Publications

Articles in Preparation

5.D. Derigs, G.J. Gassner, S. Walch and A.R. Winters. Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics submitted to DMV. arXiv e-prints: arXiv:1708.03537.
4.G. J. Gassner, A. R. Winters, F. Hindenlang, D. A. Kopriva. The BR1 Scheme is Stable for the Compressible Navier-Stokes Equations submitted to Journal of Scientific Computing, arXiv e-prints: arXiv:1704.03646.
3.David Flad, Gregor J. Gassner On the use of kinetic energy preserving DG-schemes for
large eddy simulation
submitted to Journal of Computational Physics. arXiv e-prints: arXiv:1706.07601.
2.Andrew R. Winters, Rodrigo C. Moura, Gianmarco Mengaldo, Gregor J. Gassner, Stefanie Walch,
Joaquim Peiro, Spencer J. Sherwin. On the accuracy and robustness of conservative and split form DG approaches to under-resolved turbulence computations in preparation.
1.D. Derigs, A.R. Winters, G.J. Gassner and S. Walch Ideal GLM-MHD: About the Entropy-
Consistent Nine-Wave Magnetic Field Divergence Diminishing Ideal Magnetohydrodynamic
Equations
in preparation.

Journal Articles

40.L. Friedrichs, D. C. D. R. Fernández, A. R. Winters, G. J. Gassner, D. W. Zingg, and J. Hicken Conservative and Stable Degree Preserving SBP Operators for
Non-Conforming Meshes
accepted in Journal of Scientific Computing, ArXiv e- prints:arXiv:1611.00979.
39.N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry. Journal of Computational Physics 340, (2017): 200–242.
38.David A. Kopriva, Jan Nordström, Gregor J. Gassner Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems. J. Sci. Comp. 72 (2017): 314-330.
37.A.R. Winters, D. Derigs, G.J. Gassner and S. Walch A Uniquely Defined Entropy Stable Matrix Dissipation Operator for High Mach Number Ideal MHD and Euler Simulations.Journal of Computational Physics 332, (2017): 274–289.
36.D. Derigs, A.R. Winters, G.J. Gassner and S. Walch A Novel Averaging Technique for Discrete Entropy-Stable Dissipation Operators for Ideal MHD. Journal of Computational Physics 330, (2017): 624-632.
35.G.J. Gassner, A.R. Winters and David A. Kopriva Split Form Nodal Discontinuous Galerkin Schemes with Summation-By-Parts Property for the Compressible Euler Equations. Journal of Computational Physics 327 (2016): 39-66.
34.David A. Kopriva, Andrew R. Winters, Marvin Bohm, Gregor J. Gassner, A Provably Stable Discontinuous Galerkin Spectral Element Approximation for Moving Hexahedral Meshes.
Computers & Fluids 139, (2016): 148-160.
33.A.D. Beck, D.G. Flad, C. Tonhäuser, G.J. Gassner and C.-D. Munz On the Influence of Polynomial De-aliasing on Subgrid Scale Models Flow, Turbulence and Combustion 97: 475-511, 2016.
32.D. Derigs, A.R. Winters, G.J. Gassner and S. Walch. A Novel High-Order, Entropy Stable, 3D AMR MHD Solver with Guaranteed Positive Pressure. Journal of Computational Physics 317 (2016): 223-256.
31.A.R. Winters and G.J. Gassner. Affordable, Entropy Conserving and Entropy Stable Flux Functions for the Ideal MHD Equations. Journal of Computational Physics, 304: 72–108, 2016.
30.A.R. Winters and G.J. Gassner. An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics. Journal of Scientific Computing 67,2 (2016): 514-539.
29.A.R. Winters and G.J. Gassner. A Comparison of Two Entropy Stable Discontinuous Galerkin Spectral Element Approximations for the Shallow Water Equations with Non-Constant Topography. Journal of Computational Physics, 301: 357–376, 2015.
28.D.A. Kopriva and G.J. Gassner. Geometry Effects in Nodal Discontinuous Galerkin Methods on Curved Elements that are Provably Stable. Applied Mathematics and Computation, 272: 274–290, 2016.
27.G.J. Gassner, A.R. Winters and David A. Kopriva. A Well Balanced and Entropy Conservative Discontinuous Galerkin Spectral Element Method for the Shallow Water Equations. Applied Mathematics and Computation, 272: 291–308, 2016.
26.G.J. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, C.-D. Munz. A Space-Time Adaptive Discontinuous Galerkin Scheme. Computers & Fluids, 117: 247–261, 2015.
25.D.A. Kopriva, G.J. Gassner. An Energy Stable Discontinuous Galerkin Spectral Element Discretization for Variable Coefficient Advection Problems. SIAM Journal on Scientific Computing 36: A2076-A2099, 2014.
24.Th. von Larcher, A. Beck, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, G. Gassner and C.-D. Munz. Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation. Meteorologische Zeitschrift, 24: 313-342, 2015.
23.A.D. Beck, T. Bolemann, D. Flad, H. Frank, G.J. Gassner, F. Hindenlang, C.-D. Munz. High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. International Journal for Numerical Methods in Fluids, 76: 522 - 548, 2014.
22.G.J. Gassner. A kinetic energy preserving nodal discontinuous Galerkin spectral element method. International Journal for Numerical Methods in Fluids, 76: 28-50, 2014.
21.F.J. Hindenlang, G.J. Gassner, C.-D. Munz. Improving the accuracy of discontinuous Galerkin schemes at boundary layers. International Journal for Numerical Methods in Fluids, 75: 385-402, 2014.
20.G. Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing, 35: A1233-A1253, 2013.
19.P. Birken, G. Gassner, M. Haas, C.-D. Munz. Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations. Journal of Computational Physics, 240: 20-35, 2013.
18.J.P. Boyd, G. Gassner, Burhan A. Sadiq. The Nonconvergence of h-refinement in prolate elements. Journal of Scientific Computing, 57: 372-389, 2013.
17.G. Gassner. Dispersion and Dissipation Analysis of PNPM-schemes. Journal of Scientific Computing, 54: 21-44, 2013.
16.A. Stock, J. Neudorfer, M. Riedlinger, G. Pirrung, G. Gassner, R. Schneider, S. Roller, C.-D. Munz. Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method. IEEE Transactions on
Plasma Science, 99: 1-11, 2012.
15.J. Neudorfer, A. Stock, J. Flamm, F. Hindenlang, G. Gassner, C.-D. Munz, R. Schneider, S. Roller Numerical Investigation of High-Order Gyrotron Mode Propagation in Launchers at 170 GHz. IEEE Transactions on Plasma Science, 40(6): 1512-1521, 2012.
14.F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.-D. Munz. Explicit Discontinuous Galerkin methods for unsteady problems. Computers&Fluids, 61: 86-93, 2012.
13.G. J. Gassner, A. D. Beck. On the Accuracy of High Order Discretizations for Underresolved Turbulence Simulations. Theoretical and Computational Fluid Dynamics, 27: 221-237, 2013.
12.G. Gassner, D. A. Kopriva. A Comparison of the Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Method for Wave Propagation Problems. SIAM J. Sci. Comp., 33(5): 2560-2576, 2011.
11.G. Gassner, M. Dumbser, F. Hindenlang, C.D. Munz. Explicit One-Step Time Discretizations for Discontinuous Galerkin and Finite Volume Schemes Based on Local Predictors. J. Comput. Phys., 230(11): 4232-4247, 2011.
10.D. A. Kopriva, G. Gassner. On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods. J. Sci. Comp., 44(2): 136-155, 2010.
9.C. Altmann, G. Gassner, M. Staudenmaier, C.-D. Munz. High Order large Scale Calculations. inSiDE, 8(23): 12-15, 2010.
8.C. Altmann, G. Gassner, F. Lörcher, C.-D. Munz. A Space-Time Expansion Discontinuous Galerkin Scheme With Local Time Stepping for the Ideal and Viscous MHD Equations. IEEE Transactions on Plasma Science, (37): 513-519, 2009.
7.M. Dumbser, G. Gassner, C.-D. Munz. Discontinuous Galerkin-Verfahren für zeitabhängige Advektions-Diffusions-Gleichungen. Jahresbericht der Deutschen Mathematiker-Vereinigung Bd. 111 (2009).
6.G. Gassner, F. Lörcher, C.-D. Munz, J. S. Hesthaven. Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys., (228): 1573-1590, 2009.
5.F. Lörcher, G. Gassner, C.-D. Munz. An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys., 227(11): 5649-5670, 2008.
4.G. Gassner, F. Lörcher, C.-D. Munz. A discontinuous Galerkin scheme based on a space-time expansion. II. Viscous flow equations in multi dimensions. J. Sci. Comp., 34(3): 260-286, 2008.
3.F. Lörcher, G. Gassner, C.-D. Munz. A discontinuous Galerkin scheme based on a space-time expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comp., 32(2): 175-199, 2007.
2.G. Gassner, F. Lörcher, C.-D. Munz. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys., 224(2): 1049-1063, 2007.
1.B. Weigand, G. Gassner. The effect of wall conduction for the extended Graetz problem for laminar and turbulent flows. Int. J. Heat Mass Transfer, Vol. 50, 1097-1105, 2007.

Book Chapters

15.P. Metzner, M. Waidmann, D. Igdalov, T. von Larcher, I. Horenko, R. Klein, A. Beck, G. Gassner, and C.D. Munz. A stochastic closure approach for LES with application to turbulent channel flow, Direct and Large-Eddy Simulation IX, ERCOFTAC Series, 2015.
14.Th.von Larcher, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, A. D. Beck, G. J. Gassner, C.- D. Munz. Towards a Stochastic Closure Approach for Large Eddy Simulation. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 2014.
13.C.-D. Munz, A. Filimon, M. Dumbser and G.J. Gassner. Enhanced Accuracy for Finite-Volume and Discontinuous Galerkin Schemes via Nonintrusive Corrections. Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, 2013.
12.A.D. Beck, G.J. Gassner and C.-D. Munz. High Order and Underresolution. Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, 2013.
11.C. Altmann, A. Beck, A. Birkefeld, F. Hindenlang, M. Staudenmaier, G. Gassner and C.-D. Munz. Discontinuous Galerkin for High Performance Computational Fluid Dynamics (hpcdg). High Performance Computing in Science and Engineering ’11, 2012.
10.G. Gassner, F. Hindenlang, C.-D. Munz. A Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping. Advances in Computational Fluid Dynamics, World Scientific, 2011.
9.A. Taube, G. Gassner, C.-D. Munz. HP-Adaption in Space-Time within an Explicit Discontinuous Galerkin Framework. ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010.
8.A. Taube, G. Gassner, C.-D. Munz. Explicit One-Step Discontinuous Galerkin Schemes for Unsteady Flow Simulations. ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010.
7.G. Gassner, F. Lörcher, C.-D. Munz. A Numerical Diffusion Flux for Finite Volume and Discontinuous Galerkin Schemes Based on the Diffusive Riemann Problem. Computational Fluid Dynamics Review 2010.
6.C.-D. Munz, G. Gassner, C. Altmann, A. Taube and M. Staudenmaier. Towards the Numerical Simulation of a Scram Jet Intake at High Mach Number. High Performance Computing in Science and Engineering 2009.
5.G. Gassner, C. Altmann, F. Hindenlang, M. Staudenmeier, C.-D. Munz. Explicit Discontinuous Galerkin Schemes with Adaptation in Space and Time. Lecture Notes, The von Karman Institute for Fluid Dynamics, 2009.
4.C. Altmann, A. Taube, G. Gassner, F. Lörcher, C.-D. Munz. Shock detection and limiting strategies for high order discontinuous Galerkin schemes. Shock Waves 2009 Part XIV.
3.G. Gassner, F. Lörcher, M. Dumbser, C.-D. Munz. Explicit space-time discontinuous Galerkin schemes for advection diffusion equations. Lecture Notes, The von Karman Institute for Fluid Dynamics, 2008.
2.F. Lörcher, G. Gassner, and C.-D. Munz. The Space-Time Expansion DG Method. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Volume 96/2008: New Results in Numerical and Experimental Fluid Mechanics VI.
1.C.-D. Munz, G. Gassner and F. Lörcher. A Numerical Diffusion Flux Based on the Diffusive Riemannproblem. Computational Fluid Dynamics 2008. Part 6.

Proceedings

13.M. Atak, J. Larsson, G. Gassner, C.-D. Munz. DNS of a flat-plate supersonic boundary layer using the discontinuous Galerkin spectral element method. 44th AIAA Fluid Dynamics Conference, 2014.
12.G. Gassner, M. Torrilhon, A. Beck, S. Knechtel, T. Bolemann. Comparison of Navier-Stokes-Fourier Equation and Grad’s Moment Equation Solutions for Turbulence. Proceedings NIC Symposiu, 2014, NIC Series Volume 47, Jülich, 2014.
11.T. Bolemann, G. Gassner, A. Beck and C.-D. Munz. Investigation of stabilized high order schemes for underresolved multi-scale flows. Proceedings of ECCOMAS, Vienna, 2012.
10.C. Altmann, A.D. Beck, F. Hindenlang, M. Staudenmaier, G.J. Gassner and C.-D. Munz. An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method. Proceedings of Facing the Multicore-Challenge III, Stuttgart, 2012.
9.S. Fechter, F. Hindenlang, H. Frank, C. Munz, G. Gassner. Discontinuous Galerkin Schemes for the Direct Numerical Simulation of Fluid Flow and Acoustics. 18th AIAA/CEAS, Colorado Springs, 2012.
8.F. Hindenlang, J. Neudorfer, G. Gassner, C.-D. Munz. Unstructured threedimensional High Order Grids for Discontinuous Galerkin Schemes. 20th AIAA Computational Fluid Dynamics Conference, Honolulu, 2011.
7.C. Altmann, G. Gassner, C.-D. Munz. An Explicit Space-Time Adaptive Discontinuous Galerkin Scheme. Proceedings of ECCOMAS 2010.
6.F. Hindenlang, G. Gassner, C.-D. Munz. Unstructured High Order Grids and their Application in Discontinuous Galerkin Methods. Proceedings of ECCOMAS 2010.
5.G. Gassner, M. Haas. An Explicit High Order Accurate Predictor-Corrector Time Integration Method with Consistent Local Time-Stepping for Discontinuous Galerkin Schemes. AIP Conference Proceedings, 2009.
4.C. Altmann, G. Gassner, F. Lörcher, C.-D. Munz. A space-time expansion discontinuous Galerkin scheme with local time-stepping for the ideal and viscous MHD equations. ICOPS 2008. IEEE 35th Int. Conference on Plasma Science.
3.C. Altmann, G. Gassner, F. Lörcher, A. Taube and C.-D. Munz. An explicit space-time discontinuous Galerkin scheme with local time-stepping for unsteady flows. Proceedings of ECCOMAS CFD 2008.
2.F. Lörcher, G. Gassner, C.-D. Munz. Space-Time Discontinous Galerkin Method for Unsteady Compressible Navier-Stokes Equations. AIAA-2007-3477, 13th AIAA Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), 2007.
1.F. Lörcher, G. Gassner, and C.-D. Munz. Arbitrary high order accurate time integration schemes for linear problems. Proceedings of ECCOMAS CFD 2006.

Dissertation

Gregor Gassner, Discontinuous Galerkin Methods for the Unsteady Compressible Navier-Stokes Equations, Universität Stuttgart, 2009. http://elib.uni-stuttgart.de/opus/volltexte/2009/3948/