justificationhid tmiraculous result’.

It may be useful at this point to have a picture of the radigl@ation process for perco-
lation in the discrete setting. We start with a fine-méskpproximation of the unit disc.
Our goal is to define a path from the boundary paitd the origin. We are going to define
this path dynamically. We start with the same rule as theazatibn process fron in the
chordal case, except that we do not fix a priori the colourdefsites on th&U. Note
that as long as the discrete exploration path does not dieobrthe origin from infinity,
there is some aré of points ondU that are connected to the origin without intersecting
the exploration path. We then use the same boundary conslitindefine the exploration
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process as if we would do the exploration process fiotm one of the points id. Note
that 7 is non-increasing in time, and the rule that we just desdribdeed determines the
exploration path up to the first time at which it disconneltsdrigin fromoU. In this case,
note that the connected component of the complement of thelpet contains the origin is
simply connected, and that it has a boundary point at distao€the tip of the exploration
process. We now force the exploration process to move t@tiig. Then, the exploration
process is at a boundary point of the connected componertdhtains the origin. Now,
we start again, as if the colours of the boundary of this damaiuld not have been known,
and we start exploring interfaces in this domain using timesalgorithm (replacing by
the end-point of the exploration).

Theorem 11.8When the mesh of the lattice goes to zero, then the law of thal @discrete
exploration process converges to that of radial SLE(6).

We will really not use this result here, so we will not disciissletailed proof. We refer to
[WeQ7] for a self-contained proof in the spirit of Smirnopaper [SmO07], see also [CNO7].

We can also use a similar construction to define the contimanalogue of our ‘discrete’
curve that is growing towards infinity from a given point. Tidea is to use exactly the
same definition, except that this time the initial domainhis tomplement of the disc of
radiusr, and the target point is infinity. Then, when the mesh of ticlagoes td) and

r — 0, this exploration process converges to a random cyrstarted at the origin that
possesses the following two properties:

e For any simply connected domaiff that contains the origin, the exit point 6f by 7
is distributed according to harmonic measure from the origiU’ (this follows either
from the locality properties of SLE(6), or alternativelypin the conformal invariance
properties of percolation).

e For anyt, the conditional law of)[t, co) givenn up to timet, is that of radial SLE(6)
from 7, to infinity in the unbounded connected componenkéf, 1[0, ¢].

We can therefore conclude (either by using the relationitaal percolation or via direct
derivations of the special properties of SLE(6)) that theatyics of an ‘outwards growing’
radial SLE(6) provide a way to construct a pathhat satisfies our ‘harmonic measure
condition’. It looks indeed as if computations for SLE(6)provide useful information
for Brownian hulls.

11.4 Exponents of stochastic Loewner evolution
11.4.1 Aradial computation

We now briefly browse through the computations that lead édétermination of the
exponents that we are looking for. This section will ceffaseem quick to the first-time
reader. The goal is not to give a complete proof, but rathgive a flavour of the type of
stochastic calculus arguments that are used in this dienivat



11.4 Exponents of stochastic Loewner evolution 341

Define, forz = exp(iz) on the unit circle, the everit(z, t) that one radial SLE(6) (in the
usual parametrisation) started frandid not disconnect the point from the origin inU
before timet. For reasons that we will explain in a moment, we will focugtse moments
of the derivative ofg; atexp(iz) on the event{(z,t). Note already that on a heuristic
level, |g;(e®)| measures how ‘fart'® is from the origin inU \ [0, ¢].

More precisely, we define

F(,1) = B[ lgh(exp2)] L]

The main result of this section is the following estimate:

Proposition 11.9There is a constant > 0 such that for allt > 1, for all z € (0, 27),
e~ 5t/4 (sin(:b/Z))l/3 < flz,t) < ce™ 4 (sin(x/2))l/3

Proof. Let W; = exp(iv/6B(t)) be the driving process of the radial SLE(6), wi#t{0) =
0. For allz € (0, 27), we defineY;” the continuous function (with respect#psuch that

9e(e*) = Wy exp(iY,")

andYy = z. The functionY,” is defined as long a%((x,t) holds. Sincey; satisfies
Loewner’s differential equation, we get immediately that

d(Y® — B(6t)) = cot(Y;*/2) dt. (11.6)
Let
™ =inf{t >0 : Y € {0,2n}}
denote the time at whickxp(iz) is absorbed by, so that
P(H(z,t)) = P{r® > t}.

We therefore want to estimate the probability, weighted diye power of g (exp(e™®))|
that the diffusionY’” (started fromz) has not hit{0, 27} before timet ast — oo. This
turns out to be a rather standard problem that can be tredtether general theory of
diffusion processes: Define, for alk 7%,

® = |g;(exp(iz))] -

Ont > 7* set®? := 0. Note that ort < 7° we have®? = 9,Y,* and
t
Y,® = B(6t) —|—/ cot(Y7/2) ds.
0

Hence, we have that, far< %,

1

Ry . —
Lo T T i (Y 2)

(11.7)

so that, fort < 77,

e I ds
®Y = exp (—2/0 51112(}’3”/2)) . (11.8)
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Hence,

o) = by ([ )]

Hence, the weighting bg? can be interpreted as a (space-dependent) killing ratdéor t
processY’, andf(x,t) is just the probability that a given Markov process (the pesd”
with the given killing rate and additional killing when itiéx (0, 27)) survives up to time
when it starts at:. In order to estimate such probabilities, one has to looktHerfirst
eigenfunction of the generator of this process.

Itis, for instance, not difficult to see that the right handiesof (11.8) i) whent = 7% and
that

liI%f(:L‘,t) = 111121 flz,t)=0 (11.9)

holds for all fixed¢ > 0. Let F': [0,27] — R be a continuous function wit'(0) =
F(27) = 0, which is smooth ir{0, 27), and set

h(z,t) = hp(z,t) = E[@fF(Yf)].

By (11.8) and the general theory of diffusion Markov proesssve know thak is smooth

in (0,27) x Ry. The Markov property fol;* and (11.8) show that(Y;*,¢ —t) x ®7 is

a local martingale on < min{7%,¢'}. Hence, the drift term of the stochastic differential
d(h(Y®, ¢ — t)®7) is zero att = 0. By Itd's formula, this means that

1

- ST h (11.10)

Orh = g O2h + cot(x/2) B,h
The corresponding positive eigenfunction(isn(x/Z))1/3. We therefore definé” to be
this function, so thaf"(z)e~%"/* = hr because both satisfy (11.10) (i 27) x [0, o0)
and have the same boundary values. The proposition thaw®kasily.

11.4.2 Consequences

Let us now explain some steps that enable us to transformrév@ps considerations and
computations into an actual proof of the fact tijat= 5/8. Consider a radial SLE(6)
path in the unit disc, parametrised by capacity. Define, fmhe < 1, its hitting time

7,- of the discB(0, ) of radiusr around the origin. A standard result from complex anal-
ysis, Koebe’sl /4 theorem, shows that the path can not reach distarfoem the origin
before time(log(1/r))/4 and that it has to do so before tinheg(1/r). In other words,
log(1/r) < 47, < 4log(1/r). Furthermore, the map+— |g;(e'*)| is decreasing wittt
(this can for instance be seen from its expression as adifimbability). The previous
estimate can therefore be transformed into an estimate of

E“g/ﬂ (exp(ix))‘ 1H(z,n)] asr — 0.

We can also integrate this quantity wherspans|0, 2r]. In fact, the integral expression
fOQ” |9, (exp(iz))|19¢(z,,) dz is the harmonic measure (from the origin)d@{ in the do-
mainU \ [0, 7,-]. In other words, if we start a planar Brownian motigrfrom the origin,
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and stop it at the first time at which it hits the unit circle, we get that, for some absslut
constantsy, ca, . . .,

cr /< ]P’{Z[O,cr} N~[0,7.] = Q)} < co /4,

Modulo some additional arguments, this can be reformulated in terms of a planar
Brownian motionY started uniformly on the unit circle and stopped at its firgtirtg
time p,. of the circle of radius' (roughly speaking, we time-reversg:

esr™* < P{Y[0,p,] N[0, 7] = 0} < car®™.

We can then use the transformatiom— 1/z to be back in our original setting. This last
result (after a couple more uses of monotonicity and of Ksebgl Theorem) can then
be reformulated in this setting, and it shows that i§ our curve that is growing ‘from
the origin to infinity’ in the plane, and i is a Brownian motion started uniformly on the
circle of radiusr,

esr®/t <PLZ[0,0] N[0, 7] = 0} < 6™/

Hence, we indeed get a precise answer to Question 11.1witls /8 (the factor2 comes
in because of the scaling relation between time and space).

Arguments of a similar type can be used to prove thaf4f(¢): 0 < ¢t < =} and
{Z2(t): 0 < t < 12} are two planar Brownian paths started at the origin and swpp
at their hitting times of the unit circle, then the probafithat Z*[0, ;] U Z2[0, 2] does
not disconnect the point from infinity, does decay like?/3+°(1) asr — 0. This expo-
nenta = 2/3 comes in fact from a similar radial SLE computation. Thisdjrone has to
consider the moment of ordéy3 of |g;(¢'*)| ast — oo (we do however not explain here
why this1/3 moment comes in, this has in fact to do with a chordal SLE cdatmn, the
interested reader might consult [LSWO01a, LSWO01b, We04, Da05]

11.4.3 From exponents to dimensions

In papers [La96a, La96b] (before the mathematical deteatiain of the values of the expo-
nents in [LSWO01a, LSWO01b]), Greg Lawler showed how to derive@se moment bounds
in order to express the Hausdorff dimension of special rensigbsets of the planar Brow-
nian curve in terms of the corresponding exponents.

More precisely, le{ Z(t): t > 0} denote a planar Brownian motion. Recall that Z(¢)

is a cut point if Z[0,t] N Z(¢,1] = 0. Note that, loosely speaking, near there are
two independent Brownian paths startingrafThe future{Z'(s): s € [0,1 — t]}, given
by Zl(s) = Z(t + s), and the pas{Z'(s): s € [0,t]}, given by Z?(s) = Z(t — s).

Furthermorep is a cut point ifZ1[0,1 — t] N Z2[0,t] = {p}. Similarly,p = Z(t) is a
boundary point ifZ1[0,1 — ¢] U Z2[0, t] does not disconnegtfrom infinity.
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Hence, the previous estimates enable us to control the pitidhat a given pointr € C

is in thee-neighbourhood of a cut point (resp. boundary point). Irselence properties
of planar Brownian paths then make it also possible to desd@nd moment estimates
(i.e. the probability that two given poinisandz’ are both in the-neighbourhood of such
points) and to show that the Hausdorff dimension of the seubtimes is almost surely
1—¢&, and that the Hausdorff dimension of the set of boundarytpagralmost surely equal
tol— «/2.

The proofs use (just as in the case of cone points descritfgeiition 10.4, see in particular
Theorem 10.43) first and second moment estimates. In faghefuses the relation with
critical percolation, it turns out that life can be somewsiatplified in the derivation of the
second moment estimates (see for instance [Be04])).

Recall that on the other hand, we know from SLE calculatitved2 — 2§ = 3/4, 2 —
a = 4/3. In view of Kaufman’s dimension doubling theorem, see Tkeo®.28, we can
therefore answer our three initial questions:

Theorem 11.10

(1) The exponerg is equal to5/8.
(2) The Hausdorff dimension of the set of cut points is alrmogly equal ta3/4.
(3) The Hausdorff dimension of the outer boundary is almaeslg equal tot/3.

Notes and comments

The idea to use Loewner’s equation to study random growthetsogrobably first ap-
peared in the works of Carleson and Makarov in the contexiffafsibn limited aggrega-
tion (DLA), see [CM01, CMO02].

Conformal invariance of lattice models has now been estaddi in various cases.
Aizenman [Ai96] was probably the first one to emphasise thatdonformal invariance
conjectures that were present in various forms in the pbyaa&rature could be expressed
in terms of conformally invariant laws on curves. Kenyondideterminant computations
and estimates in order to prove several conformal invaeigmoperties of the loop-erased
random walk (and its companion model called the uniform spantree), see [Ke00a,
Ke0O0b]. Later [LSWO04] showed stronger conformal invariapogperties and the conver-
gence of the loop-erased random walk to SLE(2) in the finehniggt. Smirnov [SmO1,
SmO07, SmO08] proved conformal invariance for the particatéical percolation model that
we presented here, and also for the Ising model on the scpitice|

The idea that one probably had to compute the value of the Beswexponents using
another model (that should be closely related to criticed@lation scaling limits) appeared
in [LWOOQ]. The mathematical derivation of the value of the expnts was performed in
the series of papers [LSWO01a, LSWO01b, LSWO02]. The properti€d & that were later
derived in [LSWO03] enable us to shorten some parts of somepew to derive various
direct identities in law between SLE(6) boundaries and Briaw boundaries, see [WeO05,
We08a].
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A good reference for the relation between Brownian expaant Hausdorff dimen-
sions is Lawler’s review paper [La99]. See also Beffara lBe®e08]. Determining the
Hausdorff dimensions of the SLE curves is a rather difficukestion. It turns out to be
1+ k/8 whenk < 8. This has been proved by Rohde and Schramm [RS05] for the uppe
bound and Beffara [Be08] for the tricky lower bound.

The value of the Brownian intersection exponents had beedigted/conjectured be-
fore: Duplantier—Kwon [DK88] had for instance predicteé tralues of using numerics
and non-rigorous conformal field theory considerationstet,aDuplantier [Du04] used
also ‘quantum gravity techniques’ to produce the valuesllofxponents. The fact that
planar Brownian motion contains cut points had first beengntdy Burdzy ([Bu89] and
[Bu95]). A different shorter proof was given by Lawler in [26a].

The fact that the dimension of the Brownian bounda#dy/i$was first observed visually
and conjectured by Mandelbrot [Ma82]. Before the proof @ ttonjecture, some rigorous
bounds had been derived, for instance that the dimensioheoBtownian boundary is
strictly larger thanl and strictly smaller thaf/2 (see [BJPP97, BL90, We96]). The two
exponents that we have chosen to focus on are just two exarfinpta a continuous family
of intersection exponents, that can all be derived usingett® E methods.



Appendix B: Background and prerequisites

12.1 Convergence of distributions

In this section we collect the basic facts about convergandistribution, see for example
the books of Billingsley [Bi95, Bi99] for more extensive atenent. While this is a familiar
concept for real valued random variables, for example icémgral limit theorem, we need
a more abstract viewpoint, which allows to study convergandlistribution for random

variables with values in metric spaces, like for examplefiom spaces.

If random variable X,,: n > 0} converge in distribution, strictly speaking it is their
distributionsand not therandom variableshemselves which converge. This just means
that the shape of the distributions &f, for largen is like the shape of the distribution
of X: Sample values fronX,, allow no inference towards sample values framand,
indeed, there is no need to defikg and X on the same probability space.

Definition 12.1.  Suppose(E, p) is a metric space and the Borels-algebra onE.
Suppose thak,, and X are E-valued random variables. Then we say thgt converges
in distribution to X, if, for every bounded continuous F — R,

lim E[g(X,)] = E[g(X)].

We write X, 4, X for convergence in distribution. o
Remark 12.2 X, 4 Xis equivalent taveak convergencef the distributions. o

Remark 12.31f X,, - X andg: E — R is continuous, the(X,) < g(X). But

note that, ifZ = R andX,, & X, this does not imply thak[ X, ] converges t&[X], as
g(x) = z is not a bounded function dR. ©

Example 12.4
e Suppose? = {1,...,m} is finite andp(z, y) = 1 — 1(,—,;. ThenX, -5 X if
and only iflim,, . P{X,, = k} = P{X =k} forall k € E.

e Let £ = [0,1] and X,, = 1/n almost surely. TherkX,, 4, X, whereX = 0
almost surely. However, note thiait,, ... P{X,, =0} = 0#P{X =0} =1. ©

Theorem 12.5Suppose a sequeng&,,: n > 0} of random variables converges almost
surely to a random variablél (of course, all on the same probability space). Thén
converges in distribution t .

346



12.1 Convergence of distributions 347

Proof.  Supposg is bounded and continuous. TheX,,) converges almost surely to
9(X). As the sequence is bounded it is also uniformly integrdt#ace convergence holds
also in theL!-sense and this implies convergence of the expectatiansEjg(X,,)] —
Elg(X)]. u

Theorem 12.6 (Portmanteau theorem)he following statements are equivalent

() X, -5 X.

(i) For all closed setd( C E, limsup,,_, ., P{X,, € K} <P{X € K}.
(iii)y For all open setsy C F, liminf,, .., P{X,, € G} > P{X € G}.
(iv) For all Borel setsA C E withP{X € 0A} = 0, we have

lim P{X, € A} =P{X € A}.

n—oo

(v) For all bounded measurable functiops £ — R with
P{g is discontinuous ak } = 0
we haveE[g(X,,)] — E[g(X)].

Proof. (i)=(ii) Letg,(z) =1 — (np(x, K) A 1), which is continuous and bounded lis
on K and converges pointwise 1g.. Then, for every,

limsup P{X};, € K} < limsupE[g,(Xk)] = E[gn(X)].

k—o0 k—o00

Letn — oo. The integrand on the right hand side is bounded byd converges pointwise
and hence in th&!-sense td x (X).
(i) =(iii) Follows fromls = 1 — 1k for the closed sek” = G°.
(ii) =(iv) Let G be the interior and<” the closure ofA. Then, by assumptio®{X €
G} =P{X € K} =P{X € A} and we may use (iii) and (ii) (which follows immediately
from (iii)) to get

limsupP{X,, € A} < limsupP{X,, € K} <P{X € K} =P{X € A},

liminf P{X,, € A} > liminf P{X,, € G} > P{X € G} =P{X € A}

(iv)=-(v) From (iv) we infer that the convergence holds jaof the formg(z) = Zflv:l an
1a,, whereA,, satisfiesP{X € 0A,,} = 0. Let us call such functions elementary. Given

g as in (v) we observe that for evetiy< b with possibly a countable set of exceptions
P{X € 8{z: g(z) € (a,b]}} =0.

Indeed, ifX € 0{x: g(x) € (a,b]} then eitherg is discontinuous inX or g(X) = a or
g(X) = b. The first event has probability zero and so have the last xeep possibly for
a countable set of values afb. By decomposing the real axis in small suitable intervals
we thus obtain an increasing sequengeand a decreasing sequenicg of elementary
functions both converging pointwise o Now, for all &,

limsup E[g(X,,)] < limsup E[hg(X,,)] = E[ht(X)],

n— oo n—o0
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and
liminf E[g(X,,)] 2 liminf E[gx(X,,)] = E[gr(X)].

n—oo n—oo

and the right sides converge, /as- oo, by bounded convergence, g (X)].
(V)=(i) This is obvious. [

To remember the directions of the inequalities in the Ponteau theorem it is useful to
recall the last exampl&,, = 1/n — 0and choosé& = (0, 1) andK = {0} to obtain cases
where the opposite inequalities fail. We now show that thevemyence of distribution as
defined here agrees with the familiar concept in the caseabfaadom variables.

Theorem 12.7 (Helly-Bray theorem)Let X,, and X be real valued random variables and
define the associated distribution functidig(z) = P{X,, < z} andF(z) = P{X < z}.
Then the following assertions are equivalent.
(&) X, converges in distribution t&,
(b) lim F,(x) = F(z) for all z such thatF is continuous inc.
n—oo

Proof. (a)=(b) Use property (iv) for the set = (—o0, z].

(b)=-(a) We choose a dense sequeres, } with P{X = z,} = 0 and note that every
open setG C R can be written as the countable union of disjoint intenigls= (ax, b|
with ay, b, chosen from the sequence. We have

lim ]P{Xn € Ik} = lim Fn(bk) — Fn(ak) = F(bk) — F(ak) = P{X € Ik}

n—oo

Hence, for allV,

N N
liminf P{X, € G} > Y liminf P{X, € I} = Y P{X € I},
k=1 k=1

and asV — oo the last term converges B{ X € G}. [ ]

Finally, we note the useful fact that for nonnegative randa@riablesX,,, rather then
testing convergence dt[g(X,)] for all continuous bounded functions it suffices to
consider functions of a rather simple form.

Proposition 12.8Supposé X", ..., X)) are random vectors with nonnegative entries,
then

(X[ XG5 (X, X,

if and only if, for anyAy,..., A\, > 0,
TlliTrgloE[exp {= 3 AxY =E[ew { =D Nx}]-
j=1 j=1

The functiong(Aq, ..., An) = Elexp{— Z;"Zl A;X;}] is called theLaplace transform
of (Xi,...,X,,) and thus the proposition states in other words that the cgemee of
nonnegative random vectors is equivalent to convergentteeofLaplace transforms. The
proof, usually done by approximation, can be found as Thed&a in [Ka02].
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12.2 Gaussian random variables

In this section we have collected the facts about Gaussiadora vectors, which are used
in this book. We start with a useful estimate for standaradnadrandom variables, which
is quite precise for large.

Lemma 12.9SupposeX is standard normally distributed. Then, for all> 0,

T 1 2 1 1 2

T /2 ¢ PIX < = —a?/2
(& X >x NS e .
z2 4+ 1427 { } T/ 27

Proof. The right inequality is obtained by the estimate

P{X >z} < \/12?/:0 %e‘“z/Q du=———e"/%,
For the left inequality we define
f(z) = ze /2 (2 +1) /00 e 2 dy.
x
Observe thay (0) < 0 andlim,_, f(z) = 0. Moreover,
—z2/2

)

which is positive forz > 0, by the first part. Hencé(z) < 0, proving the lemma. [ |

f'(x) = (1—x2+x2+1)e_“’2/2—2x/ e /2y = —2x</ e /2 gy ©

x x

We now look more closely at random vectors with normallyrilisted components. Our
motivation is that they arise, for example, as vectors atimgj of the increments of a
Brownian motion. Let us clarify some terminology.

Definition 12.10. A random variableX = (Xi,...,X4)T with values inR¢ has the
d-dimensional standard Gaussian distributidrits d coordinates are standard normally
distributed and independent. o

More general Gaussian distributions can be derived aslimemes of standard Gaussians.
Recall, e.g. from Definition 1.5, that a random variablewith values inR¢ is called
Gaussiarif there exists ann-dimensional standard Gaussian ad x m matrix A, and a

d dimensional vectob such thaty™ = AX + b. Thecovariance matriof the (column)
vectorY is then given by

Cov(Y) =E[Y —EY)(Y —EY)"] = AAT,

where the expectations are defined componentwise.

Our next lemma shows that applying an orthogahald matrix does not change the distri-
bution of a standard Gaussian random vector, and in paatitiiat the standard Gaussian
distribution is rotationally invariant. We writ&; for thed x d identity matrix.

Lemma 12.11f A is an orthogonatl x d matrix, i.e. AAT = I;, andX is ad-dimensional
standard Gaussian vector, thehX is also ad-dimensional standard Gaussian vector.
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Proof. As the coordinates ok are independent, standard normally distribut§chas a
density

—a22 _ L e

d
1
flx1,...,zq) = || —=ce¢ =
1 d };[1 /727r (27T)d/2

where| - | is the Euclidean norm. The density dfX is (by the transformation rule)
f(A™tz)|det(A~1)|. The determinant i¢ and, since orthogonal matrices preserve the
Euclidean norm, the density df is invariant under. [ |

Corollary 12.12 Let X; and X, be independent and normally distributed with zero expec-
tation and variancer? > 0. ThenX; + X, and X; — X, are independent and normally
distributed with expectatiod and variance2o?.

Proof. The vector(X; /o, X»/0)7T is standard Gaussian by assumption. Look at

1 1L
A= ( vZ vz > :
Vz2V2
This is an orthogonal matrix and applying it to our vectotyss (X, + X»)/(v/20), (X, —
X5)/(v/20)), which thus must have independent standard normal codesina [

The next proposition shows that the distribution of a Garssindom vector is determined
by its expectation and covariance matrix.

Proposition 12.13If X andY are d-dimensional Gaussian vectors withY = EY and
Cov(X) = Cov(Y), thenX andY have the same distribution.

Proof. It is sufficient to consider the cad&X = EY = 0. By definition, there are
standard Gaussian random vectarsand X, and matricesA andB with X = AX; and
Y = BX,. By adding columns of zeros td or B, if necessary, we can assume that
and X, are bothk-vectors, for somé:;, and A, B are bothd x k matrices. Letd andB
be the vector subspaces®f generated by the row vectors dfand B, respectively. To
simplify notation assume that the firist< d row vectors ofA form a basis ofd. Define
the linear map.: A — B by

L(AZ):BZforz:l,,l

Here 4, is theit" row vector of A4, andB; is thei*" row vector of B. Our aim is to show
that L is an orthogonal isomorphism and then use the previous pitig. Let us first
show thatZ is an isomorphism. Our covariance assumption gives that = BBT.
Assume there is a vectof A; + . ..v;A; whose image i. Then thed-vector

v=(v1,...,0,0,...,0)
satisfiesv B = 0. Hence

|vA|? = vAATYT = vBBTWT = 0.
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We conclude that A = 0. Hencel is injective anddlim A < dim B. Interchanging the
role of A and B gives thatL is an isomorphism. As the entty, j) of AAT = BB" is the
scalar product ofd; and A; as well asB; and B;, the mappingL is orthogonal. We can
extend it on the orthocomplement dfto an orthogonal map : R* — R* (or an orthog-
onalk x k-matrix). ThenX = AX; andY = BX, = ALTX,. As LT X, is standard
Gaussian, by Lemma 12.1X; andY have the same distribution. [ |

In particular, comparing d-dimensional Gaussian vector wittov(X) = I; with a Gaus-
sian vector withd independent entries and the same expectation, we obtafolibwving
fact.

Corollary 12.14 A Gaussian random vectoX has independent entries if and only if its
covariance matrix is diagonal. In other words, the entriesiGaussian vector are uncor-
related if and only if they are independent.

We now show that the Gaussian nature of a random vector isqezsunder taking limits.
Proposition 12.15Suppos€ X, : n € N} is a sequence of Gaussian random vectors and

lim,, X,, = X, almost surely. I := lim,, ., EX,, andC := lim,_., Cov X,, exist,
then X is Gaussian with meahand covariance matrix.

Proof. A variant of the argument in Proposition 12.13 shows tkiatconverges in law
to a Gaussian random vector with medaand covariance matri€'. As almost sure con-
vergence implies convergence of the associated distifmitithis must be the law of. m

Lemma 12.16SupposeX, Y are independent and normally distributed with mean zero
and variances2, thenX? + Y2 is exponentially distributed with me&a-2.

Proof. For any bounded, measuralfle R — R we have, using polar coordinates,

1 I2 2
Ef(X2+Y2):27T02 /f(x2—|—y2)exp{— Sd- da dy
1 e 2
:ﬁ/o f(rQ)exp{—;?}rdr
1 oo
=57 [ f@exp{— =} da=Ef(2).
whereZ is exponential with meapo?. [ |

12.3 Martingales in discrete time

In this section we recall the essentials from the theory aftimgales in discrete time. A
more thorough introduction to this subject is Williams [\4/]9

Definition 12.17. A filtration (F,,: n > 0) is an increasing sequence
FoCFHC---CF,C---

of o-algebras.
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Let{X,: n > 0} be a stochastic process in discrete time @Rg: n > 0) be a filtration.
The process is martingalerelative to the filtration if, for all > 0,

e X, is measurable with respect fg,,
e E|X,| < oo,and
o E[X, 11| F,] = X, almost surely.

If we have 2’ in the last condition, thed X,,: n > 0} is called asubmartingaleif * <’
holds it is called supermartingale o

Remark 12.18Note that for a submartingalB[X,, 1] > E[X,,], for a supermartingale
E[X,+1] < E[X,], and hence for a martingale we ha&iEX,, 1] = E[X,,]. o

Loosely speaking, a stopping time is a random time such tigaknowledge about a ran-
dom process at time suffices to determine whether the stopping time has happaned
timen or not. Here is a formal definition.

Definition 12.19. A random variablel” with values in{0,1,2,...} U {oo} is called a
stopping timef {T' < n} = {w: T(w) < n} € F,foralln > 0. o

If {X,,: n > 0} is a supermartingale aril a stopping time, then it is easy to check that
the process

{(XF:n>0} defined byX! = X7,

is a supermartingale. §X,,: n > 0} is a martingale, then botf.X,,: n > 0} and
{=X,: n > 0} are supermartingales and, hence, we have,

E[X1an] = E[Xo], foralln > 0.

Doob’s optional stopping theorem gives criteria whenjieti: T co, we obtainE[X ] =
E[Xo].

Theorem 12.20 (Doob’s optional stopping theoreml.et 7" be a stopping time and” a
martingale. ThenX is integrable andE[X ;] = E[X,] , if one of the following condi-
tions hold:

(1) T is bounded, i.e. there & such thatl’ < N almost surely;

(2) {XI': n > 0} is dominated by an integrable random varialdfei.e. | X,,nr| < Z
for all n > 0 almost surely;

(3) E[T] < o and there isK > 0 such thasup,, | X,, — X,,—1| < K.

Proof. Recall thatE[ X1, — Xo] = 0. The result follows in case (1) by choosing

n = N. In case (2) lem — oo and use dominated convergence. In case (3) observe
that| Xpan — Xo| = |ZZ:A?(XIc — Xj—1)| < KT. By assumptionK'T is an integrable
function and dominated convergence can be used again. [ |
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Doob’s famous forward convergence theorem gives a sufficdendition for the almost
sure convergence of supermartingales to a limiting randariable. See 11.5 in [Wi91]
for the proof.

Theorem 12.21 (Doob’s supermartingale convergence thearg Let{X,,: n > 0} be a
supermartingale, which is bounded It i.e. there isK > 0 such thatE|X,,| < K for
all n. Then there exists an integrable random varialdleon the same probability space
such that

lim X,, = X almost surely.

n—oo

Remark 12.22Note that if{X,,: n > 0} is nonnegative, we havB[| X, |] = E[X,,]
< E[X(] := K and thusX,, is bounded i.! andlim,, .., X,, = X exists. o

A key question is when the almost sure convergence in thersigpéngale convergence
theorem can be replaced hy-convergence (which in contrast to almost sure convergence
implies convergence of expectations). A necessary anctguificriterion for this isuni-

form integrability. A stochastic procesgX,,: n > 0} is calleduniformly integrablef, for
everye > 0, there existd{ > 0 such that

E[|X,|1{|X.| > K}] <e foralln > 0.
Sufficient criteria for uniform integrability are

e {X,:n >0} is dominated by an integrable random variable,
e {X,:n > 0}isLP-bounded for somg > 1,
e {X,:n >0} isL!-convergent.

The following lemma is proved in Section 13.1 of [Wi91].

Lemma 12.23Any stochastic procesgX,,: n > 0}, which is uniformly integrable and
almost surely convergent, converges also inthesense.

The next result is one of the highlights of martingale theory

Theorem 12.24 (Martingale closure theorempBuppose that the martingafeX,,: n > 0}
is uniformly integrable. Then there is an integrable randeaniable X such that

lim X, = X almost surely and ifL.!.

n—oo

Moreover,X,, = E[X | F,] for everyn > 0.

Proof. Uniform integrability implies thaf X,,: n > 0} is L!-bounded and thus, by
the martingale convergence theorem, almost surely coeméng an integrable random
variable X. Convergence in th&!-sense follows from Lemma 12.23. To check the last
assertion, we note th&,, is F,,-measurable and Idt € F,,. For allm > n we have, by
the martingale propertyf,. X,,, dP = [, X,, dP. We letm — oo. Then| [}, X,,, dP —

[ X dP| < [|X,, — X|dP — 0, hence we obtaitf,. X dP = [,. X,, dP, as requiredm
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There is a natural converse to the martingale closure themee Section 14.2 in [Wi91]
for the proof.

Theorem 12.25 (Lévy’s upward theorem)Suppose thak is an integrable random vari-
able andX,, = E[X | F,,]. Then{X,,: n > 0} is a uniformly integrable martingale and

lim X, =E[X | F] almost surely and il"
whereF,, = (U,-, F,) is the smallest-algebra containing the entire filtration.

There is also a convergence theorem for ‘reverse’ martasgalhich is called Lévy’s
downward theorem and is a natural partner to the upward ¢ngosee Section 14.4 in
[Wi91] for the proof.

Theorem 12.26 (Lévy’s downward theorem)Suppose thatG, : n € N) is a collection
of o-algebras such that

Goo =[Gk C+* CGny1 CGn C--- C Gy

k=1
An integrable proces§X,, : n € N} is areverse martingaleif almost surely,

X, =E[Xn-1]|Gn] foralln > 2.
Then
liTm X, =E[X1]|G) almost surely.

An important consequence of Theorems 12.20 and 12.24 ightbanartingale property
holds for well-behaved stopping times. For a stopping tithdefine Fr to be theo-
algebra of eventsl with AN {T' < n} € F,. Observe thaKr is Fr-measurable.

Theorem 12.27 (Optional sampling theorem)f the martingale{X,,: n = 1,2,...} is
uniformly integrable, then for all stopping timés< S < T we haveE[ X1 | Fs| = Xs
almost surely.

Proof. By the martingale closure theored§,] converges toXr in L' andE[ X7 | F,,] =
Xran = XTI, Dividing Xr in its positive and its nonpositive part if necessary, we may
assume thalkr > 0 and thereforeX! > 0 almost surely. Taking conditional expecta-
tion with respect taFsa, givesIE[XT \ J—‘sm] = Xgan. Now let A € Fg. We have to
show thatE[X114] = E[Xg1a]. Note first thatA N {S < n} € Fsrn. Hence, we get
E[Xr1{AN{S < n}}] = EXsrn1{AN{S < n}}] = E[Xs1{AN{S < n}}]. Letting

n 7T oo and using monotone convergence gives the required result. [ |

Of considerable practical importance are martingdl&s,: n > 0}, which aresquare
integrable Note that in this case we can calculate,for> n,

E[X2 | Fo] = E[(Xm — Xn)? | Fu] + 2E[X,n, | Fu] X — X7 (12.1)
=E[(Xn — Xn)? | F] + X2 > X2, '

sothat{ X2: ¢t > 0} is a submartingale.
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Theorem 12.28 (Convergence theorem fak.2-bounded martingales)Suppose that the
martingale{X,,: ¢t > 0} is L?-bounded. Then there is a random variablesuch that

lim X,, = X almost surely and iil.? .

n—oo

Proof. From (12.1) and.?-boundedness ofX,,: t > 0} it is easy to see that, for

m 2= n,
E[(Xm — Xn)?] = Y E[(Xk - Xip1)?] <
k=n-+1 k

E[(Xk — Xk_l)Q] < 0.

NE

1

Recall thai.2-boundedness implids' -boundedness, and hence, by the martingale conver-
gence theoremX,, converges almost surely to an integrable random variablé etting
m T oo and using Fatou’s lemma in the last display, gi#&sconvergence. [ |

We now discuss twanartingale inequalitieshat have important counterparts in the con-
tinuous setting. The first one is Doob’s weak maximal ineigyal

Theorem 12.29 (Doob’s weak maximal inequality).et{X,: j > 0} be a submartingale
and denotél/,, := maxi¢;<n X;. Then, forallx > 0,

AP{M, > A} <E[X,1{M, > A}].
Proof. Define the stopping time

f min{k: Xp > A} if M, > A
Tl it M, <\

Note that{ M,, > A} = {X; > A}. Thisimplies
AP{M, > A} = AP{X, > A} = EAL{X, > \}
<EX,1{X, > \} = EX,1{M, > )},

and the result follows once we demonstrat€, 1{M,, > A} < EX,1{M,, > \}. But, as
7 is bounded by: and X ™ is a submartingale, we hal®i X, ] < E[X,,], which implies

E[X,1{M, < \}]+E[X,1{M, > \}]
<E[X,1{M, < \}] +E[X,1{M, > \}].
Because, by definition af, we haveX,1{M,, < A\} = X,,1{M,, < A}, this reduces to
E[X: UM, > \}] <E[X,1{M, > \}],

and this concludes the proof. [
The most useful martingale inequality for us is Doob’smaximal inequality.

Theorem 12.30 (Doob’d.? maximal inequality) Supposg X,,: n > 0} is a martingale
or nonnegative submartingale. L&f,, = max;<i<n, X andp > 1. Then

E[M;] < (357)"E[1Xa1"]

p—1
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We make use of the following lemma, which allows us to comphed.”-norms of two
nonnegative random variables.

Lemma 12.31Suppose nonnegative random variablesandY satisfy, for allA > 0,
AP{Y > A} < E[X1{Y > \}].
Then, for allp > 1,
E[v?] < (;2) B[x?].

p—1

Proof.  Using the fact thaf{ > 0 anda? = [ pAP~'d\, we can expresE[X?] as a
double integral and apply Fubini’s theorem,

E[X?] = E/ HX > ApAtdy = / pAPTIP{X > AV d\.
0 0
Similarly, using the hypothesis,
E[Y?] = / pAPTIP{Y > A} dA < / PAPTPE[XI{Y > A} dA.
0 0

We can rewrite the right hand side, using Fubini’s theoremirggand then integrating
pAP~2 and using Holder’s inequality with = p/(p — 1),
o0 Y
/ PN 2E[X1{Y > A} dA = E[X/ PN 2d)]
0 0
= qE[XYpil] <q ||X||p||Yp71||q-

Altogether, this give€[Y?] < ¢(E[X?]))'/? (E[Y?])}/? So, assumin@[Y?] < oo, the
above inequality gives,

1\ 1 1
(EY?)"” < q(BX7) 7,
from which the result follows by raising both sides to tfi& power. In general, iE[Y?] =
oo, then for anyn € N, the random variabl&,, = Y A n satisfies the hypothesis of the

lemma, and the result follows by letting T oo and applying the monotone convergence
theorem. m

Proof of Theorem 12.30. If {X,,: n > 0} is a martingale, theg|X,,|: n > 0} is
a nonnegative submartingale. Hence it suffices to provedkeltrfor nonnegative sub-
martingales. By Doob’s weak maximal inequality,

AP{ M, > A} <E[X,1{M, > A}],

and applying Lemma 12.31 with = X,, andY = M,, gives the result. [ |

We end this section with a useful version of the Radon-Nikod§ieorem, which can be
proved using martingale arguments, cf. [Du95], Chaptatheorens.3.



12.3 Martingales in discrete time 357

Theorem 12.32 et u, v be two probability measures on a space withlgebraZ. Assume
that(F,: n =1,2,...)is afiltration such thatF,, ,” F (i.e. the union of allF;, generates
F) and denotgu,, = 7, andv, = v|x,. Suppose,, < v, for all n and let

diiy,

dv,,

Xn =

(@) {X,: n > 0} is a nonnegative martingale and therefarealmost surely conver-
gent. We denote

X =limsup X,, .

n—oo

(b) ForanyA € F we have
MAﬁi/XdV+MAﬂ{¥:mﬂ. (12.2)
A

In particular,

(i) If v{X =0} =1, theny L v.
(i) If p{X = o0} =0, theny <« v.
(iii) If v{X >0} =1, thenv < p.

Proof. Note that, for anyd € F,,, we have

dpn, dpn,
/QX¢+1m/::/AliildeJ::MwH(A):4MAA):: Aﬁfdmlzz/nxgd%
A A V41 A dvy A
and hencd X,,: n > 0} is a martingale. MoreoveX,, > 0 and hence, by Remark 12.22,
it is convergent, which proves (a). Clairtd, (i:) and(ii¢) follow easily from (12.2), so
it suffices to establish the latter. Rewrite (12.2) in theiemlent form

MAQLX<«®:iAde forall A e F. (12.3)

For A € F, andn > k we haveu(A) = [, X,, dv whenceu(A) > [, X dv by Fatou's
lemma. It follows that the last inequality holds for all € F, whence for allA € F we
have

p(AN (X < oo})>/

X@:/Xw. (12.4)
AN{X <oo} A

On the other hand, fad € F,, andn > k we also have

W(AN (X, < M}) :/

X, dv < /Xn/\Mdl/
An{X, <M} A

whencey (A N {sup,s,, X¢ < M}) < [, X, A M dv. Takingn — oo, bounded con-
vergence yieldgi(A N {X < M}) < [, X A Mdv so that lettingll — oo gives
AN{X < oo}) < [, Xdv. Thus (12.3) holds for ali € F. |
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12.4 Trees and flows on trees

In this section we provide the notation for the discussiotreds, and the basic facts about
trees, which we use in this book.

Definition 12.33. A tree T = (V,E) is a connected graph described by a finite or
countable sev of vertices, which includes a distinguished vertgxiesignated as the root,
and asefy C V x V of orderededges such that

o for every vertexo € V the sef{w € V: (w,v) € E} consists of exactly one element
theparent, except for theoot o € V, which has no parent;

o for every vertexw there is a unique self-avoiding path from the root tand the number
of edges in this path is therder or generation |v| of the vertexv € V;

o for everyv € V, the set obffspring or children of {w € V: (v,w) € E} isfinite. ¢

Remark 12.34Sometimes, the notation is slightly abused and thefréeidentified with
its vertex set. This should not cause any confusion. o

We introduce some further notation. For anyw € V we denote by A w the element on
the intersection of the paths from the roottaespectivelyw with maximal order, i.e. the
last common ancestor ef andw. We writev < w if v is an ancestor ofv, which is
equivalent taw = v A w.

The orderle| of an edges = (u,v) is the order of its end-vertex. Every infinite self-
avoiding path started in the root is calledray. The set of rays is denote@d!’, the
boundary of T. For any two rays andn we define A n the vertex in the intersec-
tion of the rays, which maximises the order. Note tigat 7| is the number of edges that
two rays¢é andn have in common. The distance between two r@gedr is defined to be
|€ — n| := 271¢"1, and this definition makes the bounddly a compact metric space.

Remark 12.35The boundaryT of a tree is an interesting fractal in its own right. Its Haus-
dorff dimension idog, (br T') where brT is a suitably defined average offspring number.
This, together with other interesting aspects of treesisisudsed in depth in [LP05]. ©

For infinite trees, we are interested in flows on the tree. Viipase thatapacitiesare
assigned to the edges of a tr€ei.e. there is a mapping': £ — [0,00). A flow of
strengthc > 0 through a tree with capaciti&s is a mapping: E — [0, ¢] such that

e for the root we havez 9(9, w) = ¢, for every other vertex # p we have

w=e
9(@,1}): Z G(U,w),
w: Ww=v

i.e. the flow into and out of each vertex other than the roobisserved.
e d(e) < C(e), i.e. the flow through the edgeis bounded by its capacity.
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A setlIl of edges is called autsetif every ray includes an edge frohh.

We now give a short proof of a famous result of graph theoeyntlax-flow min-cut theo-
rem of Ford and Fulkerson [FF56] in the special case of irditries.

Theorem 12.36 (Max-flow min-cut theorem)

max {strength (0): 6 aflow with capacitiesﬁ’} = inf { Z Ce):11a cutset} .
ecll

Proof. The proofis a festival of compactness arguments.
First observe that on the left hand side the infimum is indeed@mum, because {f9,, }
is a sequence of flows with capaciti€s then at every edge we have a bounded sequence
{6,.(e)} and by the diagonal argument we may pass to a subsequencthatictn 6,, ()
exists simultaneously for all € E. This limit is obviously again a flow with capaciti€s
Secondly observe that every cutbetontains a finite subs&l' C II, which is still a cutset.
Indeed, if this was not the case, we had for every positivegiettj a raye, ¢}, e}, . . . with
e{ ¢ Il for all © < j. By the diagonal argument we find a sequeficand edgeg; of
order! such thate{k =e¢;forall k > . Theney,e,,...isaray anc; ¢ II for all [, which
is a contradiction.
Now let § be a flow with capacitieg’ andII an arbitrary cutset. We led be the set
of verticesv such that there is a sequence of edgges. ., e, ¢ Il with e; = (p,v1),
en = (vn—1,v) ande; = (v;_1,v;). By our previous observation this set is finite. Let

b(v,e) = 1 ife=(v,w)forsomew eV,
T —1 ife = (w,v) for somew € V.

Then, using the definition of a flow and finiteness of all sums,

strength (f) = Z o(p,e)b(e) = Z Z o(v,e)b(e)

ecE veEAeckE
= > 0(e)> dve)< Y 0e) < Y Cle).
ecE vEA eclIl eclIl

This proves the first inequality.

For the reverse inequality we restrict attention to finieet. Letl}, be the tree consisting
of all verticesV,, and edged,, of order < n and look at cutsetH consisting of edges in
E,. Aflow 6 of strengthc > 0 through the finite tre&,, with capacitie< is defined as in
the case of infinite trees, except that the main condition

9(@,1}): Z Q(U,w),

w: Ww=v

is only required for vertices # p with |v| < n. We shall show that

max {strength (0): 0 aflow inT,, with capacities” }

> min { > C(e): Macutset iran} . (12.5)

eclIl

Once we have this, we get a sequefi;g of flows inT,, with capacities” and strength at
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leastc = min{}_ .; C(e): Il a cutset iril'}. By using the diagonal argument once more
we can get a subsequence such that the limits,0f) exist for every edge, and the result
is a flow# with capacitiesC and strength at least as required.

To prove (12.5) le be a flow of maximal strengthwith capacities” in T}, and call a se-
quencep = vg, v1, . . . , Uy With (v;,v;41) € E,, anaugmenting sequended(v;, v;y1) <
C(v;,vi41). If there are augmenting sequences, we can construct @ftdstrength> ¢

by just increasing the flow through every edge of the augmgrstequence by a sufficiently
smalle > 0. As # was maximal this is a contradiction. Hence there is a minitnédetl]
consisting entirely of edges ifi,, with 6(e) > C(e). Let A, as above, be the collection of
all vertices which are connected to the root by edges nft iAs before, we have

strength (6) = Z 0(e) Z o(v,e) = Z Oe) = Z C(e),

e€EFR vEA e€cIl ecIl

where in the penultimate step we use minimality. This prgt@s5). [ |

Finally, we discuss the most important class of random tresGalton—Watson trees
For their construction we pick aoffspring distribution , given as the law of a random
variable N with values in the nonnegative integers. To initiate theursiwe construction
of the tree, we sample from this distribution to determine tiumber of offspring of the
root. Having constructed the tree up to thid generation and supposing this generation
is nonempty, we sample an independent copydbr each vertex in this generation and
attach the corresponding number of offspring to it. If thisqedure is infinite, i.e. if it
produces an infinite tree, we say that the Galton—Watsonsuiedvesotherwise that it
becomesextinct The sharp criterion below is at least as old as the work ofdAaind
Watson in the middle of the nineteenth century.

Proposition 12.37If N # 1 with positive probability, a Galton—Watson tree survivegw
positive probability if and only ifEN > 1. Moreover, the extinction probability is the
smallest nonnegative fixed point of the generating funcfiorfio, 1] — [0, 1] given by
f(z) =EN.

Proof. Note that the generating function of the numligr of vertices in thenth
generation is the iteratg, = fo --- of. Elementary analysis shows thét(0) converges
increasingly to the smallest nonnegative fixed poinf oAt the same time

lim f,(0) = lim P{Z, =0} = lim P{Z; = 0for somel < i < n}
n—oo n—oo n— oo
= P{Z; = 0 for somei > 1} = PP{ extinction}.

It is again an exercise in elementary analysis to see thkgssifiis the identity, the small-
est nonnegative fixed point gfis one if and only ifEN = f/(1) < 1. [



Hints and solutions for selected exercises

Here we give hints, solutions or additional references lier éxercises marked with the
symbol 8| in the main body of the text.

Exercise 1.2.Using the notation from Theorem 1.3, the Brownian motionefireed on a
probability spacé(2, A, P) on which a collection( Z;: ¢ € D} of independent, standard
normally distributed random variables are defined. It iyygasee from the construction
that, for anyn € N, the functionsF,, are jointly measurable as a function8f,d € D,,
andt¢ € [0, 1]. Therefore it is also jointly measurable as a functiowaf 2 andt < [0, 1],
and this carries over tw, t) — B(w, t) by summation and taking a limit.

Exercise 1.3 Fix times0 < t; < ... < t,. Let

1 0 0 \/% 0 0
1
M= |t ,  D:= O v
0o . .0 : 0
0 0 -1 1 0 0 L

Vv tn_tn—l
Then, for a Brownian motio§B(¢): ¢t > 0} with start inz, by definition, the vector

X:=DM(B(ty)—x,...,B(t,) — )"

has independent standard normal entries. As o@nd M are nonsingular, the matrix
A := M~1D~1is well-defined and, denoting al$c= (z, ..., x), we have that

(B(t1), ..., B(tn))" = AX +b.

By definition, this means thdB(t1), . .., B(t,)) is a Gaussian random vector.

Exercise 1.5.Note that{ X (¢): 0 < ¢t < 1} is a Gaussian process, while the distributions
given in (a) determine Gaussian random vectors. Hencefitesfto identify the means
and covariances dfX (¢,), . .., X (t,,)) and compare them with those given in (a). Starting
with the mean, on the one hand we obviously hBv&(t) = z(1 — t) + ty, on the other

361
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hand
p(t,z,2)p(1 —t,2,y)
z
p(l,z,y)
1
= m / (Z —z(1—1t)— ty)p(t,m,z)p(l —t,z,y)dz +x(1 —t) + ty,

and the integral can be seen to vanish by completing the ednahe exponent of the
integrand. To perform the covariance calculation one mayrae thatt = y = 0, which
reduces the complexity of expressions significantly, se®) (8 Chapter 7 of [Du96] for
more details.

Exercise 1.6.B(t) does not oscillate too much betweemandn + 1 if

limsupl [ max B(t)— B(n)] =0.

n—oo N ~n<t<n+1
EstimateP{maxo<;<1 B(t) > en} and use the Borel-Cantelli lemma.
Exercise 1.7. One has to improve the lower bound, and show that, for evengtent
¢ < /2, almost surely, there exists > 0 such that, for ald < h < ¢, there exists
t € 10,1 — h] with

|B(t+h) — B(t)| > c\/hlog(1/h).
To this end, giver > 0, letc < v/2 — § and define, for integeris, n > 0, the events

A= {B((k+ DeY™) = B(ke ™) > e (Ve V™) ],

Then, using Lemma 12.9, for aky> 0,

P(Agn) = P{B(e_‘/ﬁ) >c (\/ﬁe_‘/ﬁ)%} =P{B(1) > cn%} > ﬂf}% e V2

Therefore, by our assumption epand using that — x < e™* for all z > 0,

eV -1

Z IP)( ﬂ Az,n) Z AO n eﬁ71 gz €xXp (— (eﬁ— 1)P(A0,n)) < 0.
k=0 n=0

n=0

From the Borel-Cantelli lemma we thus obtain that, almostlguthere exists,y € N
such that, for alh > n, there exists € [0,1 — e~ V"] of the formt = ke~V™ such that

|B(t+ efﬁ) - B(t)| > c(\/ﬁef\/ﬁ)% .

In addition, we may choose, big enough to ensure that v s sufficiently small in the
sense of Theorem 1.12. Then we pick= e~ V™ and, giver) < h < ¢, choosen such
thate=V"*1 < h < e~ V™. Then, fort as above,

Blt+)-B(0)]| > |B<t+e-ﬁ>— |—!B<t+h>—B<t+e-ﬁ>|
> c(vn ” C\/ Vi) log (1/(e= V™ — e~ Vnil)).

It is not hard to see that the second (subtracted) term demayb more rapidly than the
first, so that modifying:, to ensure that it is below (/ne~ ")z gives the result.
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Exercise 1.8. Given f € C[0,1] ande > 0 there exists: such that the function <
CJ0, 1], which agrees witlf on the dyadic points i®,, and is linearly interpolated inbe-
tween, satisfiesup |f(¢t) — g(¢)| < e. Then use Lévy’s construction of Brownian motion
and the fact that normal distributions have full supportamplete the proof.

Exercise 1.9. It suffices to show that, for fixed > 0 andc¢ > 0, almost surely, for all
t > 0, there exist®) < h < ¢ with |B(t + h) — B(t)| > ch®. By Brownian scaling we
may further assume = 1. Note that, after this simplification, the complementargrav
means that there istg > 0 such that

B(tg+ h) — B(to)

B(t h) — B(t
(to +1) (O)gc or inf > —c
he(0,1) he he(0,1) he

We may assume thag € [0,1). Fix! > 1/(a — 1). Thento € [E5L, £ ) for any largen
and somé < k < 2™ — [. Then, by the triangle inequality, for alle {1,...,2" — k},

‘B k+] 7B(k+j— )’ 2C(J+1) _

on

Now, for any0 < k < 2" — [, letQ,, ;, be the event

[1B(5) — B(Ag)| < 2¢ ()" for j=1,2,....1}.

on on on

It suffices to show that, almost surely for all sufficientlygar and allk € {0,...,2" -1}
the event,, ;, does not occur. Observe that

B(Qu) < [P{IBO) <2720 (5) "} < [2722¢ (54)°],
since the normal density is bounded by 1/2. Hence, for aldeitaonstant,

2y
( U Q, k) < 2"/2 20(1;}) ]l = C’[Q(l*l(a*l/?))]”,

which is summable. Thus
2" —1
P(limsup U an) =0.

This is the required statement and hence the proof is complet

Exercise 1.10.The proof can be found in Chapter 3 of [Du95], or Theorem 3f]8a02].

Exercise 1.12.Argue as in the proof of Theorem 1.30 with replaced byB + f. The
resulting term

P{IBO) + V27 f ((k+5)/2") = V27 (k4 = 1)/2") | < TM/V27}

can be estimated in exactly the same manner as for the wBifownian motion.
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Exercise 1.13. This can be found, together with stronger and more genesalts in
[BP84]. Putl = [B(1),supy<.<; B(s)] , and define a functiop: I — [0, 1] by setting

g(x) = sup{s € [0,1]: B(s) = z}.

First check that almost surely the intervais nondegeneratg, is strictly decreasing, left
continuous and satisfid(g(z)) = «. Then show that almost surely the set of disconti-
nuities ofg is dense inf. We restrict our attention to the event of probability 1 oniath
these assertions hold. Let

Vo ={z €1: g(x—h)— g(z) > nhforsomeh € (0,n")}.

Now show thatl/, is open and dense ih By the Baire category theoreriy, := (", V,
is uncountable and dense InNow if 2 € V then there is a sequeneg T z such that
g(xy) — g(x) > n(xz — xz,). Settingt = ¢g(z) andt,, = g(z,,) we havet, | ¢t and
t, —t > n(B(t) — B(ty)), from which it follows thatD*B(¢) > 0. On the other hand
D*B(t) < 0sinceB(s) < B(t) forall s € (¢, 1), by definition oft = g(x).

Exercise 1.14 We first fix some positive and positive:. For some smalt and an interval
I C [e,1 — €] with lengthh, we consider the event thatt, € I and we have
B(to + h) — B(tg) > —2ah'/*  for someh/* < h < 2nY/4,

We now denote by;, the left endpoint of . Using Theorem 1.12 we see there exists some
positiveC' so that

B(to) — B(tr) < Cy/hlog(1/h).

Hence the eventl implies the following events
Ay ={B(tr —s) — B(tr) < Cy/hlog(1/h) forall s € [0,¢]},
= {B(tr +s) — B(tr) < Cy/hlog(1/h) forall s € [0, h/]}.

We now definel’ := inf(s > tz, + h'/* : B(s) > B(ty) — 2ah'/*). Then by definition
we have thaf” < t;, + 2h!/* and this implies the event

Ay = {B(T +s) — B(T) < 2ah*/* + C\/hlog(1/h) for all s € [0,€]}.
Now by the strong Markov property, these three events ampeddent and we obtain
P(A) < P(A1) P(A2) P(As).
We estimate the probabilities of these three events andnobta
P(A;) = P{B(c) < C\/hlog(1/h)} < #20\/W7
P(4s) = P{B(h/*) < C\/hlog(1/h)} < e 204/ R og(1/h),
P(A3) = P{B(e) < 2ah'/* + C\/W} ——2(C h'/* 4 2ahM*).

Hence we obtain, for a suitable const@ht> 0, dependmg om ande, that

P(A) < K h*/®log(1/h).
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Summing over a covering collection df » intervals of lengthh gives the bound
P{to € [e,1 — €] andB(ty + h) — B(to) > —2ah'/* for someh'/* < h < 2n'/*}
< K log(1/h)h1/8.

Takingh = 2~4"~% in this bound and summing over we see that

oo

B(to+h) — B(t
E IP’{tOG[e,le]andQ 1suhp<2 (O+f)z (0)>fa}<007
—n—lch < 2-n

n=1

and from the Borel-Cantelli lemma we obtain that, almostlsyeitherty & [e,1 — €], or

B(to+h) — B(t
lim sup (to + 1) (to) < —
10 h

Now recall thatz ande are arbitrary positive numbers, so taking a countable uoiana
ande gives that, almost surely)” B(to) = —oo, as required.

Exercise 1.15By Brownian scaling it suffices to consider the case 1.

(a) We first show that, gived! > 0 large, for any fixed point € [0, 1], almost surely
there exists: € N such that the dyadic intervé(n, s) := [k27", (k+1)2~"] containings
satisfies

|B((k+1)27") — B(k27")| > M 27"/2. (13.1)
To see this, it is best to consider the construction of Branwmotion, see Theorem 1.3.
Using the notation of that proof, ley = 1 andd,,+1 € D,+1 \ D,, be the dyadic point

that splits the intervglk2—", (k + 1)2~™) containings. This defines a sequengg, ,n =
0,1,... ofindependent, normally distributed random variablesw&s

n=min {k € {0,1,...}: |Zq4,| = 3M },
which is almost surely well-defined. Moreover,
M < |Za, \—2* |2B(d,,) — B(dy —2—")— B(d, +27")|
n+1
<27 |B(d, B(dnj:Q )|+ 2% |B(dy +27") — B(dn —27")),

where = indicates that the inequality holds with either choice ginsi This implies that
eitherI(n,s) or I(n — 1, s) satisfies (13.1). We denote By(s) the smallest nonnegative
integern, for which (13.1) holds.

By Fubini’s theorem, almost surely, we ha¥gs) < oo for almost every € [0, 1]. On this
event, we can pick a finite collection of disjoint dyadic ives|to;, t2;+1], 7 =0, ..., k—

1, with summed lengths exceedihg2, say, such that the partitidn= ¢y < -+ < to, =1
given by their endpoints satisfies

b M
> (B(t;) = B(t;1))” > Z::tzgﬂ t2) 2 5

from which (a) follows, as\/ was arbitrary.
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(b) Note that the number of (finite) partitions 8, 1] consisting of dyadic points is count-
able. Hence, by (a), given € N, we can find a finite seP,, of partitions such that the
probability that there exists a partition=to < - -- < t;, = 1 in P, with the property that

k
2
> (B(t;) = B(tj—1))" =n
j=1
is bigger thanl — =. Successively enumerating the partitionsin P, ... yields a se-

guence satisfying the requirement of (b).

Exercise 1.16.To see convergence in td&?-sense one can use the independence of the
increments of a Brownian motion,

2 2 k(n) )
E[Z t;’il (t;>)) —t} = E[(B(t;ﬁ) B(t;n))) (tﬁl t;))}
j=1
k(n) ) 2
< ZE[(B(t;l)l) B(t;m)) 4 (t;i)l t;n)) ]
j=1

Now, using that the fourth moment of a centred normal distitim with variances? is
304, this can be estimated by a constant multiple of

k(n)

<n> (n)
Z tj+1 t

which goes to zero. Moreover, by the Markov inequality
k(n)

| () -B )"~ >} <= (S (ps1) -5 1)

and summability of the right hand side together with the BeZantelli lemma ensures
almost sure convergence.

Exercise 1.17 Recall (1.5) from Lemma 1.41 and note that it implies

VB = AV VB 4 0 2(%), VB = VST B - 0,2 (50,

whereg,, = 2-(+t1)/2 and Z(t) for t € D,, \ D,_; are i.i.d. standard normal random
variables independent ¢f,,_;. Hence

B exp { 2 (V51 B) (VL. F) — 2" (V5 B) (V§ F)} | )
— e { -~ 2 (V) B) (VR

x E[exp { — 2"0,Z(21) (V5 F = V5 F)}].

The expectation equals
exp {2772 (V) F — V§)F)?}
= exp {271 (V5 F)* + 2771 (V) F)? — 27 2(V V) )

Rearranging the terms completes the proof.
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Exercise 1.19Write F'(a + h) — F(a) as an integral and apply Cauchy-Schwarz.

Exercise 2.3.

() If Ae F(S),thenAN{T <t} =(An{S <t})N{T <t} € F(t).

(i) By (i), F(T) < F(T,) for all n, which provesC. On the other hand, ifA €
N,y F(T,), then for allt > 0,

An{T <t} =) (AN{T. <t} e F*(t).
k=1n=k
(iii) Look at the discrete stopping timé&$ defined in the previous example. We have, for
any Borel setd C R¢,
k
{(B(T) e An{T, <k2} = | ({B(mr") e AT, = m27"}) e Frka ™).
m=0
HenceB(T,) is F(T,)-measurable, and 85, | T, we get thatB(T") = lim B(T,,) is
F(T,,)-measurable for any. HenceB(T') is F(T')-measurable by part (ii).

Exercise 2.7.If T = 0 almost surely there is nothing to show, hence assHf#g > 0.
(a) By construction;T;, is the sum of: independent random variables with the lawigf
hence, by the law of large numbers, almost surely,

T,
lim — = E[T] > 0,

n—oo N
which, by assumption, is finite. This implies, in particuldrat7;, — oo almost surely,
and together with the law of large numbers for Brownian mt©orollary 1.11, we get al-
most surelylim,, ... B(T,)/T, = 0. The two limit statements together show that, almost
surely,

B(T, .
lim () = lim
n—oo n n—oo

B (Tn ) . Tn

n

(b) Again by constructionB(T},) is the sum ofx independent random variables with the
law of B(T"), which we conveniently denot&;, X,,.... As
X B(T,) B(T,—-1)

. n . .
lim — = lim — lim
n—oo N n—oo n n— oo n

:O’

the event{| X,,| > n} occurs only finitely often, so that the Borel-Cantelli lemimgplies

Z]P’{|Xn| >n} < oo.
n=0

Hence we have that

E[B(T)] = E|X,| < > P{|Xy| > n} < cc.
n=0
(c) By the law of large numbers, almost surely,
. BT, . 1
lim —— =1 — X; =E|[B(T)].
Jim =S = lm X = E[B(T)

Jj=1
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Exercise 2.9.Let S be a nonempty, closed s8twith no isolated points. To see that it
is uncountable, we construct a subset with the cardinafitylo2}~. Start by choosing a
pointx; € S. As this point is not isolated there exists a further, défgrpointzy, € S.
Now pick two disjoint closed ball®, , B, around these points. Again, agis not isolated,
we can find two points irB; N S, around which we can put disjoint balls contained in
By N S, similarly for B, N S, and so on. Now there is a bijection betwegn2}™ and
the decreasing sequences of balls in our construction. AftBesection of the balls in each
such sequence contains,ass closed, at least one point 8f and two points belonging to
two different sequences are clearly different. This conggl¢he proof.

Exercise 2.13 By Fubini’s theorem,

E[T%] :/0 P{T > xl/a}dx <1 +/1 P{M(xl/a) < 1}dw.

Note that, by Brownian scalin@®{ M (z'/®) < 1} < C'z~ 2= for a suitable constart >
0, which implies thal£[7%] < oo, as required.
Exercise 2.16 By Exercise 2.15 the proce$X (¢): ¢t > 0} defined by

X(t) = exp {2bB(t) — 2b°t} fort > 0,

defines a martingale. Observe tat= inf{t > 0: B(t) = a + bt} is a stopping time for
the natural filtration, which is finite exactly B(¢) = a + bt for somet > 0. Then

P{T < 0o} = e > E[X(T) 1{T < 0}],
and becaus€X”'(¢): t > 0} is bounded, the right hand side equafga®.
Exercise 2.17 Use the binomial expansion 0B(t) + (B(t + h) — B(t))) to deduce that

X (t) = B(t)? — 3tB(t) defines a martingale. We know tiat{7Tr < Tp} = x/R. Write
7« = 7({0, R}). Then

2? = E,[X(0)] = E,[X(7.)] = Po{Tr < To} E. [X (72) | Tk < To]
=P, {Tr < To} E,[R® — 37.R|Tr < Ty] = (z/R)(R® — 3yR) = z (R* — 3y) .
Solving the last equation for gives the claim.
Exercise 2.20Part (a) can be proved similarly to Theorem 2.51, which initathe special
case\ = 0 of this exercise. For part (b) choose U — R as a bounded solution of
1 Au(z) = Au(), forz e U,
with lim u(z) = f(z) forall zyp € OU. Then

X(t) = e Mu(B(t)) — /0 e*’\s(%Au(B(s)) — Au(B(s))) ds

defines a martingale. For any comp&ctC U we can pick a twice continuously differ-
entiable functionv: R? — R with v = w on K andv = 0 on U®. Apply the optional
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stopping theorem to stopping timés= 0, T = inf{t > 0: B(T) ¢ K} to get, for every
re K,

u(z) = E[X(0)] = E[X(T)] = E.[e " f(B(T))] .

Now choose a sequené€, T U of compacts and pass to the limit on the right hand side
of the equation.

Exercise 3.3.To prove the result fok = 1 estimate|u(z) — u(y)| in terms of |z — y|
using the mean value formula for harmonic functions andalkethat, ifx andy are close,
the volume of the symmetric difference Bf«,r) andB(y, r) is bounded by a constant
multiple of r¢~1|z — y|. For generak note that the partial derivatives of a harmonic
function are themselves harmonic, and iterate the estimate

Exercise 3.5. Define a random variabl® by Y := X, if X > AE[X], andY := 0,
otherwise. Applying the Cauchy—Schwarz inequalitff{d’] = E[Y'1{Y > 0}] gives

E[Y 1{Y > 0}] < E{yQ]l/z (P{Y S 0})1/2’

hence,as > Y > X — AE[X], we get

P{X > AE[X]} = P{Y >0} > E[y?

Exercise 3.7.Ford > 3, choosen andb such thats + br?~4¢ = a(r), anda + bR?>~? =
@(R). Notice that the harmonic functions given byr) = 4(|x|) andv(z) = a + b|z|?>~¢
agree orvD. They also agree ob by Corollary 3.7. Sai(z) = a + b|z|?>~%. By similar
consideration we can show thafz) = a + blog |z| in the casel = 2.

Exercise 3.8Letz,y € R?, a = |r —y|. Suppose: is a positive harmonic function. Then
1
u(z) = 7/ u(z)dz
LB(z, R) JB(«,r)

LB(y, R+ a) 1 (R+a)?
< dz = ———+— .
[:B(I, R) ‘CB(ya R+ a) B(y,R+a) u(Z) ¢ Rd U(y)

This converges ta(y) asR — oo, sou(z) < u(y), and by symmetryu(z) = u(y) for
all z, y. Henceu is constant.

Exercise 3.11Uniqueness is clear, because there is at mostongnuousxtension ofs.

Let Dy C D be aball whose closure is containedinwhich containg:. « is bounded and
harmonic onD; = Dy \ {z} and continuous o® \ {z}. Show that this already implies
thatu(z) = E.[u(r(D1))] on Dy and that the right hand side has an obvious harmonic
extension taD; U {z}, which defines the global extension.

Exercise 3.14. To obtain joint continuity one can show equicontinuity @fz, - ) and
G(-,x)in D\ B(zx,¢) foranye > 0. This follows from the fact that these functions are
harmonic, by Theorem 3.35, and the estimates of Exercise 3.3
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Exercise 3.15Recall that
G(z,y) = — % log|z —y| + £ E,[log | B(1) — y|].

The expectation can be evaluated (one can see how in the girddfeorem 3.44). The
final answer is

—Llog|z/R - y/R|+ Llog ||% —|z|lyR~2|, if x# 0,2,y € B(0,R),

G =
(x,y) { —%log|y/R| |f$:01y68(07R)

Exercise 3.16.Supposer,y ¢ B(0,r) and A C B(0,r) compact. Then, by the strong
Markov property applied to the first hitting time 65(0, ),

pa(e, ) = / sa(e, ) dioson (@, d2).
oB(0,r)

Use Theorem 3.44 to show that, f8r C A Borel, jpp(0,r) (2, B) < Cuapo,n(y, B) for
a constantC not depending oB. Complete the argument from there.

Exercise 4.1. Let o = log2/log3. For the upper bound it suffices to find an efficient
covering ofC' by intervals of diametet. If £ € (0, 1) is given, letn be the integer such
that1/3" < 2¢ < 1/3"~! and look at the sets

[Z %,Z% +5} for (z1,...,z,) € {0,2}".
i=1 i=1

These sets obviously covér and each of them is contained in an open ball centred in an
interval of diameteRe. Hence

M(Cye) < 2" =3" =3>(3""1)" < 3%(1/e)".

This impliesdim,,C < «.
For the lower bound we may assume we have a covering by ifdéma— e, x, +¢), with
zi, € C, and letn be the integer such thay3" ! < 2e < 1/3". Letay, = > oo, @i x37"
Then

B(xk—s,kars)ﬂCC{ %:ylzxm,...,yn:xn,k},

3t
=1

and we need at lea8t sets of the latter type to covér. Hence,
M(C,e) > 2" = 3" = (1/3)*(3"T1)" > (1/3)*(1/e)".

This impliesdim,,C > «.
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Exercise 4.2.Givene € (0, 1) find the integen such thatl /(n + 1)? < e < 1/n%. Then
the points in{1/k : k£ > n} U {0} can be covered by + 1 intervals of diametet, andn
further balls suffice to cover the remainingpoints. Hence

M(B,e) <2n+1< 2L (1/6)/2,

implying dimy;(F) < 1/2. On the other hand, as the distance between neighbouring
points is

1 1 1 1

_ — >
ko k+1 k(k+1) 7 (B+1)2°

we always need at least— 1 sets of diameter to coverFE, which implies

M(E,e) >n—12 224 (1/)'/?,

hencedim,,(E) > 1/2.

Exercise 4.3.Supposd is a bounded metric space willhm ,, £ < «. Choose > 0 such
thatdimFy; < a—e. Then, for every: there exist® < § < % and a coverindvy, ..., E,
of E by sets of diameter at mostwith n < §~**¢. The a-value of this covering is at
mostnd® < ¢¢, which tends to zero for large HenceHS (E) = 0, anddim F < a.

Exercise 4.4.Indeed, a¥’ C F impliesdim E < dim F, it is obvious that

o0
dim U Ep > sup{dimEk: k> 1}.
k=1
To see the converse, we use

Hg@( Ej Ek) < inf { ii |Ej k| Evg, Bap, . .. coversEk}

k=1 k=1 j=1

inf { S IEal*: Brg, Eag, ... coversEk.} =3 HEL(E).
j=1 k=1

M

E
I

1

Hence,

dim | J B < sup {a > 0: 1 (| Br) > 0} < swp {a > 0: 3 e (B) >0}
k=1 k=1 k=1
< st >0: HO(E)) >0},

This proves the converse inequality.
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Exercise 4.6.Suppose thaf is surjective andv-Holder continuous with Holder constant
C > 0, and assume tha@{*?(E,) < oo. Givene,§ > 0 we can coverE; with sets
By, Bs, ... of diameter at mosi such that

Z |B;|*? < HP(Ey) + €.

i=1
Note that the set§(B,), f(B2), ... coverEs and that f(B;)| < C'|B;|* < C §“. Hence

STIFB)P < C? Y B < CPHP(Ey) + CPe,
=1

i=1

from which the claimed result for the Hausdorff measure itgddllows.

Exercise 4.8.Start withd = 1. For any0 < a < 1/2 let C'(a) be the Cantor set obtained
by iteratively removing from each construction intervalemtral interval ofl — 2q of its
length. Note that at theth level of the construction we ha®é intervals each of length™.
Itis not hard to show that’'(a) has Hausdorff dimensidiog 2/ log(1/a), which solves the
problem for the casé = 1.

For arbitrary dimensior and givena: we find a such thatdim C(a) = «/d. Then the
Cartesian produacf(a)x .4. xC(a) has dimensiomx. The upper bound is straightfor-
ward, and the lower bound can be verified, for example, freemtlass distribution princi-
ple, by considering the natural measure that places iy2$% to each of the?" cubes of
side length:™ at thenth construction level.

Exercise 4.14.Recall that it suffices to show that'/?(Rec) = 0 almost surely. In the
proof of Lemma 4.21 the maximum process was used to define aumeean the set of
record points: this measure can be used to define ‘big inraaalogous to the ‘big
cubes’ in the proof of Theorem 4.18. A similar covering siggtas in this proof yields the
result.

Exercise 5.1.Use the Borel-Cantelli lemma for the events

E, = { sup B(t)— B(n) > \/alogn}
n<t<n+1
and test for which values af the seriesP(E,,) converges. To estimate the probabilities,
the reflection principle and Lemma 12.9 will be useful.

Exercise 5.2. The lower bound is immediate from the one-dimensional staté. For
the upper bound pick a finite subsg&tC 05(0,1) of directions such that, for every €
0B(0,1) there existst € S with |z — Z| < . Almost surely, all Brownian motions in
dimension one obtained by projectifig(¢): ¢t > 0} on the line determined by the vectors
in S satisfy the statement. From this one can infer that the I|pnswer consideration is
bounded from above by + ¢.
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Exercise 5.3LetT, = inf{t > 0: B(t) = a}. The proof of the upper bound can be based
on the fact that, ford < 1 andqg > 1,

S P{p(T — Ti—gn) < 527"} < 0.
n=1

Exercise 5.4.Define the stopping time_; = min{k: S, = —1} and recall the definition
of p,, from (5.4). Then

pn =P{S, >0} —P{S, > 0,7_1 < n}.
Let{S;: j > 0} denote the random walk reflected at time, that is

SJ’-k =5, forj <74,
S5 = (=1)—(S;+1) forj>r_;.

Note that ifr_; < nthenS, > Oifandonly if S} < — 2, so
pn =P{Sy > 0} —P{S;, < -2}
Using symmetry and the reflection principle, we have
pn = P{S, > 0} = P{S,, > 2} =P{S, € {0,1}},

which means that

pn = P{S,=0} = "’/’2) 2—n for n even

pn = P{S,=1} = (nj;)ﬂ) 2" forn odd.
Recall that Stirling’s Formula gives.! ~ 2axm™*1/2¢=™ where the symbol means

that the ratio of the two sides approacheasm — oo. One can deduce from Stirling’s
Formula thap,, ~ /2/7n, which proves the result.

Exercise 5.5.Denote byl (k) the event thak is a point of increase fofy, S1,...,S,
and byF,, (k) = I,,(k) \Uf;ol I,,(7) the event thak is the first such point. The events that
{Sy, is largest among, S1, . . . Sk} and that{.S, is smallest among}, Sk.+1,...S,} are
independent, and therefdfél,, (k)) = prpn—&-

Observe that if5; is minimal amongs;, . . ., S, , then any point of increase &b, . .., S;

is automatically a point of increase 6y, . . . , S,,. Therefore forj < k we can write

F;(j) n{S; < S; < Sy foralli € [5,k]} N {S) is minimal amongS, ..., Sy} .

The three events on the right hand side are independentegsrnivolve disjoint sets of
summands; the second of these events is of the type corgiddremma 5.9. Thus,

P(F,(j) NI.(k) > P(F;(j) pi_; Pu—i
> pi_; P(F;(5)) P{S; is minimal amongS;, ..., S, } ,
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sincep,,— > pn—;. Here the two events on the right are independent, and titeitsiection
is preciselyF,, (j). ConsequentlyP(F, (j) N In(k)) > pi_;P(F.(j)).
Decomposing the evet}, (k) according to the first point of increase gives

n n n k
> prpnok = Z P(Io(k) = Y > P(Fu() N Iu(k))
k=0 =

k=0 j=0

Ln/2J j+1n/2] ln/2] Ln/2) (13.2)
> Y Z P PEG) = Y PFLG) D pE.
j=0 j=0 i=0

This yields an upper bound on the probability tHat;: j = 0,...,n} has a point of
increase by time:/2; but this random walk has a point of increase at titrieand only if

the reversed walkS,, — S,,—;: i = 0,...,n} has a point of increase at time— k. Thus,

doubling the upper bound given by (13.2) proves the statemen

Exercise 5.7.In the proof of Exercise 5.5 we have seen that,

n n n k
D ppnk =Y P(Iu(K) =D > P(Fu() N In(k)).
k=0 k=0

k=0 j=0
By Lemma 5.9, we have, fgr< k < n

P(F,(5) N In(k)) P(F,(j) N {S; < S; < Sy for j <i < k})

<
< PFEG))PT gy 2)-
Thus,

n

n n k n
kz_opkpnfk< DS P(FL()P] gy 2y < ZP ));pfi/%'

k=0 35=0

This implies the statement.

Exercise 5.10.Suppose thak is an arbitrary random variable with vanishing expectation
and finite variance. For each € N divide the intersection of the support &f with

the interval[—n, n] into finitely intervals with mesh< % fz; < -+ < x,, are the
partition points, construct the law &f,, by placing, for anyj € {0, ..., m}, atoms of size
P{X € [z;,zj41)}inpositionE[X | z; < X < z,;41], using the conventiom, = —oo
andz,,+1 = oo. By construction X,, takes only finitely many values.

Observe thaf?[X,,] = 0 and X,, converges toX in distribution. Moreover, one can show
thatr, — 7 almost surely. This implies tha(r,,) — B(r) almost surely, and therefore
also in distribution, which implies th& has the same law d3(7). Fatou’s lemma implies
that

E[r] < lin% infE[Tn} = 1111% infE[Xrﬂ < 00

Hence, by Wald's second lemm&|[X?] = E[B(7)?] = E[7].
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Exercise 5.11 Note that
InL{t €[0,1]: Si(t) >0} —#{k € {1,...,n}: Sk > 0}

is bounded by#{k € {1,...,n}: SpSk—1 < 0}. Hence it suffices to show that

S|

> P{SkSk_1 <0} — 0.
k=1

Note that, for anyM > 0, we have{S;Sx_1 < 0} C {|Sk — Sk—1| > M} U{|Sk—1] <

M }. One can now choosk® > 0 so large that the probability of the first event on the right,
which does not depend dhr is arbitrarily close to zero. Donsker’s invariance prpiei
implies that, for any/ > 0, one ha®{|Sx_1| < M} — 0, ask — oc.

Exercise 5.12 (b).For a continuous functiotfi: [0,c) — R and anya > 0 definer/ =
inf{t > 0: f(t) = a}, 7}y = inf{t > 7J: f(t) = 0} and

ag)a =sup{0 <t < 7'570: f(t) =0}.

Define a mapping® on the set of continuous functions by lettidg f = f if T({O =00
and otherwise

t ift<ol ort>r/,
q)af(t){ f() 0,a a,0

f(Taf,o + ‘7({,0 —t) if Ug,o <t Taf,o~

For fixedn € N, we look at the functions’: : [0,00) — R associated to a simple random
walk as in Donsker’s invariance principle. It is easy to de# the laws ofS} and®*S}
coincide.

The function®? is continuous on the set of all continuous functions takiogifive and
negative values in every neighbourhood of every zero. Byofidma 2.28, Brownian motion
is almost surely in this set. Hence, by property (v) in thetffanteau theorem, see Theo-
rem 12.6 in the appendix, and Donsker’s invariance priecifile laws of B(t): ¢t > 0}
and{®*B(t): t > 0} coincide, which readily implies our claim.

Exercise 6.6.From Exercise 2.17 we get, for anye (0,1) that

2

1 —
Ez[T1|T1<ﬂ)]: 3 Em[T0’T0<T1]=

whereTy, T, are the first hitting times of the points resp.1.
Define stopping times™ = 0 and, forj > 1,

2x — x?

3 )

o =inf{t > 7" : B(t) =z}, 7" =inf{t > 0" B(t) € {0,1}}.

Let N@ = min{j > 1: B(7;")) = 1}. ThenN is geometric with parameter. We
have
N@)

T
o () (=)
/0 1{0<B(s)<1}ds_1;%;(7j — o).
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and this limit is increasing. Hence
T1
E/ 1{0 < B(s) < 1} ds
0
=lImE[N® —1]E[r;" — o}
210 [ E[ 91

1 20— x 11—z
—1i (7—1) li
1o \z 3 T3

B(r{") =0] + E%E[T{) — o | B(r{”) = 1]

Exercise 6.7.0bserve thak exp{\X;} = ¢*/(2 — ¢*) for all A < log 2, and hence, for a
suitable constar@ and all smallx > 0,

Eexp {A(X; —2)} < exp{\* + CA*},
by a Taylor expansion. Using this far= 5 we get from Chebyshev’s inequality,

k k
IP’{ Z(Xj -2)> ms} < exp{-m5} (Eexp{% (X; — 2)})
j=1
< exp{ —my} exp{m(5 +C%)},
which proves the more difficult half of the claim. The inedtyafor the lower tail is
obvious.

Exercise 6.8.We have that

P{Mgt}:P{—\/ﬂ—éng\/?—é}.

So the density of the left hand side is

1 2
—(2t+£2) /2 [ INGT: 72\/21
e e +e ,
2v/ 7t

which by Taylor expansion is
1 e (2t+6%)/2 i (ev2t)%* ]
Jat 2 2h)!
Recall thatX 2 /2 is distributed as Gamn(g), and givenV the sumzfil Z; is distributed
as GamméV ). By conditioning onV, we get that the density of the right hand side is
0 p2k o —07/24k—1/2 —t

2RI (k + 1)

k=0
Recall that

At %) N \/;(kzk]?! ’

and so the densities of both sides are equal.
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Exercise 7.1.Given F' € D[0, 1] approximatef = F’ by the deterministic step process

o
Fo = mnyz-naa-m2" [F(i27") = F((i — 1)27")].
i=1

Exercise 7.2.Use that/, H(s)dB(s) = [ H” (s) dB(s).

Exercise 7.4.First establish a Taylor formula of the form

|f($’y) — f(xo,90) — Vyf(xmyo) (¥ — o)
— Vo f (20, 90) - (z — 2z0) — 5(x — 20) " Hes, f (20, yo) (x — z0)|
S wi(8, M) |y — yo| + wa(8, M)|x — a0/,

whereHes, f = (0;; f) is thed x d-Hessian matrix of second derivatives in the directions
of z, and
wi(0, M) = sup |Vyf(z1,m1) — Vyf (@2, 12)],

z1,29€[—M,M]d,yq ,yo€[— M, M]™
lxy—z2|Alyp —y2[<s

and the modulus of continuity dies, f by

(.(JQ((S, M) = sup ||HeSxf(5f1»y1) - Hesfbf(x27y2)Ha

z1,29€[—M,M]%,y1 ,yg €[~ M, M]™
|21 —z2|Aly; —y2|<d

where|| - || is the operator norm of a matrix. Then argue as in the proohefofem 7.14.

Exercise 7.5 First use Brownian scaling and the Markov property, as irotiiginal proof
of Theorem 2.37 to reduce the problem to showing that theiloligiton of B(7'(1)) (using
the notation of Theorem 2.37) is the Cauchy distribution.

The map defined by (z) = 5%, for z € C, takes the half-plan¢(z,y): = < 1} onto
the unit disk andf(0) = 0. The image measure of harmonic measuré/git) from 0
is the harmonic measure on the unit sphere from the origingtwis uniform. Hence the
harmonic measurgy (1)(0, - ) is the image measure of the uniform distributienon the
unit sphere undef —!, which can be calculated using the derivativefof

Exercise 7.6.Use that(t) = W, (H (¢)) andlimyjo, H(t) = 0.

Exercise 7.9.Supposé: is supported byo, b] and look at the partitions given by” =
bk2—™, fork = 0,...,2". By Theorem 7.33 and Theorem 6.19 we can choose a continu-
ous modification of the procez{#ot sign(B(s) — a) dB(s): a € R}. Hence the Lebesgue
integral on the left hand side is also a Riemann integral amdbe approximated by the
sum

TRt sign(B(s) — ti" s)) = 5 5
> o2 nie) | sten() — ) aB) = [ Fu(B(s) aB)

where
2" -1
F.(z) = Z b2 "h(ty" ) sign(z — ty), forn e N.
k=0
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This is a uniformly bounded sequence, which is uniformlyvagent to the Lebesgue
integral
F(z) = / h(a)sign(z — a) da.

Therefore the sequence of stochastic integrals convengk$ to the stochastic integral
Io° F(B(s)) dB(s), which is the right hand side of our formula.

Exercise 7.12. By Theorem 5.35 we may replace by the first exit timer from the
interval (—1, 1) by a linear Brownian motion.
For statement (a) we use that

P{r <z} = 2P{ 01213<X$B(t) > 1} —P{ max B(t) > 1, min B(t) < —1}.

0<t<z 0<t<e

The subtracted term is easily seen to be of smaller orderthgdirst term we can use the
reflection principle and Lemma 12.9 to see that

[z 3
P{ orgtagsz(t) > 1} =2P{B(t) > 1} ~ 2,/ & e 2.
Combining these results leads to the given asymptotics.
Statement (b) can be inferred from the equation

P{r >z} =Py {B(s) € (0,2) forall 0 < s < z}

and the representation of the latter probability in (7.15).

Exercise 8.1.Suppose that is subharmonic an(x, ) C U. Letr be the first exit time

from B(z,r), which is a stopping time. Adwu(z) > 0 for all z € U we see from the

multidimensional version of Ité’s formula that
d

u(B(tAT)) <u(B(0))+ Z/O

i=1

tAT au

8$1‘

(B(s)) dBi(s)-

Note thatdu/0x; is bounded on the closure Bfz, r), and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

Ex [u(B(t A T))] < Eq[u(B(0))] = u(x).

Now lett 1 oo, so that the left hand side converge&tdu(B(7))] and note that this gives
the mean value property for spheres. The result follows tagimting over-.

Exercise 8.3.Let u be a solution of the Poisson problem &in Define open set&,, T U
by
Uy={zeU:|z—y|>Lforally € oU}.

Let 7, be the first exit time of/,,, which is a stopping time. A§Au(z) = —g(x) for all
z € U we see from the multidimensional version of 1t6’s formulatth

d tATh au

wBenm) =uBO)+ Y [ F B e - [ b)) ds

i=1
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Note thatou/dx; is bounded on the closure 6f,, and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

E. [u(B(t A )] = u(z) — E, /0 " G(B(s)) ds.

Note that both integrands are bounded. Hence, fsc andn — oo, bounded conver-
gence yields that

u(z) = E, /OT g(B(s))ds,

where we have used the boundary condition to eliminate thbdad side.

Exercise 8.5.First note that the lower bound is elementary, because1 with positive
probability. For the upper bound we proceed in three stapshd first step, we prove an
inequality based on Harris’ inequality, see Theorem 5.7.

Let f1, f2 be densities of), co). Suppose that the likelihood ratig(r) = NG ; is increas-
ing, andh: [0,00) — [0700) is decreasing ofu, oo). Then
fo r) dr foo fa(r) dr
e < Y(a) + . (13.3)
I° ( )fl( ) f fi(r) dr
To see this, observe first thgfg’ h(r)fa(r) dr < fo ) dr. Write T, =

f f1(r) dr. Using Harris’ mequallty, we get

/h Vfa(r) dr =T, /h >d7‘
<Ta/ L) /w
:—/ )dr/a fa(r) dr

Combining the two inequalities proves (13.3).
As a second step, we show that, for< o,

]P)O{Bt27t2+8]ﬁA7é®} C, Po{Btl,t1+S]ﬂA7é®}

where

_ f2(a) 1 cedb 1
Ca= fi(@ " Bo{IB > a) T Bo{[Bt)] > a}

and f; is the density of B(¢;)|. This follows by applying (13.3) with

hr) = [ B, B0, A 0} do. )
Finally, to complete the proof, we show that
Po{B(0,7)NA#0} < =52 P{B[0,1]N A # 0},

whereC,, < el® + Po{|B(1)| > a}~'. To this end, letH (I) = Po{B(I) N A # 0},
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where[ is an interval. Therf] satisfiesH[t, ¢t + 3] < C,H[%,1] for ¢t >
can conclude that

1. Hence, we

EH[0,7] < H[0,1]+ Y e ??H[$, 7] < Co Y e ?/?H[0,1],
j=2 j=0

which is the required statement.

Exercise 8.10.Note thatX x X is itself a compact metric space. Then, by the Stone—
Weierstrass theorem, the vector space spanned by thedosaif the formf(z,y) =
g(z)h(y), whereg, h are continuous functions okl, is dense in the spadg(X x X) of
continuous functions oX x X. Hence weak convergence is implied by the fact that,

lim /fdunmn: lim /gdun/hdun =/gdu/hdu=/fdu®u-

Exercise 8.11 For the proof of the upper bound, choage> 0 such that

inf P,{B(t)eB(O M) forallo<t<1} > L.
et {B(t) € B(0, M) =3

Then, forallt > 1,

[t]
/Pm{m(m) <tyde < Z/Pm{B[j C L) NB(0,1) # 0} dr
j=1

4]
< 22/@1{3@) € B(0,M)} dx
j=1

[¢] d
- 22/6(07]”)/!%(%3/) dzdy < (4£(B(0,1))M9) ¢.

j=1
For the lower bound, we argue that
/Pm{TB(O,l) <t}dx
Lt]
> Z/PI{B[O,j ~ )N B0,1) = 0, BG) € B0,1)} de
j=1

[¢]
= Zl/PO{B[l,j)ﬂB((LQ) =0, B(]) c B(xyl)}dx7

reversing time in the last step. Using Fubini’s theorem, everite the right hand side as

[t]
Eo|1{B[1,j) N B(0,2) = 0
> Ea[a{B0.1) 0 502 oo

> ($£(B(0,1))Po{B[1,00) N B(0,2) = 0})t.

: dx]
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Exercise 9.3. Use arguments as in the proof of Theorem 9.22 to transferebats of
Theorem 9.8 from intersections of independent Brownianianstto self-intersections of
one Brownian motion.

Exercise 9.8.An example can be constructed as follows: Ugtand A, be two disjoint
closed sets on the line such that the Cartesian squirésmve Hausdorff dimension less
than1/2 yet the Cartesian produet; x A, has dimension strictly greater thap2. Let

A be the union of4; and A,. Then Brownian motio{ B(¢): ¢ > 0} on A is 1-1 with
positive probability (ifB(A;) is disjoint fromB(A5)) yet with positive probabilityB (A4;)
intersectsB(As).

For instance letl; consist of points irf0, 1] where the binary.'" digit vanishes whenever
(2k)! < n < (2k + 1)! for somek. Let A, consist of points in2, 3] where the binary
n*® digit vanishes wheneveRk — 1)! < n < (2k)! for somek. Thendim(A?) = 0 for

i =1,2yetdim(A; x Ag) > dim(A; + A2) = 1, infactdim(4; x Ay) = 1.

Exercise 9.10.Let {B;(t): 0 < ¢t < 1} be the first component of the planar motion. By
Kaufman’s theorem, almost surely,

dim S(a) = 2dim{¢ € [0,1]: B1(t) = a}

and, as in Corollary 9.30, the dimension on the right equAlsfor everya € (min{z:
(z,y) € B[O, 1]}, max{z: (z,y) € B[0,t]}).

Exercise 10.2.For every decompositio®’ = | J;-, E; of E into bounded sets, we have,
using countable stability of Hausdorff dimension,

o0
sup dimy B > supdim E; = dim | J E; = dim E,
=1 i=1 R

=1

and passing to the infimum yields the statement.
Exercise 10.7.The argument is sketched in [La99].

Exercise 10.9.For (a) note that Theorem 10.28 can be read as a criteriorteondi@e the
packing dimension of a sét by hitting it with a limsup random fractal. Hendémp (A N

E) can be found by evaluatirig{ An A’N E = ()} for A’ an independent copy of. Now

use thatd N A’ is also a discrete limsup fractal.
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Exercise 10.10.To apply Theorem 7.25 for the proof of Lemma 10.40 (a) we ghit
cone by defining a new tip as follows:

e If a < 7 the intersection of the line through parallel to the central axis of the cone
with the boundary of the dual cone,

e if a > 7 the intersection of the line throughparallel to the central axis of the cone
with the boundary of the cone.

Note thatz + Wa, &] C Z + W]a, €] and there exists a constafit> 1 depending only
ona such thatz — z| < C4. There is nothing to show i£'§ > /2 and otherwise

P, {B(0,T.(2)) C z + Wa, €]} < P.{B(0,Ts/2(3)) C Z + Wla,€]} .

By shifting, rotating and scaling the Brownian motion andTheorem 7.25 we obtain an
upper bound for the right hand side of

}Pl{B(O,T% (c+1-1(0)) € Wia, 0]} = 2 arctan (Co (2)

whereCy, C; > 0 are suitable constants.
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In this section we give a personal selection of problemdedlto the material of this book,
which are still open.

(1) Given an almost sure property of Brownian paths, charastthose continuous func-
tions f such thatB + f also has this property almost surely.
Recall that by the Cameron—Martin theorem, Theorem 1.38tHe functionsf €
DJ0,1] all almost sure properties dB carry over toB + f. Hence only functions
f € C[0,1] \ D|0, 1] are of interest.
The answer to this problem depends on the property one isnga@t. Some problems
are easy (and fully resolved) and others are very trickyetéee some examples:

(@)
(b)

(©

(d)

Nowhere differentiable We have seen in Exercise 1.12 that &ir continuous

functionsf: [0,1] — R, the functionB + f is nowhere differentiable.

Not hitting points Takingd > 2 the problem is to characterise the functions
f:[0,1] — R< with the property

P{3t € (0,1) such thatB(t) + f(t) = 0} = 0. (13.2)

Recall that there are continuous space-filling curyeso that it is plausible
that some continuoug violate the statement in the display. Fbr= 2 Gra-
versen [Gr82] shows that, for any < 1/2, there exista-Holder continuous
functionsy violating (13.1), and Le Gall [LG88a] shows that amyH0lder con-
tinuous f with o > 1/2 satisfies (13.1). The latter paper also contains finer
results near the critical cagse = 1/2 and results for dimension$ > 3. An
extension to Lévy processes is given by Mountford [Mo89].

No isolated zerasRecall from Theorem 2.28 that, for a linear Brownian motion
{B(t): t € [0,1]}, the setZeros = {t € [0,1]: B(¢t) = 0} has no isolated
points. Using the law of the iterated logarithm in the fornGafrollary 5.3, one
can easily construct functiorse CJ0, 1] such that{t € [0,1]: B(t) + f(t) =

0} has an isolated point in the origin. The problem is thereforeharacterise
thosef € CJ0, 1] such that the proceg$3(¢)+ f(¢): 0 < ¢t < 1} has noisolated
zeros.

No double points Take Brownian motio{ B(t): 0 < ¢ < 1} in dimension

d = 4. Characterise those functiorfse C([0, 1], R*) such that the process
{B(t) + f(t): 0 <t < 1} has no double points.

383
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)

©)

(4)

®)

(6)

What is the minimal Hausdorff dimension of a curve contaimethe path of planar
Brownian motion?

We have seen in Theorem 11.10 that the outer boundary is & contained in pla-

nar Brownian motion, which has Hausdorff dimensibf8. It is not known whether

this is the curve of minimal dimension. The best known loweurd stems from Pe-
mantle [Pe97], where it is shown that the planar Browniai piaies not contain a line
segment. Itis also unknown whether there exists a Lipschitze intersecting the range
of planar Brownian motion in a set of positive length.

Is the set of double points of planar Brownian motion totdilsconnected?

It is natural to conjecture that, almost surely, all coneada@omponents of the set of dou-
ble points of a planar Brownian motion are singletons, bytmmf is known. For Brow-
nian motion inR? this follows from the fact that the set of double points smeasure
zero, together with a general fact from geometric measwerthsee e.g. [Fa97a].

Can one move between any two domains of the complement arife of a planar
Brownian motion by passing through only a finite number ohf=oof the range?

This question is due to Wendelin Werner. To put it more fofynigkt { B(¢): ¢t > 0} be
a planar Brownian motion. We ask whether, almost surelyafyrz, y € R? \ B[0, 1]
there exists a curve: [0, 1] — R? with v(0) = z,~(1) = y such that

~7[0,1] N B[0, 1]

is a finite set.

For which gauge functiong does a planar Brownian motion visit some (random) point
z € R? in a set of positive>-Hausdorff measure?

This problem is related to finding the ‘maximal multiplicitf points on a planar Brow-
nian curve{ B(t): t > 0}. We know from Corollary 9.29 that, almost surely,

dim{t > 0: B(t) =z} =0 forall z € R?.

It is however unknown for which gauge functiopsve can find an (exceptional) poiat
such that{?{t > 0: B(t) = 2} > 0.

What is the Hausdorff dimension of the set of points wheréldoal time’ of planar
Brownian motion takes a particular value?

This problem, which is due to Bass, Burdzy and KhoshneviB&KP4], requires some
background from that paper. Recall from Theorem 9.24 thetgnl Brownian motion
has points of infinite multiplicity. Similar arguments cas@be used to show that the
Hausdorff dimension of the set of points of infinite multgaty is still two. How far can
we go before we see a reduction in the dimension?
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A natural way is to count the number of excursions from a poifda be explicit, let
{B(s): s > 0} be a planar Brownian motion and fixe R? ande > 0. LetS_; =0

and, for any integej > 0, letT; = inf{s > S;_1: B(s) = «} andS; = inf{s >

T;: |B(s) — z| > €}. Then define

NF :max{j > 0:T; <oo}7

which is the number of completed excursions fremeachingdB(x, ¢). Observe that
lim.)o N¥ = oo if and only if « has infinite multiplicity. It is therefore a natural ques-
tion to ask how rapidlyV* can go to infinity where | 0. Bass, Burdzy and Khosh-
nevisan [BBK94] show that, almost surely,

1 xr

— < sup limsup —=— < 2e,

2 rER2 €l0 10g(1/€)
where the limsup represents a ‘local time’ of planar Browrmnigotion inz. It is an open
problem to find the value of the supremum and to identify, for@ < o < 2, the value
of

N.’[)
i R?: lim —5— =ay.
dim { € B*: lim Tog(1/e) of
Partial progress on this problem was made by Bass, Burdzithoshnevisan [BBK94],
who show a lower bound ¢f — a for the Hausdorff dimension for all < a < % and
an upper bound df — 2 forall 0 < a < 2e.

Does planar Brownian motion have triple points which areogdéoneer points?

Let {B(t): 0 < t < 1} be a planar Brownian motion. A point € R? is called a
pioneer pointif there exists0 < ¢ < 1 such thatr = B(t) andx lies on the outer
boundary ofB|[0, ], i.e. on the boundary of the unbounded componei®®f B[0, ¢].
Note that all points on the outer boundary Bf0, 1] itself are pioneer points, but not
vice versa. Indeed, Lawler, Schramm and Werner [LSWO02] sheimg arguments like
in Chapter 11, that the Hausdorff dimension of the set of @éomoints is}.

Burdzy and Werner in [BW96] show that, almost surely, theee rav triple points of
planar Brownian motion on the outer boundary and conjedfusé there are also no
triple points which are pioneer points. It is not hard to aesn(g nontrivial knowledge
about intersection exponents) that the set of triple pairitieh are also pioneer points
has Hausdorff dimension zero, but it is open whether thigssanpty.
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