|
|
113 |
B. Kawohl, G. Sweers, On a formula
for all sets of constant width in 3D, J. Geom. Anal. 34, 197 (2024), 38pp. (DOI:
10.1007/s12220-024-01622-9) |
112 |
Ph. Clément, G. Sweers, A
solution between sub- and supersolutions for semilinear elliptic equations with a nonlocal term in a
continuous setting, Commun. Pure & Appl.
Analysis 22 (2023), 1420-1428. (DOI:
10.3934/cpaa.2023032) |
111 |
M. Lucia, G. Sweers,
Non-degeneracy of solutions for a class of cooperative systems on Rn,
Commun. Pure & Appl. Analysis 20 (2021),
4177-4193. (DOI:
10.3934/cpaa.2021152) |
110 |
I. Schnieders,
G. Sweers, Note on a sign-dependent regularity for the polyharmonic
Dirichlet problem, Journal of Differential
Equations 279 (2021), 1–9. (DOI: 10.1016/j.jde.2021.01.006) |
109 |
I. Schnieders,
G. Sweers, Classical solutions up to the boundary to some higher order semilinear Dirichlet
problems, Nonlinear Analysis 207
(2021), 13pp. (DOI:
10.1016/j.na.2021.112265) |
108 |
H.-Ch. Grunau, G. Romani, G. Sweers, Differences
between fundamental solutions of general higher order elliptic operators and
of products of second order operators, Mathematische
Annalen 2020 (DOI:
10.1007/s00208-020-02015-3) |
107 |
I. Schnieders, G. Sweers, A maximum principle for a fourth
order Dirichlet problem on smooth domains, Pure and
Applied Analysis, Vol. 2 (2020), No. 3, 685–702. (DOI:
10.2140/paa.2020.2.685) |
106 |
G.
Sweers, Correction to: An elementary
proof that the triharmonic Green function of an
eccentric ellipse changes, Arch. Math. (Basel) 112 (2019), 223–224. (DOI:
10.1007/s00013-018-1274-x) |
105 |
I. Schnieders, G. Sweers, A biharmonic converse to Krein-Rutman:
a maximum principle near a positive eigenfunction,
Positivity (2019) (DOI:
10.100/s11117-019-00702-3) |
104 |
G.
Sweers, Bilaplace eigenfunctions
compared with Laplace eigenfunctions in some
special cases, in ‘Positivity and Noncommutative Analysis’ (2019), 537-561, Birkhäuser. (DOI:
10.1007/978-3-030-10850-2_26) |
103 |
B. Kawohl, G. Sweers, On a formula for sets of constant
width in 2d, Commun. Pure Appl. Anal. 18 (2019),
2117-2131. |
102 |
C. De Coster, S. Nicaise and G.
Sweers, Comparing variational methods for the
hinged Kirchhoff plate with corners, Mathematische Nachrichten 292 (2019). (DOI: 10.1002/mana.201800092) |
101 |
G.
Sweers, Katerina Vassi, Positivity for a hinged plate
with stress, SIAM J. Math. Anal. 50 (2018), 1163–1174. (DOI: 10.1137/17M1138790) |
100 |
M. Beygmohammadi, G. Sweers, Hopf's
boundary type behavior for an interface problem, J. Korean Math. Soc. 54 (2017),
249--265. (DOI:
10.4134/JKMS.j150715) |
99 |
G.
Sweers, On
sign preservation for clotheslines, curtain rods, elastic membranes and thin
plates, Jahresber. Dtsch.
Math.-Ver. 118 (2016), 275–320. (DOI:
10.1365/s13291-016-0147-0) |
98 |
G. Sweers,
An elementary proof that the triharmonic Green
function of an eccentric ellipse changes sign, Arch. Math. (Basel) 107
(2016), 59–62. (DOI:
10.1007/s00013-016-0909-z) |
97 |
Carlos
Andrés Reyes, G. Sweers, An asymptotic eigenvalue problem for a Schrödinger
type equation on domains with boundaries, Rev. Mat. Complut.
29 (2016), 497–510. (DOI:
10.1007/s13163-016-0197-y) |
96 |
M. Beygmohammadi, G. Sweers, Pointwise behavior of the
solution of the Poisson problem near conical points, Nonlinear Analysis:
Theory, Methods & Applications 121 (2015), 173-187. (DOI: 10.1016/j.na.2014.11.013) |
95 |
C. Nitsch, B. Kawohl, G. Sweers,
More on the potential for the farthest-point distance function, Potential
Analysis 42 (2015), 699-716. (DOI:
10.1007/s11118-014-9454-1) |
94 |
C. De Coster, S. Nicaise, G. Sweers,
Solving the biharmonic Dirichlet
problem on domains with corners, Math. Nach. 288
(2015), 854-871. (DOI:
10.1002/mana.201400022) |
93 |
M. Erven,
G. Sweers, On the lifetime of conditioned Brownian motion in domains
connected through small gaps, in Elliptic and Parabolic Equations, eds E. Schrohe e.a, Springer
Proceedings in Mathematics & Statistics, Vol. 119, 2015. |
92 |
G.
Sweers, Positivity for the Navier bilaplace, an anti-eigenvalue and an expected lifetime,
DCDS Series S 7(4) (2014), 839 – 855. (DOI:
10.3934/dcdss.2014.7.839) |
91 |
H.-Ch. Grunau and G. Sweers, In any dimension a "clamped
plate" with a uniform weight may change sign, Nonlinear Analysis 97
(2014), 119-124. (DOI: 10.1016/j.na.2013.11.017) |
90 |
H.-Ch. Grunau and G. Sweers, A clamped plate with a uniform
weight may change sign, DCDS Series S 7(4) (2014), 761-766 (DOI:
10.3934/dcdss.2014.7.761) |
89 |
M. Beygmohammadi, G. Sweers, Hopf’s
boundary point lemma, the Krein–Rutman
theorem and a special domain, Positivity 18 (2014), 81-94. (DOI:
10.1007/s11117-013-0232-x) |
88 |
F.L. Bakharev, S.A. Nazarov and G.
Sweers, A sufficient condition for a discrete spectrum of the Kirchhoff plate
with an infinite peak, Mathematics and Mechanics of Complex Systems Vol. 1
(2013), No. 2, 233–247. |
87 |
T.
Gerasimov, A. Stylianou and G. Sweers, Corners give
problems with decoupling fourth order equations into second order systems,
SIAM J. Numer. Anal., 50(3) (2012), 1604-1623. (DOI: 10.1137/100806151) |
86 |
G.
Sweers, Green function estimates lead to Neumann function estimates, in: Bandle, C.; Gilányi, A.; Losonczi, L.; Plum, M. (Eds.) Inequalities and
Applications ’10, Springer-Basel, 2012. (DOI:
10.1007/978-3-0348-0249-9_4) |
85 |
S. Nazarov, A. Stylianou and G. Sweers,
Hinged and supported plates with corners, ZAMP, 63, Issue 5 (2012), 929-960.
(DOI: 10.1007/s00033-012-0195-y) |
84 |
S. Nazarov, A. Slutskij and G.
Sweers, Homogenization of a thin plate reinforced with periodic families of
rigid rods, Sbornik: Mathematics 202:8 (2011),
1127–1168. (DOI:
10.1070/SM2011v202n08ABEH004181) |
83 |
S. Nazarov, A. Stylianou and G. Sweers,
On paradoxes in problems on bending polygonal plates with
‘‘Hinged/Supported’’ edges, Doklady Physics, Vol.
56, No. 8 (2011), 439-443. (DOI: 10.1134/S1028335811080027) |
82 |
O. Izotova, S. Nazarov and G.
Sweers, Asymptotics of solutions and modeling of
the von Karman equations in a singularly perturbed domain, Probl. Math. Anal. 54 (2011). Translated in: Journal of
Math. Sciences, Volume 173, Number 5, 571-608. (DOI: 10.1007/s10958-011-0261-6) |
81 |
H.-Ch. Grunau, F. Robert and G. Sweers, Optimal estimates from
below for biharmonic Green functions, Proc. Amer.
Math. Soc. 139 (2011), 2151-2161 (DOI: 10.1090/S0002-9939-2010-10740-2) |
80 |
S.A. Nazarov, G. Sweers, A.S. Slutskiĭ,
The flexural rigidity of a thin plate reinforced with periodic systems of
separated rods. (Russian) Prikl. Mat. Mekh. 74 (2010), no. 3, 441--454; translation in J. Appl.
Math. Mech. 74 (2010), no. 3, 313–322 (DOI:
10.1016/j.jappmathmech.2010.07.007) |
79 |
S. Nazarov, A. Slutskij and G.
Sweers, Korn
Inequalities for a Reinforced Plate, Journal of Elasticity 106, Issue 1,
(2010), 43-69 (DOI:
10.1007/s10659-010-9289-y) |
78 |
A. Stylianou and G. Sweers, Comparing hinged and supported
rectangular plates, Comptes Rendus Mécanique 338
(2010), pp. 489-492. (DOI:
10.1016/j.crme.2010.08.002) |
77 |
A. Campbell, S.A. Nazarov and G.
Sweers, Spectra
of two-dimensional models for thin plates with sharp edges, SIAM J. Math.
Anal. 42 (2010), pp. 3020-3044. (DOI: 10.1137/100788719) |
76 |
F. Gazzola, H.-Ch. Grunau
and G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary
conditions, Ann. Mat. Pura Appl., 189 (2010), 475-486. (DOI:
10.1007/s10231-009-0118-5) |
75 |
S.A. Nazarov, G. Sweers, A.S. Slutskii, The heat conductivity problem in a thin plate
with contrasting fiber inclusions, Vestnik St. Petersburg Univ. Math. 42 (2009), no 4,
pp. 284-292. (DOI: 10.3103/S1063454109040062) |
74 |
S.A. Nazarov, G. Sweers, A.S. Slutskii, Plate reinforcement with periodic families of
disconnected rigid rods, Dokl. Akad. Nauk 427 (2009), no 6, 776--780. (DOI:
10.1134/S1028335809080126) |
73 |
T. Gerasimov, G. Sweers, The
regularity for a clamped grid equation u xxxx
+ uyyyy = f in a domain with
a corner, Electronic J.D.E. Vol. 2009 (2009), No. 47, pp. 1-54. |
72 |
G. Sweers, A survey on boundary
conditions for the biharmonic, Complex variables
and elliptic equations, (2009) 54:2, 79-93. (DOI:
10.1080/17476930802657640) |
71 |
A. |
70 |
M. Erven; G. Sweers, On the
lifetime of a conditioned Brownian motion on a fish bowl. Arch. Math. ( |
69 |
F. Gazzola; G. Sweers, On
positivity for the biharmonic operator under Steklov boundary conditions. Arch. Ration. Mech. Anal.
188 (2008), no. 3, 399-427. (DOI: 10.1007/s00205-007-0090-4) |
68 |
O.V. Izotova, S.A. Nazarov, G.
Sweers, Asymptotically sharp weighted Korn´s
inequality for thin-walled elastic structures, Journal of Mathematical
Sciences, Vol. 150, no. 1, (2008). (DOI: 10.1007/s10958-008-0098-9) |
67 |
S.A. Nazarov and G. Sweers,
Boundary value problems for the bi-harmonic equation and the iterated
Laplacian in a three-dimensional domain with an edge, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 336 (2006), Kraev.
Zadachi Mat. Fiz.
I Smezh. Vopr. Teor. Funkts. 37, 153-198,
276-277; translation in J. Math. Sci. (N.Y.) 143 (2007), no. 2, 2936-2960. (DOI: 10.1007/s10958-007-0177-3) |
66 |
S.A. Nazarov, G. Sweers, A hinged
plate equation and iterated Dirichlet Laplace
operator on domains with concave corners, J. Differential Equations 233
(2007), no. 1, 151-180. (DOI: 10.1016/j.jde.2006.09.018) |
65 |
M. van den Berg, A. Dall'Acqua,
G. Sweers, Estimates for the expected lifetime of conditioned Brownian
motion. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 5, 1091-1099. (DOI: 10.1017/S0308210506000448) |
64 |
H.-Ch. Grunau, G. Sweers, Regions
of positivity for polyharmonic Green functions in
arbitrary domains, Proc. Amer. Math. Soc. 135 (2007), no. 11, 3537-3546. (DOI: 10.1090/S0002-9939-07-08851-X) |
63 |
B. Kawohl, G. Sweers, On the
differential equation uxxxx
+ uyyyy = f for an
anisotropic stiff material, SIAM J. Math. Anal. Vol. 37 (2006), no. 6, pp.
1828-1853. (DOI: 10.1137/050624704) |
62 |
O.V. Izotova, S.A. Nazarov, G.H.
Sweers, Weighted Korn inequalities for thin-walled
elastic structures, C.R. Mecanique 334 (2006)
707-712. (DOI:
10.1016/j.crme.2006.10.002) |
61 |
A. Dall'Acqua, Ch. Meister, G.
Sweers, Separating
positivity and regularity for fourth order Dirichlet
problems in 2d-domains, Analysis (Munich) 25 (2005) , no. 3, 205-261. (DOI:
10.1524/anly.2005.25.3.205) |
60 |
A. Dall'Acqua, G. Sweers, The clamped plate
equation on the Limaçon, Annali di Matematica Pura ed Applicata.
(4) 184 (2005), no.3, 361-374. (DOI:
10.1007/s10231-004-0121-9) |
59 |
Ph. Clément, B. de Pagter, G. Sweers and F. de Thélin,
Existence of
solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterranean Journal of
Mathematics 1 (2004), 241-267. (DOI:
10.1007/s00009-004-0014-6) |
58 |
A. Dall'Acqua and G. Sweers, Estimates for Green
function and Poisson kernels of higher order Dirichlet
boundary value problems, J. Differential Equations 205 (2004), 466-487. (DOI:
10.1016/j.jde.2004.06.004) |
57 |
A. Dall'Acqua and G. Sweers, On domains for
which the clamped plate system is positivity preserving. Partial
Differential Equations and Inverse Problems, ed. by Carlos Conca, Raul
Manasevich, Gunter Uhlmann and Michael Vogelius, AMS, 2004. (DOI: 10.1090/conm/362/06609) |
56 |
R. Manasevich and G. Sweers, A comparison
result for perturbed radial p-Laplacians, J.M.A.A. 291
(2004), 1-19. (DOI:
10.1016/S0022-247X(03)00371-8) |
55 |
A. Dall'Acqua, H.-Ch. Grunau, G.
Sweers, On a
conditioned Brownian motion and a maximum principle on the disk, Journal d'Analyse Mathématique 93
(2004), 309-329. (DOI:
10.1007/BF02789311) |
54 |
G. Sweers, W.C. Troy, On the
bifurcation curve for an elliptic system of FitzHugh-
Nagumo type, Physica D. 177 (2003),
1-22. (DOI:
10.1016/S0167-2789(02)00774-1) |
53 |
C. Reinecke, G. Sweers, Solutions with
internal jump for an autonomous elliptic system of FitzHugh-Nagumo
type, Math. Nachr. 251 (2003),
64-87. (DOI:
10.1002/mana.200310031) |
52 |
G. Sweers, No Gidas-Ni-Nirenberg type result for semilinear
biharmonic problems, Math.
Nach. 246-247 (2002), 202-206. |
51 |
B. Kawohl, G. Sweers, Inheritance of symmetry
for positive solutions of semilinear elliptic
boundary value problems, Annales Inst. H.Poincaré 19 (2002), 705-714. (DOI:
10.1016/S0294-1449(02)00099-9) |
50 |
B. Kawohl, G. Sweers, On 'anti'-eigenvalues
for elliptic systems and a question of McKenna and Walter, Indiana U.
Math. J. 51, (2002), 1023-1040. (DOI: 10.1512/iumj.2002.51.2275) |
49b |
B. Kawohl, G. Sweers, Among all
2-dimensional convex domains the disk is not optimal for the lifetime of a
conditioned Brownian motion, -- the extended version --, 86 pages (2002),
(736 KB, only prints as image); for printing
(1777 KB). |
49a |
B. Kawohl, G. Sweers, Among all
2-dimensional convex domains the disk is not optimal for the lifetime of a
conditioned Brownian motion, Journal d' Analyse Mathématique
86 (2002), 335-357. (DOI:
10.1007/BF02786655) |
48 |
H.-Ch. Grunau, G. Sweers, Sharp
estimates for iterated Green functions, Proceedings of the Royal Society
of Edinburgh 132A (2002), 91-120. (DOI:
10.1017/S0308210500001542) |
47 |
G. Sweers, When is the
first eigenfunction for the clamped plate equation
of fixed sign? in Electron.
J. Diff. Eqns., Conf. 06, 2001, pp. 285-296. |
46 |
H.-Ch. Grunau, G. Sweers, Optimal
conditions for anti-maximum principles, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 499-513. |
45 |
H.-Ch. Grunau, G. Sweers, Nonexistence of local minima
of supersolutions for the circular clamped plate,
Pacific J. Math. 198 (2001), 437-442. (DOI: 10.2140/pjm.2001.198.437) |
44 |
C.J. Reinecke, G. Sweers, Existence and uniqueness of
solutions on bounded domains to a FitzHugh- Nagumo type elliptic system, Pacific J. Math. 197
(2001), 183-211. (DOI:
10.2140/pjm.2001.197.183) |
43 |
Ph. Clément, G. Sweers, Uniform
anti-maximum principles for polyharmonic equations,
Proc.
Amer. Math. Soc. 129 (2001), 467-474. (DOI:
10.1090/S0002-9939-00-05768-3) |
42 |
Ph. Clément, G. Sweers, Uniform
anti-maximum principles, J.Differential
Equations 164 (2000), 118-154. (DOI: 10.1006/jdeq.1999.3745) |
41 |
C.J. Reinecke, G. Sweers, A boundary layer
solution to a semilinear elliptic system of FitzHugh- Nagumo type, C.R.Acad.Sci. |
40 |
H.-Ch. Grunau, G. Sweers, Sign change for the
Green function and the first eigenfunction of
equations of clamped-plate type, Archives Rat. Mech. Anal. 150 (1999), 179-190. (DOI: 10.1007/s002050050185) |
39 |
G. Sweers, E. Zuazua,
On the non-existence
of some special eigenfunctions for the Dirichlet Laplacian and the Lamé
system, J. Elasticity 52 (1999), 111-120. (DOI: 10.1023/A:1007524411396) |
38 |
C.J. Reinecke and G. Sweers, A positive
solution on IRn to a system of
elliptic equations of Fitzhugh-Nagumo type, J.
Differential Equations 153 (1999), 292-312. (DOI: 10.1006/jdeq.1998.3560)
|
37 |
I. Birindelli,
E. Mitidieri and G. Sweers, Existence of the
principal eigenfunction for cooperative elliptic
systems in a general domain, Differentsial'nye Uravneniya 35, N3, (1999) (in Russian). (translation in Differential
Equations 35, 3 (1999), 326-334, or the original english manuscript, 23pp.) |
36 |
P. Freitas, G. Sweers, Positivity
results for a nonlocal elliptic equation, Proceedings of the Royal
Society of Edinburgh 128A (1998), 697-715. (DOI:
10.1017/S0308210500021727) |
35 |
H.-Ch. Grunau and G. Sweers, The role of
positive boundary data in the generalized clamped plate equation, ZAMP 49
(1998), 420-435. |
34 |
Shuanhu Li and Guido Sweers, Closed-form
solution for a moving boundary problem, Tsinghua Science and Technology 3
(1998), 1233-1235,1239. |
33 |
H.-Ch. Grunau, G. Sweers, Positivity
properties of elliptic boundary value problems of higher order, Nonlinear
Analysis, T.M.A. 30 (1997), 5251-5258 (Proc. 2nd World Congress of Nonlinear
Analysts). (DOI:
10.1016/S0362-546X(96)00164-2) |
32 |
H.-Ch. Grunau, G. Sweers, The maximum
principle and positive principal eigenfunctions for
polyharmonic equations, in Reaction Diffusion
systems, Marcel Dekker Inc., New York 1997, p 163-182. |
31 |
G. Sweers, Hopf's lemma and two-dimensional domains with corners,
Rend. Ist. Mat. Trieste. Suppl. Vol. XXVIII (1997),
383-419. |
30 |
G. Sweers, LN is
sharp for the antimaximum principle, J.
Differential Equations 134 (1997), 148-153.
(DOI:
10.1006/jdeq.1996.3211) |
29 |
N. Stavrakakis,
G. Sweers, Positivity
for a noncooperative system of elliptic equations in IRn,
Advances in Differential Equations 4 (1999), 115-136. https://projecteuclid.org/euclid.ade/1366291800 |
28 |
R. Manásevich,
G. Sweers, A noncooperative system with p-Laplacians that preserves
positivity, Nonlinear Analysis 36, (1999), 511-528. (DOI:
10.1016/S0362-546X(98)00088-1) |
27 |
H.-Ch. Grunau, G. Sweers, Classical
solutions for some higher order semilinear elliptic
equations under weak growth conditions, Nonlinear Analysis, T.M.A. 28
(1997), 799-807. (DOI:
10.1016/0362-546X(95)00194-Z ) |
26 |
H.-Ch. Grunau, G. Sweers, Positivity for
equations involving polyharmonic elliptic operators
with Dirichlet boundary conditions, Math. Ann. 307
(1997), 589-626. (DOI:
10.1007/s002080050052) |
25 |
H.-Ch. Grunau, G. Sweers, Positivity for
perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions,
Math. Nachr. 179 (1996), 89-102. (DOI: 10.1002/mana.19961790106) |
24 |
Ph. Clément, R. Hagmeijer, G. Sweers, On the invertibility of mappings arising in 2D grid generation
problems, Numer. Math. 73 (1996), 37-51. (DOI: 10.1007/s002110050182) |
23 |
Ph. Clément, R. Hagmeijer, G. Sweers, On a Dirichlet problem related to the invertibility
of mappings arising in 2D grid generation problems, in 'Calculus of
variations, applications and computations, Pont-à-Mousson
(1994), (ed. C. Bandle, J. Bemelmans, and M. Chipot) Pitman Research Notes in Math. 326, Longman,
Harlow (1995), 67-83 |
22 |
E. Mitidieri, G.
Sweers, R.C.A.M. van der Vorst, Non existence theorems
for systems of quasilinear partial differential equations, Differential
and Integral Equations 8 (1995), 1331-1354. https://projecteuclid.org/euclid.die/1368638169 |
21 |
E. Mitidieri, G. Sweers, Weakly
coupled systems and positivity, Math. Nachrichten 173 (1995), 259-286. |
20 |
G. Sweers, A noncooperative mixed parabolic-elliptic system and
positivity, Rend. Ist. Mat. Trieste 26 (1994),
361-375. |
19 |
E. Mitidieri, G. Sweers, Existence of a
maximal solution for quasimonotone elliptic systems, Differential and
Integral Equations 7 (1994), 1495-1510. https://projecteuclid.org/euclid.die/1369329527 |
18 |
W. Caspers,
G. Sweers, Point
interactions on bounded domains, Proceedings of the Royal Society of
Edinburgh 124A (1994), 917-926. (DOI:
10.1017/S0308210500022411) |
17 |
G. Sweers, Positivity for a
strongly coupled elliptic system by Green function estimates, Journal of
Geometric Analysis. 4 (1994), 121-142. (DOI: 10.1007/BF02921596) |
16 |
G. Sweers, On examples to a
conjecture of De Saint Venant, Nonlinear Analysis
T.M.A. 18 (1992), 889-891. (DOI:
10.1016/0362-546X(92)90229-8) |
15 |
G. Sweers, Strong positivity
in C(Ω) for elliptic
systems, Math. Zeitschrift 209 (1992), 251-271.
(DOI: 10.1007/BF02570833) |
14 |
G. Sweers, A
sign-changing global minimizer on a convex domain, in Progress in Partial
Differential Equations: Elliptic and Parabolic Problems, ed. C. Bandle e.a., Pitman Research
Notes in Math. 266, Longman, Harlow (1992), 251-258. |
13 |
B. Kawohl, G. Sweers, On quasiconvexity, rank-one convexity and symmetry,
Delft Progress Report 14 (1990), 251-263. |
12 |
E.N. Dancer, G. Sweers, On the existence
of a maximal weak solution for a semilinear
elliptic equation, Differential and Integral Equations 2 (1989), 533-540.
Projecteuclid: 1371648443 . Supplement
|
11 |
Ph. Clément, G. Sweers, On subsolutions
to a semilinear elliptic problem, in Recent
advances in nonlinear elliptic and parabolic problems, ed. P. Bénilan e.a., Pitman Research
Notes in Math. 208, Longman, Harlow 1989, 267-273. |
10 |
G. Sweers, Estimates for elliptic
singular perturbations in L-p -type spaces, Asymptotic Analysis 2 (1989),
101-138. (DOI: 10.3233/ASY-1989-2202) |
9 |
G. Sweers, Semilinear
elliptic problems on domains with corners, Commun.
in Partial Differential Equations 14 (1989), 1229-1247. (DOI:
10.1080/03605308908820651) |
8 |
G. Sweers, A strong maximum
principle for a noncooperative elliptic system,
SIAM Journal Math. Anal. 20 (1989), 367-371. (DOI: 10.1137/0520023) |
7 |
G. Sweers, A
counterexample with convex domain to a conjecture of De Saint Venant, Journal of Elasticity 22 (1989), 57-61. (DOI: 10.1007/BF00055334) |
6 |
G. Sweers, On the maximum of
solutions for a semilinear elliptic problem,
Proceedings of the Royal Society of Edinburgh, 108A (1988), 357-370. (DOI:
10.1017/S0308210500014724) |
5 |
B. Kawohl, G. Sweers, Remarks on
eigenvalues and eigenfunctions of a special
elliptic system, Journal of Appl. Math. Ph. (ZAMP) 38 (1987), 730-740. (DOI: 10.1007/BF00948293) |
4 |
Ph. Clément, G. Sweers, Getting a solution
between sub- and supersolutions without monotone
iteration, Rendiconti dell'Istituto
di Matematica dell'Università
|
3 |
G. Sweers, Some
results for a semilinear elliptic problem with a
large parameter, Proceedings ICIAM 87, Contributions from the
Netherlands, Paris La-Villette, (1987). |
2 |
Ph. Clément, G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Annali della Scuola Normale Superiore di |
1 |
Ph. Clément,
G. Sweers, Existence et multiplicité des solutions d'un problème aux valeurs
propres elliptique semilinéaires, C.R. Acad Sc. Paris 302, Série I, 19 (1986), 682-683. |
|
|
II |
Filippo Gazzola, Hans-Christoph
Grunau, Guido Sweers, Polyharmonic
boundary value problems, Springer Lecture Notes Series 1991 (2010). (DOI:
10.1007/978-3-642-12245-3) |
I |
Partial differential
equations and functional analysis. The Philippe Clément Festschrift.
Papers from the workshop held in Delft, November 29–December 1, 2004. Edited by Erik Koelink, Jan van Neerven,
Ben de Pagter and Guido Sweers. Operator Theory: Advances and Applications, 168. Birkhäuser Verlag,
Basel, 2006. ISBN 978-3-7643-7600-0 (DOI: 10.1007/3-7643-7601-5) |
O |
PhD-Thesis:
Semilinear elliptic eigenvalue problems, TUDelft, 1988. |
|
|
E |
G.
Sweers, Minicourse: Elliptic PDEs on domains with corners, 9th
Singular Days, Kassel, 2019 |
D |
G. Sweers, Positivity
Preserving Results and Maximum Principles, AIMS Spring School 2016. |
C |
G. Sweers, Lecture Notes
on Differential Equations of Mathematical Physics (1.5Mb), Corso Estivo di Mathematica, |
B |
G. Sweers, Lecture Notes on
Maximum Principles, december 2000 |
A |
G. Sweers,
Complexe functies, gewone en partiële differentiaalvergelijkingen, Delft
University Press, 1998, ISBN 90-407-1681-1. |
|
Lecture notes, mostly in German,
on Analysis, (P)DE, etc. can be found on this site. |