Algebraische Topologie, Vorlesung und Übungen

H. Geiges

Wintersemester 2021/22

Keine Präsenzveranstaltung



Sprechstunde: nach Vereinbarung (Raum 222)

Zuständiger Assistent: Tilman Becker (Raum 206)

Aktuell: Vorlesung und Übungen finden ausschließlich online statt. Hier ist der Link zum ILIAS-Kurs.
Dort finden Sie das Skript zur Vorlesung, sowie jede Woche Videos mit dem kompletten Lehrinhalt. Die Videos sind in der Regel zwischen 10 und 25 Minuten lang, um Ihnen das Auffinden gesuchter Themen zu erleichtern.
Dienstags findet um 10:00 Uhr (neu!) ein Online-Tutorium statt. Den Zoom-Link dazu finden Sie im ILIAS-Kurs.

Neu: Hier die Ergänzung zum Isomorphiesatz, der auf Seite 57 im Skript verwendet wird.

Die Anmeldung zum ILIAS-Kurs ist unbedingt erforderlich für die Teilnahme an der Vorlesung und den Übungen. Falls Sie keinen Zugang zum ILIAS-Kurs über KLIPS haben, melden Sie sich bitte direkt per e-mail bei Tilman Becker (tibecker at math).

Die Lernmaterialien für die Kalenderwoche werden jeweils am Montag bereitgestellt.
Die Übungsblätter werden jeweils dienstags auf dieser Seite hochgeladen (siehe unten).




Die Vorlesung Algebraische Topologie mit Schwerpunkt auf der Homologietheorie richtet sich an Studenten ab dem 5. Semester. Laut Frank Adams, einem der bedeutendsten Topologen des letzten Jahrhunderts, sieht ein Kurs in Homologietheorie typischerweise wie folgt aus. 13 Wochen: Wie baut man ein Auto? --- Eine Woche: Warum ist es gut, ein Auto zu haben? Weil man dann von A nach B fahren kann.

In dieser Einführung in die Homologietheorie sollen dagegen von Anfang an geometrische Anwendungen mit im Vordergrund stehen. Zunächst wird die Fundamentalgruppe eines topologischen Raumes behandelt und zur vollständigen Klassifikation von Flächen verwendet. Danach wird die Homologietheorie entwickelt, mit Anwendungen (u.a.) aus der geometrischen Topologie (Struktur von Mannigfaltigkeiten), aus der Gastronomie (Schinken-Sandwich-Theorem) und der Meteorologie: Auf der Erde gibt es stets zwei antipodale Punkte, an denen die gleiche Temperatur und Luftfeuchtigkeit herrschen.

Erforderliche Vorkenntnisse: Mengentheoretische Topologie (wie z.B. aus meiner Vorlesung Analysis II), elementare Algebra (Gruppen, Ringe, Homomorphismen). Spezielle Kenntnisse aus der Vorlesung `Algebra' werden nicht vorausgesetzt. Kenntnisse über (Unter-)Mannigfaltigkeiten (wie z.B. aus meiner Vorlesung Analysis III) sind hilfreich, werden aber weitestgehend nicht vorausgesetzt.

Literatur:

M.A. Armstrong: Basic Topology, Springer, 1983.
G.E. Bredon: Topology and Geometry, Springer, 1993.
T. tom Dieck: Topologie, 2. Auflage, de Gruyter, 2000.
A. Hatcher: Algebraic Topology, Cambridge University Press, 2002.
K. Jänich:Topologie, Springer, 1996.
W.S. Massey: A Basic Course in Algebraic Topology, Springer, 1991.

Für den Abschnitt über Differentialformen auch meine Vorlesung Analysis III und
I. Agricola, Th. Friedrich: Globale Analysis, Vieweg, 2001.




Zulassungsvoraussetzung zur Abschlußprüfung: 50% der Übungsaufgaben sinnvoll bearbeitet.

Übungsblätter:
Übungsblatt 1 (pdf)
Übungsblatt 2 (pdf)
Übungsblatt 3 (pdf)
Übungsblatt 4 (pdf)
Übungsblatt 5 (pdf)
Übungsblatt 6 (pdf)
Übungsblatt 7 (pdf)
Übungsblatt 8 (pdf)
Übungsblatt 9 (pdf)
Übungsblatt 10 (pdf)
Übungsblatt 11 (pdf)
Übungsblatt 12 (pdf)
Übungsblatt 13 (pdf)




Inhaltsverzeichnis:

0. Motivation

1. Flächen

2. Homotopie und Fundamentalgruppe
2.1. Homotopie und Homotopieäquivalenz
2.2. Konstruktion der Fundamentalgruppe
2.3. Die Fundamentalgruppe von S1
2.4. Anwendungen
-- Der Brouwersche Fixpunktsatz
-- Der Fundamentalsatz der Algebra
2.5. Die Fundamentalgruppe von Flächen

3. Homologietheorie
3.1. Definition der singulären Homologiegruppen
3.2. Der von einer Abbildung induzierte Homomorphismus
3.3. Relative Homologiegruppen
3.4. Der Ausschneidungssatz

4. Berechnung von Homologiegruppen
4.1. Homologie von Sphären
-- Der Brouwersche Fixpunktsatz
4.2. Der Abbildungsgrad
-- Der Satz vom Igel
4.3. Die Mayer-Vietoris-Sequenz
-- Homologie von Sphären und Flächen
4.4. Der verallgemeinerte Jordansche Kurvensatz
-- Jordan-Brouwer Trennungssatz, Gebietsinvarianz
4.5. H1(X) und π1(X)

5. CW-Komplexe
5.1. Konstruktion und Beispiele
5.2. Ankleben von Zellen und Homologie
-- Homologie von projektiven Räumen
5.3. Zelluläre Homologie
5.4. Die Euler-Charkteristik

6. Homologie mit Koeffizienten
6.1. Definition und Beispiele
6.2. Überlagerungen und der Satz von Borsuk-Ulam
-- Das Schinken-Sandwich-Theorem
-- Der Satz von Lusternik-Schnirelmann

7. Kohomologietheorie
7.1. Singuläre Kohomologie
7.2. Zwischenspiel: Die Dimension reeller Divisionsalgebren
7.3. De-Rham-Kohomologie
7.4. Der de-Rham-Isomorphismus
7.5. De-Rham-Kohomologie von CPn und Sk× Sl
7.6. De-Rham-Theorie von Flächen: Schnittzahl und Poincaré-Dualität

8. Klassifikation von Mannigfaltigkeiten

H. Geiges, 8.6.21