trim

trim M -- produce a module isomorphic to the module M obtained by replacing its generators by a minimal set of generators, and doing the same for the relations.

Also works for rings and ideals.

i1 : R = ZZ/101[x]

o1 = R

o1 : PolynomialRing
i2 : M = subquotient( matrix {{x,x^2,x^3}}, matrix {{x^3,x^4,x^5}})

o2 = subquotient ({0} | x x2 x3 |, {0} | x3 x4 x5 |)

                                 1
o2 : R - module, subquotient of R
i3 : trim M

o3 = subquotient ({0} | x |, {0} | x3 |)

                                 1
o3 : R - module, subquotient of R


topindexpreviousupnext