Research
I am fascinated by modular behaviour: from classical (quasi)modular forms to Jacobi forms, from mock modular forms to quantum modular forms, including q-analogues of multiple zeta values. I aim to develop a line of research which provides a toolbox of results by which one can deduce that generating series admit modular behaviour. This toolbox relates number theory to algebraic combinatorics, enumerative geometry and mathematical physics.
Besides, I am interested in heights; in particular, in Lehmer's problem on the Mahler Measure.
Preprints
- Limiting behaviour and modular completions of MacMahon-like q-series (with Kathrin Bringmann, William Craig and Badri Vishal Pandey), 22 pages (pdf)
- Quantum KdV hierarchy and shifted symmetric functions (with Giulio Ruzza), 23 pages (pdf)
- Quasi-Jacobi forms, Appell–Lerch functions, and false theta functions as q-brackets of functions on partitions (with Kathrin Bringmann and Jonas Kaszian), 20 pages (pdf)
- Formal multiple Eisenstein series and their derivations (with Henrik Bachmann and an appendix by Nils Matthes), 42 pages (pdf)
Publications
- On the zeros of odd weight Eisenstein series (with Berend Ringeling) to appear in Mathematika, 22 pages (pdf)
- Integer partitions detect the primes (with William Craig and Ken Ono), Proceedings of the National Academy of Sciences 121:39 (2024), 11 pages (pdf)
- Critical points of modular forms (with Berend Ringeling) International Journal of Number Theory 20:10 (2024), 2695–2728 (pdf)
- Quantum KdV hierarchy and quasimodular forms (with Giulio Ruzza) Communications in Number Theory and Physics 18:2 (2024), 405–439 (pdf)
- Cylinder counts and spin refinement of area Siegel–Veech constants (with Adrien Sauvaget) to appear in Commentarii Mathematici Helvetici (2024), 43 pages (pdf)
- Partitions, Multiple Zeta Values and the q-bracket (with Henrik Bachmann) Selecta Math. 30:3 (2024), 46 pages (pdf)
- The Bloch–Okounkov theorem for congruence subgroups and Taylor coefficients of quasi‑Jacobi forms Res. Math. Sci. 10:5 (2023), 45 pages (pdf)
- Hedgehogs in Lehmer's problem (with Berend Ringeling and Wadim Zudilin) Bull. Aust. Math. Soc. 105:2 (2022), 236–242 (pdf)
- Gromov-Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms (with Georg Oberdieck and Aaron Pixton) Selecta Math. 27:64 (2021), 30 pages (pdf)
- A symmetric Bloch–Okounkov theorem Res. Math. Sci. 8:19 (2021), 42 pages (pdf)
- Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion (with Marvin Anas Hahn and Felix Leid) Ann. Henri Poincaré D 9 (2022), 239–296 (pdf)
- When is the Bloch-Okounkov q-bracket modular? Ramanujan J. 52 (2020), 669–682 (pdf)
- Quantitative Results on Diophantine Equations in Many Variables Acta Arithmetica 194 (2020), 219–240 (pdf)
- A group-invariant version of Lehmer's conjecture on heights Journal of Number Theory 171 (2017), 145–154 (pdf)
Expository articles
- Feeling like an explorer Interview taken by Nicos Starreveld, Nieuw Archief voor Wiskunde, december 2024
- Een recept voor quasimodulaire vormen Nieuw Archief voor Wiskunde, september 2022 (pdf)
- Interview met een promovendus door Ilse Blankenvoorde, Jun Jie Lin en Daphne Stouthart, Vakidioot, juli 2020 (pdf)
Other
- Math is still catching up to the mysterious genius of Srinivasa Ramanujan by Jordana Cepelewicz, Quanta (link)
- Partitions and primes by Richard Green, A Piece of the Pi: mathematics explained (link)
- Open problems on modular forms and q-series (pdf)
Theses
- Partitions and quasimodular forms: Variations on the Bloch–Okounkov theorem Dissertation (pdf), advisors: Gunther Cornelissen and Don Zagier (2021)
- Two Problems Related to the Circle Method Master thesis (pdf), supervisor: Damaris Schindler (2017)
- Mahler’s Measure and Möbius Transformations Bachelor thesis (pdf), supervisor: Gunther Cornelissen (2015)