Research

I am fascinated by modular behaviour: from classical (quasi)modular forms to Jacobi forms, from mock modular forms to quantum modular forms, including q-analogues of multiple zeta values. I aim to develop a line of research which provides a toolbox of results by which one can deduce that generating series admit modular behaviour. This toolbox relates number theory to algebraic combinatorics, enumerative geometry and mathematical physics.

Besides, I am interested in heights; in particular, in Lehmer's problem on the Mahler Measure.

Preprints
  1. Limiting behaviour and modular completions of MacMahon-like q-series
    (with Kathrin Bringmann, William Craig and Badri Vishal Pandey), 22 pages (pdf)
  2. Quantum KdV hierarchy and shifted symmetric functions
    (with Giulio Ruzza), 23 pages (pdf)
  3. Quasi-Jacobi forms, Appell–Lerch functions, and false theta functions
    as q-brackets of functions on partitions

    (with Kathrin Bringmann and Jonas Kaszian), 20 pages (pdf)
  4. Formal multiple Eisenstein series and their derivations
    (with Henrik Bachmann and an appendix by Nils Matthes), 42 pages (pdf)
Publications
  1. On the zeros of odd weight Eisenstein series
    (with Berend Ringeling)
    to appear in Mathematika, 22 pages (pdf)
  2. Integer partitions detect the primes
    (with William Craig and Ken Ono),
    Proceedings of the National Academy of Sciences 121:39 (2024), 11 pages (pdf)
  3. Critical points of modular forms
    (with Berend Ringeling)
    International Journal of Number Theory 20:10 (2024), 2695–2728 (pdf)
  4. Quantum KdV hierarchy and quasimodular forms
    (with Giulio Ruzza)
    Communications in Number Theory and Physics 18:2 (2024), 405–439 (pdf)
  5. Cylinder counts and spin refinement of area Siegel–Veech constants
    (with Adrien Sauvaget)
    to appear in Commentarii Mathematici Helvetici (2024), 43 pages (pdf)
  6. Partitions, Multiple Zeta Values and the q-bracket
    (with Henrik Bachmann)
    Selecta Math. 30:3 (2024), 46 pages (pdf)
  7. The Bloch–Okounkov theorem for congruence subgroups and Taylor coefficients of quasi‑Jacobi forms
    Res. Math. Sci. 10:5 (2023), 45 pages (pdf)
  8. Hedgehogs in Lehmer's problem
    (with Berend Ringeling and Wadim Zudilin)
    Bull. Aust. Math. Soc. 105:2 (2022), 236–242 (pdf)
  9. Gromov-Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms
    (with Georg Oberdieck and Aaron Pixton)
    Selecta Math. 27:64 (2021), 30 pages (pdf)
  10. A symmetric Bloch–Okounkov theorem
    Res. Math. Sci. 8:19 (2021), 42 pages (pdf)
  11. Triply mixed coverings of arbitrary base curves:
    quasimodularity, quantum curves and a mysterious topological recursion

    (with Marvin Anas Hahn and Felix Leid)
    Ann. Henri Poincaré D 9 (2022), 239–296 (pdf)
  12. When is the Bloch-Okounkov q-bracket modular?
    Ramanujan J. 52 (2020), 669–682 (pdf)
  13. Quantitative Results on Diophantine Equations in Many Variables
    Acta Arithmetica 194 (2020), 219–240 (pdf)
  14. A group-invariant version of Lehmer's conjecture on heights
    Journal of Number Theory 171 (2017), 145–154 (pdf)
Expository articles
  1. Feeling like an explorer
    Interview taken by Nicos Starreveld, Nieuw Archief voor Wiskunde, december 2024
  2. Een recept voor quasimodulaire vormen
    Nieuw Archief voor Wiskunde, september 2022 (pdf)
  3. Interview met een promovendus
    door Ilse Blankenvoorde, Jun Jie Lin en Daphne Stouthart, Vakidioot, juli 2020 (pdf)
Other
  1. Math is still catching up to the mysterious genius of Srinivasa Ramanujan
    by Jordana Cepelewicz, Quanta (link)
  2. Partitions and primes
    by Richard Green, A Piece of the Pi: mathematics explained (link)
  3. Open problems on modular forms and q-series (pdf)
Theses