(quote **,Matrix,Module)

f ** N -- tensor product of a matrix f and a module N.
N ** f -- tensor product of a matrix f and a module N.

This is the same as tensoring f with the identity map of N.

When N is a free module of rank 1 the net effect of the operation is to shift the degrees of f.

i1 : R = ZZ/101[t]

o1 = R

o1 : PolynomialRing
i2 : f = matrix {{t}}

o2 = {0} | t |

             1       1
o2 : Matrix R  <--- R
i3 : degrees source f

o3 = {{1}}

o3 : List
i4 : degrees source (f ** R^{-3})

o4 = {{4}}

o4 : List

See also Matrix and Module.


topindexpreviousupnext