Topology & Equivariant Theories 
A1, A2, A3, A5, A6, A7

Dynamics & Variational Methods 
B1, B2, B3, B4, B5, B6, B7

Algebra, Combinatorics & Optimization 
C1, C2, C3, C4, C5


Algebra, Combinatorics & Optimization  C5: Modular forms and GromovWitten theory  Bringmann, Suhr, Zehmisch  Abstract: We will provide a theory of polyfolds and abstract perturbations for holomorphic discs. Applications make it possible to prove instances of the Weinstein conjecture and to answer fillability questions for large classes of contact manifolds. Connections to numbertheoretic concepts will be drawn via the study of GromovWitten invariants. The aim is to investigate whether generating series of GromovWitten invariants are Fourier expansions of certain modular forms. This will help us to detect finer structures of GromovWitten invariants for nonKähler manifolds.  Group:  
 Prof. Kathrin Bringmann (PI)  mail: kbringma at math.unikoeln.de  phone: 0221 / 470 4334  location: Gyrhofstr. 8b  Mathematical Institute  University of Cologne 
  Dr. Stefan Suhr (PI)  mail: suhr at dma.ens.fr    Faculty of Mathematics  RuhrUniversity Bochum 
  Prof. Kai Zehmisch (PI)  mail: kai.zehmisch at wwu.de  phone: 0251 / 833 3704  room: 302  Mathematical Institute  University of Münster 


