betti

betti C -- display the graded Betti numbers for a ChainComplex C.

betti f -- display the graded Betti numbers for a Matrix f, regarding it as a complex of length one.

betti G -- display the graded Betti numbers for the matrix of generators of a GroebnerBasis G.

Here is a sample display:

i1 : R = ZZ/101[a..h]

o1 = R

o1 : PolynomialRing
i2 : p = genericMatrix(R,a,2,4)

o2 = {0} | a c e g |
     {0} | b d f h |

             2       4
o2 : Matrix R  <--- R
i3 : q = generators gb p

o3 = {0} | g e c a 0     0     0     0     0     0     |
     {0} | h f d b fg-eh dg-ch bg-ah de-cf be-af bc-ad |

             2       10
o3 : Matrix R  <--- R
i4 : C = resolution cokernel leadTerm q

      2      10      14      7      1
o4 = R  <-- R   <-- R   <-- R  <-- R
                                   
     0      1       2       3      4

o4 : ChainComplex
i5 : betti C

o5 = total: 2 10 14 7 1
         0: 2 4  6  4 1
         1: . 6  8  3 .

o5 : Net

The top row of the display indicates the ranks of the free module C_j in column j. The entry below in row i column j gives the number of basis elements of degree i+j.

If these numbers are needed in a program, one way to get them is with tally.

i6 : degrees C_2

o6 = {{2}, {2}, {2}, {2}, {2}, {2}, {3}, {3}, {3}, {3}, {3}, {3}, {3}, {3}}

o6 : List
i7 : t2 = tally degrees C_2

o7 = Tally{{2} => 6}
           {3} => 8

o7 : Tally
i8 : peek t2

o8 = Tally{{2} => 6}
           {3} => 8

o8 : Net
i9 : t2_{2}

o9 = 6
i10 : t2_{3}

o10 = 8


topindexpreviousupnext