truncate

truncate (i,M) -- yields the submodule of M consisting of all elements of degrees >= i. If i is a multi-degree, then this yields the submodule generated by all elements of degree exactly i, together with all generators which have a higher primary degree than that of i.

The degree i may be a multi-degree, represented as a list of integers. The ring of M should be a (quotient of a) polynomial ring, where the coefficient ring, k, is a field.

Caveat: if the degrees of the variables are not all one, then there is currently a bug in the routine: some generators of higher degree than i may be duplicated in the generator list

i1 : R = ZZ/101[a..c];
i2 : truncate(2,R^1)

o2 = image {0} | a2 ab ac b2 bc c2 |

                               1
o2 : R - module, submodule of R
i3 : truncate(2, ideal(a,b,c^3)/ideal(a^2,b^2,c^4))

o3 = subquotient ({0} | c3 bc ab ac |, {0} | a2 b2 c4 |)

                                 1
o3 : R - module, subquotient of R

i4 : S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}];
i5 : truncate({7,24}, S^1 ++ S^{{-8,-20}})

o5 = image {0, 0}  | x4y3 0 |
           {8, 20} | 0    1 |

                               2
o5 : S - module, submodule of S


topindexpreviousupnext