(quote **,Matrix,Ring)

f ** R -- form the tensor product of a module map f with a ring R

The ring of f should be a base ring of R. The degree of the map is preserved.

i1 : R = ZZ/101[a..c]

o1 = R

o1 : PolynomialRing
i2 : f = basis(2,R)

o2 = {0} | a2 ab ac b2 bc c2 |

             1        ZZ 6
o2 : Matrix R  <--- (---)
                     101

A map of R-modules can be obtained by tensoring.

i3 : f ** R

o3 = {0} | a2 ab ac b2 bc c2 |

             1       6
o3 : Matrix R  <--- R


topindexpreviousupnext