tensor products of rings

The operator ** or the function tensor can be used to construct tensor products of rings.

i1 : ZZ/101[x,y]/(x^2-y^2) ** ZZ/101[a,b]/(a^3+b^3)

      ZZ
     --- [x, y, a, b, MonomialOrder => GRevLex]
     101
o1 = ------------------------------------------
                   2    2   3    3
                 (x  - y , a  + b )

o1 : QuotientRing

Other monomial orderings can be specified.

i2 : T = tensor(ZZ/101[x,y], ZZ/101[a,b], MonomialOrder => Eliminate 2)

o2 = T

o2 : PolynomialRing

The options to tensor can be discovered with options.

i3 : options tensor

o3 = OptionTable{Degrees =>              }
                 Inverses => false
                 MonomialOrder => 
                 MonomialSize => 8
                 SkewCommutative => false
                 VariableBaseName => 
                 VariableOrder => 
                 Variables => 
                 WeylAlgebra => {}

o3 : OptionTable


topindexpreviousupnext