Seminar WS 2017/18

Asymptotische Entwicklungen von Modulformen

Prof. Dr. Kathrin Bringmann

Jonas Kaszian

Di 11:45-12:45 Uhr

Übungsraum 2

Aktuelle Informationen:

Die Vorbesprechung findet am 25.07.2017. im Übungsraum 2 des Mathematischen Instituts (Gyrhofstr. 8b) von 12 bis 13 Uhr statt.

Anmeldung über Email: kbringma(at)math(dot)uni-koeln(dot)de oder jkaszian(at)math(dot)uni-koeln(dot)de.

Vorträge:

Datum: Vortragender: Titel:
10.10.2017 Tobias Höschen Modulformen
17.10.2017 Pauline Scharf Schranken für Spitzenformen und Eisenstein-Reihen
07.11.2017 Lara Flato Poincaré-Reihen und Koeffizienten von Modulformen
14.11.2017 Andreas Spomer Eine Basis für den Raum der Spitzenformen
28.11.2017 Maximilian Peters Die Fourier-Entwicklungen von Poincaré-Reihen
05.12.2017 Robin Sauer Das Wachstum von Partitionen
09.01.2018 Robin Messemer Taubersche Sätze und Einführung in die Kreismethode
16.01.2018 Frederik Gebhardt Die Kreismethode
23.01.2018 Arthur Schain Darstellungsanzahlen von quadratischen Formen
30.01.2018 Ngoc-Anh Cao Endlichkeit der Anzahl extremaler Gitter

Sprechstunden:

Prof. Dr. Bringmann Gyrhofstrasse 8b, Raum 001 Nach Vereinbarung
Jonas Kaszian Gyrhofstrasse 8b, Raum 005 Dienstag 10-11 Uhr.

Erste Vortrags-Themen:

Modulformen (Seiten aus dem Buch) Schranken für Spitzenformen und Eisenstein-Reihen (Seiten aus dem Buch) Poincaré-Reihen und Koeffizienten von Modulformen (Seiten aus dem Buch) Eine Basis für den Raum der Spitzenformen (Seiten aus dem Buch) Die Fourier-Entwicklungen von Poincaré-Reihen (Seiten aus dem Buch) Das Wachstum von Partitionen (Seiten aus dem Buch) Taubersche Sätze und Einführung in die Kreismethode (Seiten aus dem Buch) Die Kreismethode (Seiten aus dem Buch) Darstellungsanzahlen von quadratischen Formen (Seiten aus dem Buch) Endlichkeit der Anzahl extremaler Gitter (Seiten aus dem Buch)

Literatur:

G. Andrews, The theory of partitions, The Encyclopedia of Mathematics and its Applications series, Cambridge University Press (1998). H. Bateman and A. Erdelyi, Tablues of integral transforms, Volume 1, Mcgraw-Hill, New York, 1954. J. Booher, The Circle Method, the $j$-function, and partitions, (unpublished notes). K. Bringmann, Asymptotic formulas for modular forms and related functions. J. Bruinier, G. van der Geer, G. Harder, and D. Zagier, The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, Heidelberg, 2008. G. Hardy and E. Wright, An introduction to the theory of numbers, Fourth edition, The Clarendon Predd, Oxford, (1960). M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer-Verlag, Berlin, 1998, 1--331. C. Mallows, A. Odlyzko, and N. Sloane, Upper bounds for modular forms, lattices, and codes, J. Algebra, 36 (1975), pp. 68-76.