Hand-written lecture notes:
| Date | Notes | Table of contents |
|---|---|---|
| 20.10. | Lecture 1 | Chapter I: Introduction |
| 22.10. | Lecture 2 | Chapter II: Minimizing a convex function |
| 27.10. | Lecture 3 | Chapter III: Conic Optimization §1 Convex cones |
| 29.10 | Lecture 4 | §2 The PSD cone |
| 3.11 | Lecture 5 | §3 Conic programs |
| 5.11 | Lecture 6 | §4 Theorem of alternatives |
| 10.11 | Lecture 7 | |
| 12.11 | Lecture 8 | §5 Duality theory |
| 17.11 | Lecture 9 | Chapter IV: First applications §1 Robust optimization |
| 19.11 | Lecture 10 | §2 Eigenvalue optimization |
| 24.11 | Lecture 11 | §3 SDP relaxations of quadratic programs Chapter V: Approximation algorithms §1 MAX CUT |
| 26.11 | Lecture 12 | |
| 1.12 | Lecture 13 | |
| 3.12 | Lecture 14 | §2 Eigenvalue interpretation of the SDP relaxation for MAX CUT §3 Little Grothendieck inequality / Nesterov's approximation algorithm |
| 8.12 | Lecture 15 | §4 Grothendieck's inequality |
| 10.12 | Lecture 16 | Chapter VI: Determinant Maximization §1 Convex spectral functions |
| 15.12 | Lecture 17 | §2 MAXDET optimization |
| 17.12 | Lecture 18 | |
| 22.12 | Lecture 19 | §3 Approximation of polytopes by ellipsoids |
| 7.1 | Lecture 20 | |
| 12.1 | Lecture 21 | |
| 14.1 | Lecture 22 | Chapter VII: Packings and colorings in graphs §1 Basic definitions §2 Semidefinite relexation for $\alpha$ and $\chi$ |
| 19.1 | Lecture 23 | §3 Perfect Graphs |
| 21.1 | Lecture 24 | |
| 26.1 | Lecture 25 | §4 Shannon capacity |
| 28.1 | Lecture 26 | |
| 2.2 | Lecture 27 | Chapter VIII: Copositive Programming §1 The completely positive and the copositive cone |
| 4.2 | Lecture 28 | §2 A copositive reformulation of the independence number of a graph |
| 9.2 | Lecture 29 | Chapter IX: Polynomial Optimization §1 Nonnegative polynomials and sum of squares |
| 11.2 (fällt aus) | Lecture 30 | §2 Global optimization with polynomials |